Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = blackcurrant extracts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1583 KiB  
Article
The Influence of Ultraviolet-C Light Pretreatment on Blackcurrant (Ribes nigrum) Quality During Storage
by Zhuoyu Wang, Andrej Svyantek, Zachariah Miller, Haydon Davis and Ashley Kapus
Appl. Sci. 2025, 15(15), 8452; https://doi.org/10.3390/app15158452 - 30 Jul 2025
Viewed by 243
Abstract
Blackcurrant is a notable superfruit in Europe, and its vitamin C content surpasses the well-known blueberry superfruit. However, due to its short shelf life during storage, consumption is mainly accounted by frozen berries, extracts, and concentrates. This study applied an intensity of 1.2 [...] Read more.
Blackcurrant is a notable superfruit in Europe, and its vitamin C content surpasses the well-known blueberry superfruit. However, due to its short shelf life during storage, consumption is mainly accounted by frozen berries, extracts, and concentrates. This study applied an intensity of 1.2 W/m2 UVC with different durations, including control (non-treated), UVC irradiation for 0.5 h (0.5 h treatment), UVC irradiation for 1 h (1 h treatment), and UVC pretreatment for 2 h (2 h treatment) to blackcurrant berries before storage. Fundamental physical (firmness and weight loss) and physicochemical characteristics (SSC, pH, and acids), microbial population changes, total phenolic content, antioxidant capacity, and specific phenolic compound changes were evaluated every five days over a twenty-day storage period. The results indicated that the longer the UVC pretreatment, the lower the water weight losses during storage. Meanwhile, the UVC pretreatment significantly affected the blackcurrant soluble solid content, resulting in higher soluble solid contents detected in the blackcurrants with the higher doses of UVC. For the mold population control, UVC effects were highly correlated with the pretreatment duration. However, UVC did not have a significant influence on the berry pH and acid contents, but the storage length slightly increased the pH and decreased the acids. At the same time, UVC pretreatment did not affect the berry firmness, polyphenols, ascorbic acid content, or antioxidant capacities, which were primarily influenced by the storage duration. The monophenolic compounds detected before and after storage indicated that more than one hour of UVC radiation influenced most of the phenolic contents largely before storage. The UVC pretreatment has also influenced some phenolic compounds. After storage, half an hour of UVC pretreatment increased cyanidin levels, and two hours of UVC pretreatment increased catechin and epicatechin levels. However, most of the compounds remained at similar amounts during storage in each treatment. Further research is needed to improve the UVC radiation time length or intensity or explore other technology combinations to optimize UVC pretreatments for blackcurrant storage. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

13 pages, 537 KiB  
Article
Effects of Blackcurrant Extract and Partially Hydrolyzed Guar Gum Intake on Gut Dysbiosis in Male University Rugby Players
by Hiroto Miura, Machi Oda, Kanako Abe, Hiromi Ikeda, Mami Fujibayashi, Naoko Oda, Tomohiro Segawa, Aya Abe, Natsumi Ueta, Takamitsu Tsukahara, Tomohisa Takagi, Yuji Naito and Ryo Inoue
Microorganisms 2025, 13(7), 1561; https://doi.org/10.3390/microorganisms13071561 - 2 Jul 2025
Viewed by 1185
Abstract
Our previous study reported that male university rugby players tended to have a gut with a dysbiotic environment, characterized by abundant pathobiont bacteria and an accumulation of succinate, when compared with age-matched, non-rugby playing healthy males. In the present study, we conducted a [...] Read more.
Our previous study reported that male university rugby players tended to have a gut with a dysbiotic environment, characterized by abundant pathobiont bacteria and an accumulation of succinate, when compared with age-matched, non-rugby playing healthy males. In the present study, we conducted a randomized, double-blinded, placebo-controlled experiment to evaluate the potential of blackcurrant extract and/or partially hydrolyzed guar gum (PHGG) to improve the gut environment of university rugby players. Participants were supplemented with blackcurrant extract and/or PHGG or a placebo for 4 weeks. Beneficial gut bacteria such as Megasphaera spp. tended to increase (p < 0.10) and Bifidobacterium spp. increased (p < 0.05) with the intake of blackcurrant extract and/or PHGG. A subgroup analysis further indicated that, unlike in those with a eubiotic gut environment, the dietary supplements also increased the number of beneficial gut bacteria such as Phascolarctobacterium spp. (p < 0.10) and Faecalibacterium spp. (p < 0.10) and fecal SCFA concentrations (p < 0.05) in participants with a possible dysbiotic gut environment. However, a synergistic effect between blackcurrant extract and PHGG was not clearly observed. Although further investigation is recommended, it was concluded that blackcurrant extract and PHGG can at least be used as functional materials to improve gut dysbiosis in university rugby players. Full article
(This article belongs to the Special Issue Nutrition and Gut Microbiome)
Show Figures

