Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,924)

Search Parameters:
Keywords = blood vessel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 1233 KiB  
Review
Emerging Strategies for Targeting Angiogenesis and the Tumor Microenvironment in Gastrointestinal Malignancies: A Comprehensive Review
by Emily Nghiem, Briana Friedman, Nityanand Srivastava, Andrew Takchi, Mahshid Mohammadi, Dior Dedushi, Winfried Edelmann, Chaoyuan Kuang and Fernand Bteich
Pharmaceuticals 2025, 18(8), 1160; https://doi.org/10.3390/ph18081160 - 5 Aug 2025
Abstract
Gastrointestinal (GI) cancers represent a significant global health burden, with high morbidity and mortality often linked to late-stage detection and metastatic disease. The progression of these malignancies is critically driven by angiogenesis, the formation of new blood vessels, and the surrounding dynamic tumor [...] Read more.
Gastrointestinal (GI) cancers represent a significant global health burden, with high morbidity and mortality often linked to late-stage detection and metastatic disease. The progression of these malignancies is critically driven by angiogenesis, the formation of new blood vessels, and the surrounding dynamic tumor microenvironment (TME), a complex ecosystem comprising various cell types and non-cellular components. This comprehensive review, based on a systematic search of the PubMed database, synthesizes the existing literature to define the intertwined roles of angiogenesis and the TME in GI tumorigenesis. The TME’s influence creates conditions favorable for tumor growth, invasion, and metastasis, but sometimes induces resistance to current therapies. Available therapeutic strategies for inhibiting angiogenesis involve antibodies and oral tyrosine kinase inhibitors, while immune modulation within the tumor microenvironment is mainly achieved through checkpoint inhibitor antibodies and chemotherapy. Creative emerging strategies encompassing cellular therapies, bispecific antibodies, and new targets such as CD40, DLL4, and Ang2, amongst others, are focused on inhibiting proangiogenic pathways more profoundly, reversing resistance to prior drugs, and modulating the TME to enhance therapeutic efficacy. A deeper understanding of the complex interactions between components of the TME is crucial for addressing the unmet need for novel and effective therapeutic interventions against aggressive GI cancers. Full article
(This article belongs to the Special Issue Multitargeted Compounds: A Promising Approach in Medicinal Chemistry)
Show Figures

Figure 1

11 pages, 1311 KiB  
Case Report
Multisystemic Tuberculosis Masquerading as Aggressive Cardiac Tumor Causing Budd–Chiari Syndrome Disseminated to the Brain Resulting in Death of a Six-Year-Old Boy
by Eman S. Al-Akhali, Sultan Abdulwadoud Alshoabi, Halah Fuad Muslem, Fahad H. Alhazmi, Amirah F. Alsaedi, Kamal D. Alsultan, Amel F. Alzain, Awatif M. Omer, Maisa Elzaki and Abdullgabbar M. Hamid
Pathogens 2025, 14(8), 772; https://doi.org/10.3390/pathogens14080772 - 5 Aug 2025
Viewed by 58
Abstract
Tuberculosis (TB) is an ancient and re-emerging granulomatous infectious disease that continues to challenge public health. Early diagnosis and prompt effective treatment are crucial for preventing disease progression and reducing both morbidity and mortality. These steps play a vital role in infection control [...] Read more.
Tuberculosis (TB) is an ancient and re-emerging granulomatous infectious disease that continues to challenge public health. Early diagnosis and prompt effective treatment are crucial for preventing disease progression and reducing both morbidity and mortality. These steps play a vital role in infection control and in lowering death rates at both individual and population levels. Although diagnostic methods have improved sufficiently in recent decades, TB can still present with ambiguous laboratory and imaging features. This ambiguity can lead to diagnostic pitfalls and potentially disastrous outcomes due to delayed diagnosis. In this article, we present a case of TB that was difficult to diagnose. The disease had invaded the mediastinum, right atrium, right coronary artery, and inferior vena cava (IVC), resulting in Budd–Chiari syndrome. This rare presentation created clinical, laboratory, and radiological confusion, resulting in a diagnostic dilemma that ultimately led to open cardiac surgery. The patient initially presented with progressive shortness of breath on exertion and fatigue, which suggested possible heart disease. This suspicion was reinforced by computed tomography (CT) imaging, which showed infiltrative mass lesions predominantly in the right side of the heart, invading the right coronary artery and IVC, with imaging features mimicking angiosarcoma. Although laboratory findings revealed an exudative effusion with lymphocyte predominance and elevated adenosine deaminase (ADA), the Gram stain was negative for bacteria, and an acid-fast bacilli (AFB) smear was also negative. These findings contributed to diagnostic uncertainty and delayed the confirmation of TB. Open surgery with excisional biopsy and histopathological analysis ultimately confirmed TB. We conclude that TB should not be ruled out solely based on negative Mycobacterium bacteria in pericardial effusion or AFB smear. TB can mimic aggressive tumors such as angiosarcoma or lymphoma with invasion of the surrounding tissues and blood vessels. Awareness of the clinical presentation, imaging findings, and potential diagnostic pitfalls of TB is essential, especially in endemic regions. Full article
Show Figures