Figure 1

15 pages, 1370 KiB  
Article
Influence of Enzymatic Hydrolysis on Composition and Technological Properties of Black Currant (Ribes nigrum) Pomace
by Aurelija Kairė, Jolita Jagelavičiūtė, Loreta Bašinskienė, Michail Syrpas and Dalia Čižeikienė
Appl. Sci. 2025, 15(11), 6207; https://doi.org/10.3390/app15116207 - 31 May 2025
Viewed by 578
Abstract
Blackcurrant (Ribes nigrum) is valued for its health-promoting compounds, many of which remain in the pomace after juice extraction. Berry pomace can be considered a valuable source of dietary fiber. However, it is typically dominated by insoluble dietary fiber (IDF), and [...] Read more.
Blackcurrant (Ribes nigrum) is valued for its health-promoting compounds, many of which remain in the pomace after juice extraction. Berry pomace can be considered a valuable source of dietary fiber. However, it is typically dominated by insoluble dietary fiber (IDF), and the soluble-to-insoluble fiber ratio is often nutritionally suboptimal. The aim of this study was to evaluate the influence of enzymatic hydrolysis on the composition and technological properties of blackcurrant pomace (BCP). Three commercial enzyme preparations—Viscozyme® L, Celluclast® 1.5 L, and Pectinex® Ultra Tropical (Novozymes A/S, Denmark)—were used for enzymatic hydrolysis, which was conducted at 50 °C for 1 h. The enzymatic treatments altered BCP’s chemical composition and technological properties. Pectinex® Ultra Tropical and Viscozyme® L primarily hydrolyzed SDF, while Celluclast® 1.5 L was more effective on IDF, resulting in increased SDF content and an improved SDF/IDF ratio. Enzymatic hydrolysis reduced the oil retention capacity and impaired stabilizing properties, but it increased both the water retention capacity and the solubility index. It was found that the creaming index of the pomace deteriorated with decreased IDF content. The findings indicate that the effects of enzymatic modification on BCP’s composition and technological properties can vary significantly, supporting its potential application in the development of novel food products. Full article
Show Figures

Figure 1

12 pages, 2030 KiB  
Article
Investigating the Effect of Enzymatically-Derived Blackcurrant Extract on Skin Staphylococci Using an In Vitro Human Stratum Corneum Model
by Marija Ćorović, Anja Petrov Ivanković, Ana Milivojević, Klaus Pfeffer, Bernhard Homey, Patrick A. M. Jansen, Patrick L. J. M. Zeeuwen, Ellen H. van den Bogaard and Dejan Bezbradica
Pharmaceutics 2025, 17(4), 487; https://doi.org/10.3390/pharmaceutics17040487 - 8 Apr 2025
Viewed by 705
Abstract
Background/Objectives: Numerous intrinsic and extrinsic stressors can disrupt the balance of the skin microbiome, leading to the development of various skin diseases. It has been proven that coagulase-negative staphylococci (CoNS) are important commensals for maintaining skin microbiome homeostasis and fighting cutaneous pathogens [...] Read more.
Background/Objectives: Numerous intrinsic and extrinsic stressors can disrupt the balance of the skin microbiome, leading to the development of various skin diseases. It has been proven that coagulase-negative staphylococci (CoNS) are important commensals for maintaining skin microbiome homeostasis and fighting cutaneous pathogens such as Staphylococcus aureus (S. aureus). Here, we examined the influence of polyphenol-rich enzymatic blackcurrant extract (EBCE) on pathogenic coagulase-positive S. aureus strains and beneficial CoNS, like Staphylococcus epidermidis (S. epidermidis), to explore its potential for rebalancing the skin microbiota. Methods: The polyphenol profile of EBCE was determined by ultra-high-pressure liquid chromatography–tandem mass spectrometry. Microwell plate assays were employed to study the effect of EBCE on five S. aureus strains isolated from the skin of atopic dermatitis patients. An in vitro human stratum corneum model was used to test its effect on mixed bacterial cultures. Results: EBCE inhibited the growth of all tested S. aureus strains by 80–100% at the highest tested concentration after 7 h. No microbial growth was observed at the highest tested EBCE concentration using the stratum corneum model inoculated with one selected pathogen (S. aureus SA-DUS-017) and one commensal laboratory strain (S. epidermidis DSM 20044). The lowest tested concentration did not interfere with S. aureus growth but strongly stimulated the growth of S. epidermidis (~300-fold colony forming unit increase). In addition, low EBCE concentrations strongly stimulated CoNS growth in microbiome samples taken from the armpits of healthy volunteers that were spiked with S. aureus SA-DUS-017. Conclusions: These preclinical data support further testing of EBCE-enriched topical preparations as potential cutaneous prebiotics in human studies. Full article
Show Figures

Graphical abstract

25 pages, 2931 KiB  
Article
Antioxidant, Polyphenol, Physical, and Sensory Changes in Myofibrillar Protein Gels Supplemented with Polyphenol-Rich Plant-Based Additives
by Katarzyna Leicht, Charles Odilichukwu R. Okpala, Paulina Nowicka, José Angel Pérez-Alvarez and Małgorzata Korzeniowska
Nutrients 2025, 17(7), 1232; https://doi.org/10.3390/nu17071232 - 1 Apr 2025
Viewed by 969
Abstract
Background: Plant-based additives such as blackcurrant juice and pomace, as well as herbal extracts from Melissa officinalis and Centella asiatica, possess well-established health-promoting properties. This study aimed to investigate how the incorporation of polyphenol-rich plant-based additives into a myofibrillar protein matrix could [...] Read more.
Background: Plant-based additives such as blackcurrant juice and pomace, as well as herbal extracts from Melissa officinalis and Centella asiatica, possess well-established health-promoting properties. This study aimed to investigate how the incorporation of polyphenol-rich plant-based additives into a myofibrillar protein matrix could enhance the nutritional value, antioxidant potential, and sensory quality of novel food gels. Methods: Myofibrillar protein gels were enriched with selected plant-based additives. Antioxidant properties were assessed using the ABTS radical cation decolorization assay, DPPH radical scavenging assay, and the Ferric Reducing Antioxidant Power (FRAP) assay. Polyphenol profiles were determined with emphasis on flavonols, flavan-3-ols, and chlorogenic acids. Physicochemical properties including pH, color, texture, energetic value, dry matter, and ash contents were measured. Sensory evaluation was conducted using consumer preference tests and descriptive sensory profiling. Results: Enriched gels contained bioactive compounds such as catechins, procyanidins, chlorogenic acids, and anthocyanins, whose presence correlated with distinct antioxidant activities. Blackcurrant pomace significantly elevated both total polyphenol content and antioxidant capacity, imparting a vivid red-purple color that influenced consumer perception. Melissa officinalis extract enhanced antioxidant potential and introduced a mild, pleasant aroma. Centella asiatica extract further improved the nutritional profile and oxidative stability of the gels, demonstrating additive and synergistic effects in both functional and sensory dimensions. Conclusions: Polyphenol-rich plant-based additives, particularly blackcurrant pomace and extracts from M. officinalis and C. asiatica, markedly improve the antioxidant capacity, nutritional value, and sensory appeal of myofibrillar protein-based food gels. These findings support their potential application in the development of functional food products tailored to consumer expectations. Full article
Show Figures