Figure 1

23 pages, 5970 KiB  
Review
Practical Review on Aetio-Pathogenesis and Symptoms in Pigs Affected by Clinical and Subclinical Oedema Disease and the Use of Commercial Vaccines Under Field Conditions
by Juan Hernandez-Garcia, Isaac Ballarà Rodriguez, Ramon Jordà Casadevall, Sergi Bruguera, David Llopart and Emili Barba-Vidal
Animals 2025, 15(15), 2275; https://doi.org/10.3390/ani15152275 - 4 Aug 2025
Viewed by 195
Abstract
The impact of Oedema Disease produced by Shiga toxigenic Escherichia coli (STEC) in swine is increasing in some production countries due to increasing limitations on treatment with antimicrobials and zinc oxide, either because of the increased prevalence of multi-resistant strains or because of [...] Read more.
The impact of Oedema Disease produced by Shiga toxigenic Escherichia coli (STEC) in swine is increasing in some production countries due to increasing limitations on treatment with antimicrobials and zinc oxide, either because of the increased prevalence of multi-resistant strains or because of legal restrictions. The main pathological effect of Shiga toxin 2e is represented by damage to the endothelial cells of the blood vessel walls, leading to liquid extravasation and oedema formation in multiple tissues. These oedemas are generally easily identifiable in acute clinical cases. However, disease caused by Shiga toxin can occur without any externally visible oedema in the pigs, as observed in the subclinical presentation of Oedema Disease. It also causes productive losses, so it is important to identify and/or diagnose cases to set up control measures in order to optimize production and health. This article includes a comprehensive review of lesions and signs caused by Shiga toxin toxicosis in pigs, as well as other insights about the aetiology and epidemiology of STEC in pigs, and the effect of Shiga toxin recombinant toxoid vaccines in reducing these clinical and subclinical signs under field conditions. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

15 pages, 611 KiB  
Review
Role of Dyadic Proteins in Proper Heart Function and Disease
by Carter Liou and Michael T. Chin
Int. J. Mol. Sci. 2025, 26(15), 7478; https://doi.org/10.3390/ijms26157478 - 2 Aug 2025
Viewed by 199
Abstract
Cardiovascular disease encompasses a wide group of conditions that affect the heart and blood vessels. Of these diseases, cardiomyopathies and arrhythmias specifically have been well-studied in their relationship to cardiac dyads, nanoscopic structures that connect electrical signals to muscle contraction. The proper development [...] Read more.
Cardiovascular disease encompasses a wide group of conditions that affect the heart and blood vessels. Of these diseases, cardiomyopathies and arrhythmias specifically have been well-studied in their relationship to cardiac dyads, nanoscopic structures that connect electrical signals to muscle contraction. The proper development and positioning of dyads is essential in excitation–contraction (EC) coupling and, thus, beating of the heart. Three proteins, namely CMYA5, JPH2, and BIN1, are responsible for maintaining the dyadic cleft between the T-tubule and junctional sarcoplasmic reticulum (jSR). Various other dyadic proteins play integral roles in the primary function of the dyad—translating a propagating action potential (AP) into a myocardial contraction. Ca2+, a secondary messenger in this process, acts as an allosteric activator of the sarcomere, and its cytoplasmic concentration is regulated by the dyad. Loss-of-function mutations have been shown to result in cardiomyopathies and arrhythmias. Adeno-associated virus (AAV) gene therapy with dyad components can rescue dyadic dysfunction, which results in cardiomyopathies and arrhythmias. Overall, the dyad and its components serve as essential mediators of calcium homeostasis and excitation–contraction coupling in the mammalian heart and, when dysfunctional, result in significant cardiac dysfunction, arrhythmias, morbidity, and mortality. Full article
(This article belongs to the Special Issue Cardiovascular Diseases: Histopathological and Molecular Diagnostics)
Show Figures