Figure 1

12 pages, 1125 KiB  
Article
Alterations of Exercise-Induced Carbohydrate and Fat Oxidation by Anthocyanin-Rich New Zealand Blackcurrant Are Associated with the Pre-Intervention Metabolic Function: A Secondary Analysis of Randomized Crossover Trials
by Mark E. T. Willems and Matthew D. Cook
Nutrients 2025, 17(6), 997; https://doi.org/10.3390/nu17060997 - 12 Mar 2025
Viewed by 1040
Abstract
Background/Objectives: Our studies have provided evidence for the alteration of exercise-induced metabolic responses by the intake of anthocyanin-rich New Zealand blackcurrant (NZBC) extract. In this secondary analysis of 10 studies, we examined the relationship between the pre-intervention exercise-induced respiratory exchange ratio and [...] Read more.
Background/Objectives: Our studies have provided evidence for the alteration of exercise-induced metabolic responses by the intake of anthocyanin-rich New Zealand blackcurrant (NZBC) extract. In this secondary analysis of 10 studies, we examined the relationship between the pre-intervention exercise-induced respiratory exchange ratio and the blackcurrant-induced respiratory exchange ratio and substrate utilisation during exercise. Methods: Metabolic data of seven cohort and three case studies with females (n = 46) and males (n = 71), from recreationally active to ultra-endurance trained individuals that were dosed with different intake durations (acute to two-week intake) and dosages (105 to 420 mg of anthocyanins) of NZBC extract for walking-, running-, and cycling-induced effects, were included in the secondary analysis. Results: There was a strong positive correlation between the pre-intervention and blackcurrant-induced respiratory exchange ratio for females (Pearson r: 0.7972, p < 0.0001) and males (Pearson r: 0.8674, p < 0.0001). A moderate positive correlation was obtained for the relationship between the pre-intervention respiratory exchange ratio and changes in fat oxidation for females (Pearson r: 0.5311, p = 0.0001) and males (Pearson r: 0.3136, p = 0.002). In addition, a moderate negative correlation was obtained for the relationship between the pre-intervention respiratory exchange ratio and changes in carbohydrate oxidation for females (Pearson r: −0.3017, p = 0.0393) and males (Pearson r: −0.3327, p < 0.001). There were no differences between females and males in the changes of the exercise-induced metabolic responses to the intake of New Zealand blackcurrant extract. Conclusions: Our secondary analysis of the data in studies on the effects of New Zealand blackcurrant extract suggests that the metabolic response of individuals to the intake of New Zealand blackcurrant extract depends partly on the pre-intervention respiratory exchange ratio, with the majority of individuals showing enhanced exercise-induced fat oxidation and lower exercise-induced carbohydrate oxidation. However, a divergent metabolic response seems possible such that individuals with a very low intrinsic respiratory exchange ratio may more likely experience lower fat oxidation and higher carbohydrate oxidation with the intake of New Zealand blackcurrant. Individuals with a high intrinsic respiratory exchange will more likely experience higher fat oxidation and lower carbohydrate oxidation with the intake of New Zealand blackcurrant. Future work is required to examine the factors and mechanisms for the individual variation of the response of exercise-induced substrate utilisation relative to the intake of anthocyanin-rich New Zealand blackcurrant extracts. Full article
(This article belongs to the Special Issue Nutrition, Metabolites, and Human Health — 2nd Edition)
Show Figures

Figure 1

22 pages, 4201 KiB  
Article
Trend in Detection of Anthocyanins from Fresh Fruits and the Influence of Some Factors on Their Stability Impacting Human Health: Kinetic Study Assisted by UV–Vis Spectrophotometry
by Cătălina Ionescu, Adriana Samide and Cristian Tigae
Antioxidants 2025, 14(2), 227; https://doi.org/10.3390/antiox14020227 - 17 Feb 2025
Cited by 1 | Viewed by 1646
Abstract
Anthocyanins (ANTHs) are polyphenolic compounds with health promoting properties, being known for their strong antioxidant effects as well as for their antimicrobial properties, obesity and cardiovascular disease prevention, and anticarcinogenic activity. Being main dietary components, it is important to know the content of [...] Read more.
Anthocyanins (ANTHs) are polyphenolic compounds with health promoting properties, being known for their strong antioxidant effects as well as for their antimicrobial properties, obesity and cardiovascular disease prevention, and anticarcinogenic activity. Being main dietary components, it is important to know the content of anthocyanins in various dietary sources and their stability in time. The total anthocyanin content (TAC) of various fresh fruits has been spectrophotometrically determined using the pH differential method. The results showed that in the analyzed samples, the TAC increased in the order: blackcurrants > blackberries > blueberries > raspberries > strawberries > plums. The degradation degree of anthocyanins extracted from blueberries (BBEs) in an ethanol/water solution in four experimental conditions was studied. Kinetic studies have been approached, fitting the experimental data recorded by UV–Vis spectrophotometric analysis in agreement with some kinetic models verified for the ANTH degradation reaction. Therefore, zero-order kinetics for BBE extract degradation exposed to sunlight were identified, while for the other storage conditions (shadow, dark, cold), the first-order kinetics were respected. The results indicate that the stability decreased as follows: (ANTH stability)sunlight test << (ANTH stability)shadow test ≈ (ANTH stability)dark test < (ANTH stability)cold test. A mechanism for BBE anthocyanin degradation was proposed and the impact on human health of the degradation products is discussed. Full article
Show Figures