Figure 1

19 pages, 3763 KiB  
Article
Mathematical Study of Pulsatile Blood Flow in the Uterine and Umbilical Arteries During Pregnancy
by Anastasios Felias, Charikleia Skentou, Minas Paschopoulos, Petros Tzimas, Anastasia Vatopoulou, Fani Gkrozou and Michail Xenos
Fluids 2025, 10(8), 203; https://doi.org/10.3390/fluids10080203 - 1 Aug 2025
Viewed by 217
Abstract
This study applies Computational Fluid Dynamics (CFD) and mathematical modeling to examine uterine and umbilical arterial blood flow during pregnancy, providing a more detailed understanding of hemodynamic changes across gestation. Statistical analysis of Doppler ultrasound data from a large cohort of more than [...] Read more.
This study applies Computational Fluid Dynamics (CFD) and mathematical modeling to examine uterine and umbilical arterial blood flow during pregnancy, providing a more detailed understanding of hemodynamic changes across gestation. Statistical analysis of Doppler ultrasound data from a large cohort of more than 200 pregnant women (in the second and third trimesters) reveals significant increases in the umbilical arterial peak systolic velocity (PSV) between the 22nd and 30th weeks, while uterine artery velocities remain relatively stable, suggesting adaptations in vascular resistance during pregnancy. By combining the Navier–Stokes equations with Doppler ultrasound-derived inlet velocity profiles, we quantify several key fluid dynamics parameters, including time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), Reynolds number (Re), and Dean number (De), evaluating laminar flow stability in the uterine artery and secondary flow patterns in the umbilical artery. Since blood exhibits shear-dependent viscosity and complex rheological behavior, modeling it as a non-Newtonian fluid is essential to accurately capture pulsatile flow dynamics and wall shear stresses in these vessels. Unlike conventional imaging techniques, CFD offers enhanced visualization of blood flow characteristics such as streamlines, velocity distributions, and instantaneous particle motion, providing insights that are not easily captured by Doppler ultrasound alone. Specifically, CFD reveals secondary flow patterns in the umbilical artery, which interact with the primary flow, a phenomenon that is challenging to observe with ultrasound. These findings refine existing hemodynamic models, provide population-specific reference values for clinical assessments, and improve our understanding of the relationship between umbilical arterial flow dynamics and fetal growth restriction, with important implications for maternal and fetal health monitoring. Full article
Show Figures

Figure 1

30 pages, 955 KiB  
Review
Breaking Barriers with Sound: The Implementation of Histotripsy in Cancer
by Ashutosh P. Raman, Parker L. Kotlarz, Alexis E. Giff, Katherine A. Goundry, Paul Laeseke, Erica M. Knavel Koepsel, Mosa Alhamami and Dania Daye
Cancers 2025, 17(15), 2548; https://doi.org/10.3390/cancers17152548 - 1 Aug 2025
Viewed by 376
Abstract
Histotripsy is a novel, noninvasive, non-thermal technology invented in 2004 for the precise destruction of biologic tissue. It offers a powerful alternative to more conventional thermal or surgical interventions. Using short-pulse, low-duty cycle ultrasonic waves, histotripsy creates cavitation bubble clouds that selectively and [...] Read more.
Histotripsy is a novel, noninvasive, non-thermal technology invented in 2004 for the precise destruction of biologic tissue. It offers a powerful alternative to more conventional thermal or surgical interventions. Using short-pulse, low-duty cycle ultrasonic waves, histotripsy creates cavitation bubble clouds that selectively and precisely destroy targeted tissue in a predefined volume while sparing critical structures like bile ducts, ureters, and blood vessels. Such precision is of value when treating tumors near vital structures. The FDA has cleared histotripsy for the treatment of all liver tumors. Major medical centers are currently spearheading clinical trials, and some institutions have already integrated the technology into patient care. Histotripsy is now being studied for a host of other cancers, including primary kidney and pancreatic tumors. Preclinical murine and porcine models have already revealed promising outcomes. One of histotripsy’s primary advantages is its non-thermal mechanical actuation. This feature allows it to circumvent the limitations of heat-based techniques, including the heat sink effect and unpredictable treatment margins near sensitive tissues. In addition to its non-invasive ablative capacities, it is being preliminarily explored for its potential to induce immunomodulation and promote abscopal inhibition of distant, untreated tumors through CD8+ T cell responses. Thus, it may provide a multilayered therapeutic effect in the treatment of cancer. Histotripsy has the potential to improve precision and outcomes across a multitude of specialties, from oncology to cardiovascular medicine. Continued trials are crucial to further expand its applications and validate its long-term efficacy. Due to the speed of recent developments, the goal of this review is to provide a comprehensive and updated overview of histotripsy. It will explore its physics-based mechanisms, differentiating it from similar technologies, discuss its clinical applications, and examine its advantages, limitations, and future. Full article
Show Figures

Figure 1

13 pages, 6907 KiB  
Article
The Characterization of the Neuroimmune Response in Primary Pterygia
by Luis Fernando Barba-Gallardo, Sofía Guadalupe Ocón-Garcia, Manuel Enrique Avila-Blanco, José Luis Diaz-Rubio, Javier Ventura-Juárez, Elizabeth Casillas-Casillas and Martín Humberto Muñoz-Ortega
Int. J. Mol. Sci. 2025, 26(15), 7417; https://doi.org/10.3390/ijms26157417 - 1 Aug 2025
Viewed by 94
Abstract
Several chronic inflammatory processes are currently being studied in relation to other systems to better understand the regulation mechanisms and identify potential therapeutic targets. A significant body of evidence supports the role of the nervous system in regulating various immunological processes. This study [...] Read more.
Several chronic inflammatory processes are currently being studied in relation to other systems to better understand the regulation mechanisms and identify potential therapeutic targets. A significant body of evidence supports the role of the nervous system in regulating various immunological processes. This study investigates the relationship between pterygia and the sympathetic nervous system, focusing on their interaction in the inflammatory response and fibrogenic process. Sixteen surgical specimens of primary pterygia and four conjunctival tissue samples were examined, and their morphology was analyzed using hematoxylin–eosin and Masson’s trichrome stains. The gene expression of adrenergic receptors, as well as inflammatory and fibrogenic cytokines, was also assessed. Additionally, both adrenergic receptors and tyrosine hydroxylase were found to be localized within the tissues according to immunohistochemistry and immunofluorescence techniques. Increased expression of proinflammatory, fibrogenic, and adrenergic genes was observed in the pterygium compared to the healthy conjunctiva. Adrenergic receptors and tyrosine hydroxylase were localized in the basal region of the epithelium and within blood vessels, closely associated with immune cells. Neuroimmunomodulation plays a key role in the pathogenesis of pterygia by activating the sympathetic nervous system. At the intravascular level, norepinephrine promotes the migration of immune cells, thereby sustaining inflammation. Additionally, sympathetic nerve fibers located at the subepithelial level contribute to epithelial growth and the fibrosis associated with pterygia. Full article
Show Figures

Graphical abstract

16 pages, 7401 KiB  
Article
Sitagliptin Mitigates Diabetic Cardiomyopathy Through Oxidative Stress Reduction and Suppression of VEGF and FLT-1 Expression in Rats
by Qamraa H. Alqahtani, Tahani A. ALMatrafi, Amira M. Badr, Sumayya A. Alturaif, Raeesa Mohammed, Abdulaziz Siyal and Iman H. Hasan
Biomolecules 2025, 15(8), 1104; https://doi.org/10.3390/biom15081104 - 30 Jul 2025
Viewed by 319
Abstract
Diabetes mellitus (DM) is a global health challenge marked by chronic hyperglycemia, which can result in complications such as diabetic cardiomyopathy. Sitagliptin, an oral anti-hyperglycemic drug, has demonstrated efficacy in alleviating cardiovascular complications associated with DM. This study explored the impact of Sitagliptin’s [...] Read more.
Diabetes mellitus (DM) is a global health challenge marked by chronic hyperglycemia, which can result in complications such as diabetic cardiomyopathy. Sitagliptin, an oral anti-hyperglycemic drug, has demonstrated efficacy in alleviating cardiovascular complications associated with DM. This study explored the impact of Sitagliptin’s potential as a therapeutic agent, functioning not only to control blood sugar levels but also to enhance vascular health and strengthen cardiac resilience in diabetes. The investigation focused on alterations in the vascular endothelial growth factor (VEGF) and its receptor-1 (FLT-1) signaling pathways, as well as its potential to suppress inflammation and oxidative stress. A number of rats received a single dose of streptozotocin (STZ) 55 mg/kg (i.p.) to induce DM. Sitagliptin was administered orally (100 mg/kg/90 days) to normal and diabetic rats, after which samples were collected for investigation. Sitagliptin significantly mitigated weight loss in diabetic rats. Its administration significantly reduced blood glucose levels and improved serum troponin I and CK-MB levels. Heart sections from diabetic rats showed a marked increase in mTOR, VEGF, and FLT-1 immune reaction, while sitagliptin-treated diabetic rats’ heart sections showed moderate immune reactions. Sitagliptin’s protective effect was also associated with reduced inflammation, and apoptotic markers. In conclusion, Sitagliptin is suggested to offer beneficial effects on the vascular health of cardiac blood vessels, thereby potentially reducing myocardial stress in diabetic patients. Full article
(This article belongs to the Special Issue Pharmacology of Cardiovascular Diseases)
Show Figures

Graphical abstract

59 pages, 3467 KiB  
Review
Are Hippocampal Hypoperfusion and ATP Depletion Prime Movers in the Genesis of Alzheimer’s Disease? A Review of Recent Pertinent Observations from Molecular Biology
by Valerie Walker
Int. J. Mol. Sci. 2025, 26(15), 7328; https://doi.org/10.3390/ijms26157328 - 29 Jul 2025
Viewed by 313
Abstract
Alzheimer’s dementia (AD) is a disease of the ageing brain. It begins in the hippocampal region with the epicentre in the entorhinal cortex, then gradually extends into adjacent brain areas involved in memory and cognition. The events which initiate the damage are unknown [...] Read more.
Alzheimer’s dementia (AD) is a disease of the ageing brain. It begins in the hippocampal region with the epicentre in the entorhinal cortex, then gradually extends into adjacent brain areas involved in memory and cognition. The events which initiate the damage are unknown and under intense investigation. Localization to the hippocampus can now be explained by anatomical features of the blood vessels supplying this region. Blood supply and hence oxygen delivery to the area are jeopardized by poor flow through narrowed arteries. In genomic and metabolomic studies, the respiratory chain and mitochondrial pathways which generate ATP were leading pathways associated with AD. This review explores the notion that ATP depletion resulting from hippocampal hypoperfusion has a prime role in initiating damage. Sections cover sensing of ATP depletion and protective responses, vulnerable processes with very heavy ATP consumption (the malate shuttle, the glutamate/glutamine/GABA (γ-aminobutyric acid) cycle, and axonal transport), phospholipid disturbances and peroxidation by reactive oxygen species, hippocampal perfusion and the effects of hypertension, chronic hypoxia, and arterial vasospasm, and an overview of recent relevant genomic studies. The findings demonstrate strong scientific arguments for the proposal with increasing supportive evidence. These lines of enquiry should be pursued. Full article
Show Figures

Graphical abstract

22 pages, 2523 KiB  
Article
Computational Simulation of Aneurysms Using Smoothed Particle Hydrodynamics
by Yong Wu, Fei Wang, Xianhong Sun, Zibo Liu, Zhi Xiong, Mingzhi Zhang, Baoquan Zhao and Teng Zhou
Mathematics 2025, 13(15), 2439; https://doi.org/10.3390/math13152439 - 29 Jul 2025
Viewed by 204
Abstract
Modeling and simulation of aneurysm formation, growth, and rupture plays an essential role in a wide spectrum of application scenarios, ranging from risk stratification to stability prediction, and from clinical decision-making to treatment innovation. Unfortunately, it remains a non-trivial task due to the [...] Read more.
Modeling and simulation of aneurysm formation, growth, and rupture plays an essential role in a wide spectrum of application scenarios, ranging from risk stratification to stability prediction, and from clinical decision-making to treatment innovation. Unfortunately, it remains a non-trivial task due to the difficulties imposed by the complex and under-researched pathophysiological mechanisms behind the different development stages of various aneurysms. In this paper, we present a novel computational method for aneurysm simulation using smoothed particle hydrodynamics (SPH). Firstly, we consider blood in a vessel as a kind of incompressible fluid and model its flow dynamics using the SPH method; and then, to simulate aneurysm growth and rupture, the relationship between the aneurysm development and the properties of fluid particles is established by solving the motion control equation. In view of the prevalence of aneurysms in bifurcation vessels, we further enhance the capability of the model by introducing a solution for bifurcation aneurysms simulation according to Murray’s law. In addition, a CUDA parallel computing scheme is also designed to speed up the simulation process. To evaluate the performance of the proposed method, we conduct extensive experiments with different physical parameters associated with morphological characteristics of an aneurysm. The experimental results demonstrate the effectiveness and efficiency of proposed method in modeling and simulating aneurysm formation, growth, and rupture. Full article
Show Figures

Figure 1

23 pages, 1585 KiB  
Article
The Key Role of Thermal Relaxation Time on the Improved Generalized Bioheat Equation: Analytical Versus Simulated Numerical Approach
by Alexandra Maria Isabel Trefilov, Mihai Oane and Liviu Duta
Materials 2025, 18(15), 3524; https://doi.org/10.3390/ma18153524 - 27 Jul 2025
Viewed by 366
Abstract
The Pennes bioheat equation is the most widely used model for describing heat transfer in living tissue during thermal exposure. It is derived from the classical Fourier law of heat conduction and assumes energy exchange between blood vessels and surrounding tissues. The literature [...] Read more.
The Pennes bioheat equation is the most widely used model for describing heat transfer in living tissue during thermal exposure. It is derived from the classical Fourier law of heat conduction and assumes energy exchange between blood vessels and surrounding tissues. The literature presents various numerical methods for solving the bioheat equation, with exact solutions developed for different boundary conditions and geometries. However, analytical models based on this framework are rarely reported. This study aims to develop an analytical three-dimensional model using MATHEMATICA software, with subsequent mathematical validation performed through COMSOL simulations, to characterize heat transfer in biological tissues induced by laser irradiation under various therapeutic conditions. The objective is to refine the conventional bioheat equation by introducing three key improvements: (a) incorporating a non-Fourier framework for the Pennes equation, thereby accounting for the relaxation time in thermal response; (b) integrating Dirac functions and the telegraph equation into the bioheat model to simulate localized point heating of diseased tissue; and (c) deriving a closed-form analytical solution for the Pennes equation in both its classical (Fourier-based) and improved (non-Fourier-based) formulations. This paper investigates the nuanced relationship between the relaxation time parameter in the telegraph equation and the thermal relaxation time employed in the bioheat transfer equation. Considering all these aspects, the optimal thermal relaxation time determined for these simulations was 1.16 s, while the investigated thermal exposure time ranged from 0.01 s to 120 s. This study introduces a generalized version of the model, providing a more realistic representation of heat exchange between biological tissue and blood flow by accounting for non-uniform temperature distribution. It is important to note that a reasonable agreement was observed between the two modeling approaches: analytical (MATHEMATICA) and numerical (COMSOL) simulations. As a result, this research paves the way for advancements in laser-based medical treatments and thermal therapies, ultimately contributing to more optimized therapeutic outcomes. Full article
Show Figures

Figure 1

20 pages, 2234 KiB  
Review
Intracranial Large Artery Involvement in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy: A Tale of Two Genes?
by Marialuisa Zedde and Rosario Pascarella
Genes 2025, 16(8), 882; https://doi.org/10.3390/genes16080882 - 26 Jul 2025
Viewed by 356
Abstract
Background/Objectives: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a prevalent Mendelian disorder caused by mutations in the NOTCH3 gene, primarily impacting cerebral small blood vessels. This review aims to explore the involvement of large intracranial arteries in CADASIL, [...] Read more.
Background/Objectives: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a prevalent Mendelian disorder caused by mutations in the NOTCH3 gene, primarily impacting cerebral small blood vessels. This review aims to explore the involvement of large intracranial arteries in CADASIL, particularly focusing on the association with RNF213 polymorphisms, especially in Asian populations. Methods: A comprehensive literature review was conducted to gather data on the morphological features of both small and large intracranial arteries in CADASIL, examining clinical manifestations, imaging findings, and genetic associations. Results: The findings indicate that while CADASIL is predominantly characterized by small vessel disease, a significant number of patients also exhibit large artery involvement, particularly Asian populations where RNF213 polymorphisms may play a critical role. The review highlights the evidence of intracranial stenosis and the potential implications of traditional vascular risk factors, such as hypertension and diabetes mellitus, which are prevalent in these populations. Conclusions: The involvement of larger intracranial arteries in CADASIL underscores the complexity of the disease, suggesting that both genetic predispositions and environmental factors contribute to vascular abnormalities. Further research is needed to clarify these relationships and improve diagnostic and therapeutic strategies for CADASIL patients. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

9 pages, 234 KiB  
Review
Endovascular Treatment of Stroke and Anesthesia Technique: What Is the Best Approach, According to the Literature?
by Federica Arturi, Gabriele Melegari, Fabio Gazzotti, Elisabetta Bertellini and Alberto Barbieri
Neurol. Int. 2025, 17(8), 115; https://doi.org/10.3390/neurolint17080115 - 25 Jul 2025
Viewed by 301
Abstract
Background/Objectives: Endovascular thrombectomy has become a mainstay in the treatment of acute ischemic stroke caused by large vessel occlusion. Among the multiple factors that influence outcomes, the choice of anesthetic technique—general anesthesia (GA), conscious sedation (CS), or local anesthesia (LA)—remains controversial. This narrative [...] Read more.
Background/Objectives: Endovascular thrombectomy has become a mainstay in the treatment of acute ischemic stroke caused by large vessel occlusion. Among the multiple factors that influence outcomes, the choice of anesthetic technique—general anesthesia (GA), conscious sedation (CS), or local anesthesia (LA)—remains controversial. This narrative review aims to critically examine and synthesize current evidence comparing the efficacy and safety of different anesthetic strategies in endovascular stroke treatment. Methods: A structured search of the PubMed® database was conducted using the terms “stroke treatment”, “endovascular stroke treatment”, “anesthesia”, “general anesthesia”, “conscious sedation”, and “local anesthesia”. The search focused on clinical trials involving human subjects published in English. Studies were included if they compared at least two anesthetic techniques during thrombectomy and reported outcomes such as neurological recovery, mortality, or complication rates. Reviews, case reports, and animal studies were excluded. Results: Several randomized controlled trials and observational studies show comparable functional outcomes between GA and CS, though CS may confer advantages in early neurological recovery and reduced complications. Local anesthesia, though less studied, may offer favorable outcomes in selected patients. General anesthesia appears to be associated with greater hemodynamic variability and a higher risk of post-procedural infections, particularly in unsuccessful interventions. Maintaining stable blood pressure and minimizing ventilation duration are crucial to improving patient prognosis. Conclusions: While both GA and CS are viable options during thrombectomy, CS and LA may provide a safer profile in selected patients by preserving hemodynamic stability and reducing infectious risk. Personalized anesthetic strategies and further high-quality trials are warranted. Full article
(This article belongs to the Section Movement Disorders and Neurodegenerative Diseases)
Show Figures

Graphical abstract

15 pages, 1406 KiB  
Article
Arterial Stiffness and Early Cardiac Dysfunction in Type 2 Diabetes Mellitus: A Potential Role for 25 OH Vitamin D3 Deficiency
by Laura Maria Craciun, Florina Buleu, Stela Iurciuc, Daian Ionel Popa, Gheorghe Nicusor Pop, Flavia Goanta, Greta-Ionela Goje, Ana Maria Pah, Marius Badalica-Petrescu, Olivia Bodea, Ioana Cotet, Claudiu Avram, Diana-Maria Mateescu and Adina Avram
Medicina 2025, 61(8), 1349; https://doi.org/10.3390/medicina61081349 - 25 Jul 2025
Viewed by 164
Abstract
Background and Objectives: Type 2 diabetes mellitus (T2DM) is associated with subclinical cardiovascular changes, such as increased arterial stiffness and myocardial dysfunction. Vitamin D deficiency has been recognized as a potential contributing factor to vascular disease; however, its impact on early cardiac [...] Read more.
Background and Objectives: Type 2 diabetes mellitus (T2DM) is associated with subclinical cardiovascular changes, such as increased arterial stiffness and myocardial dysfunction. Vitamin D deficiency has been recognized as a potential contributing factor to vascular disease; however, its impact on early cardiac changes associated with T2DM remains poorly understood. Our aim was to evaluate the association between serum levels of 25-hydroxyvitamin D3 [25(OH)D3], arterial stiffness, and left ventricular global longitudinal strain (LV GLS) in patients with T2DM who do not have a clinically evident cardiovascular disease. Material and methods: This cross-sectional study evaluated the carotid intima–media thickness (IMT), aortic pulse wave velocity (PWVao), LV GLS, and serum 25(OH)D3 levels in patients diagnosed with T2DM (n = 65) compared to healthy control subjects (n = 55). Independent predictors of arterial stiffness were identified by a multivariate logistic regression analysis. Results: Patients with T2DM showed a significant increase in IMT and PWVao, a reduction in LV GLS, and low levels of 25(OH)D3 compared to subjects in the control group (all p < 0.05). Both vitamin D deficiency and T2DM were found to be independently associated with an increased arterial stiffness, with odds ratios of 2.4 and 4.8, respectively. A significant inverse relationship was identified between 25(OH)D3 levels and markers of arterial stiffness, as well as LV GLS, suggesting a possible association between the vitamin D status and the early onset of cardiovascular dysfunction. Conclusions: Patients with T2DM show early signs of heart and blood vessel problems, even with an ejection fraction that remains within normal limits. There is a significant correlation between vitamin D deficiency and increased arterial stiffness, along with impaired LV GLS, indicating its possible involvement in cardiovascular complications associated with diabetes. These findings support the utility of integrating vascular, myocardial, and vitamin D assessments in early cardiovascular risk stratification for T2DM patients. Full article
(This article belongs to the Special Issue Cardiovascular Diseases and Type 2 Diabetes: 2nd Edition)
Show Figures

Figure 1

23 pages, 483 KiB  
Review
Microrheological and Microfluidic Approaches for Evaluation of the Mechanical Properties of Blood Cells
by Nadia Antonova and Khristo Khristov
Appl. Sci. 2025, 15(15), 8291; https://doi.org/10.3390/app15158291 - 25 Jul 2025
Viewed by 143
Abstract
Microfluidic methods are an important tool for studying the microrheology of blood and the mechanical properties of blood cells—erythrocytes, leukocytes, and platelets. In patients with diabetes, hypertension, obesity, sickle cell anemia, or cerebrovascular or peripheral vascular diseases, hemorheological alterations are commonly observed. These [...] Read more.
Microfluidic methods are an important tool for studying the microrheology of blood and the mechanical properties of blood cells—erythrocytes, leukocytes, and platelets. In patients with diabetes, hypertension, obesity, sickle cell anemia, or cerebrovascular or peripheral vascular diseases, hemorheological alterations are commonly observed. These include increased blood viscosity and red blood cell (RBC) aggregation, along with reduced RBC deformability. Such disturbances significantly contribute to impaired microcirculation and microvascular perfusion. In blood vessels, abnormal hemorheological parameters can elevate resistance to blood flow, exert greater mechanical stress on the endothelial wall, and lead to microvascular complications. Among these parameters, erythrocyte deformability is a potential biomarker for diseases including diabetes, malaria, and cancer. This review highlights recent advances in microfluidic technologies for in vitro assays of RBC deformability and aggregation, as well as leukocyte aggregation and adhesion. It summarizes the core principles of microfluidic platforms and the experimental findings related to hemodynamic parameters. The advantages and limitations of each technique are discussed, and future directions for improving these devices are explored. Additionally, some aspects of the modeling of the microrheological properties of blood cells are considered. Overall, the described microfluidic systems represent promising tools for investigating erythrocyte mechanics and leukocyte behavior. Full article
(This article belongs to the Special Issue Applications of Microfluidics and Nanofluidics)
Show Figures

Figure 1

Back to TopTop