Figure 1

14 pages, 896 KiB  
Review
The Influence of Berry-Derived Polyphenol Supplementation on Exercise-Induced Oxidative Stress and Cardiovascular Health in Physically Active Individuals
by Joanna Ruszkowska, Wojciech Drygas and Magdalena Kwaśniewska
Antioxidants 2024, 13(12), 1561; https://doi.org/10.3390/antiox13121561 - 19 Dec 2024
Viewed by 3396
Abstract
Numerous studies have documented that high-intensity or prolonged exercise is associated with increased oxidative stress and modification of antioxidant status. Polyphenol-rich dietary supplements seem to be the compounds that can upregulate the endogenous antioxidant defense system and consequently prevent muscle damage, support recovery. [...] Read more.
Numerous studies have documented that high-intensity or prolonged exercise is associated with increased oxidative stress and modification of antioxidant status. Polyphenol-rich dietary supplements seem to be the compounds that can upregulate the endogenous antioxidant defense system and consequently prevent muscle damage, support recovery. As berry fruits are at the top of the list of the richest polyphenol food sources, supplements containing berries have become the subject of interest in the context of counteracting exercise-induced oxidative stress and the development of cardiovascular diseases. The purpose of this review is to summarize current knowledge on the effects of berry-derived polyphenol supplementation on exercise-induced oxidative stress and cardiovascular health in physically active individuals. Based on the available literature, blackcurrant supplementation, with its richest version being New Zealand blackcurrant extract, is the most commonly explored berry fruit, followed by chokeberries and blueberries. Although several studies have documented the significant and beneficial influence of berry-derived supplements on redox status and cardiovascular response, some inconsistencies remain. The presented findings should be interpreted with caution due the limited number of available studies, particularly with the participation of physically active individuals. Further research is needed to reveal more comprehensive and accurate data concerning the impact of berry-derived supplements on exercise-induced outcomes taking into account the type of supplement, time of administration, and dosage. Full article
(This article belongs to the Special Issue Dietary Antioxidants and Cardiovascular Health, 2nd Edition)
Show Figures

Figure 1

11 pages, 402 KiB  
Article
Individual Responses to Repeated Dosing with Anthocyanin-Rich New Zealand Blackcurrant Extract During High-Intensity Intermittent Treadmill Running in Active Males
by Ian C. Perkins, Sam D. Blacker and Mark E. T. Willems
Nutrients 2024, 16(24), 4253; https://doi.org/10.3390/nu16244253 - 10 Dec 2024
Cited by 1 | Viewed by 1786
Abstract
Intake of New Zealand blackcurrant (NZBC) extract for 7 days has been shown to improve high-intensity intermittent running (HIIR) performance. Objectives: We examined the repeat response of NZBC extract on HIIR performance. Methods: Sixteen active males (age: 23 ± 3 yrs, height: 179 [...] Read more.
Intake of New Zealand blackcurrant (NZBC) extract for 7 days has been shown to improve high-intensity intermittent running (HIIR) performance. Objectives: We examined the repeat response of NZBC extract on HIIR performance. Methods: Sixteen active males (age: 23 ± 3 yrs, height: 179 ± 5 cm, mass: 79 ± 11 kg, V˙O2max: 55.3 ± 5 mL∙kg−1∙min−1, velocity at V˙O2max: 17.2 ± 0.8 km∙h−1, mean ± SD) participated. Familiarized subjects completed the HIIR test at individualized exercise intensities with stages consisting of six 19 s high-intensity running bouts interspersed by 15 s of low-intensity running and 1 min of inter-stage rest. The test was repeated at increasing speeds until exhaustion, under four conditions; two with a daily dose of 600 mg of NZBC extract (CurraNZ™, providing 210 mg anthocyanins) and two with a placebo, each over 7 days. The study used a double-blind, randomized, cross-over design with a wash-out period of at least 14 days. Results: For the cohort, there were no differences between the placebo and NZBC conditions for mean heart rate (p = 0.071), mean oxygen uptake (p = 0.713), and mean lactate (p = 0.121) at exhaustion for the HIIR. The NZBC extract increased the mean total running distance and mean high-intensity running distance by 7.9% and 8.0% compared to the placebo. With NZBC extract, 8 of the 16 participants (50%) enhanced in both trials beyond the smallest worthwhile change for total running distance (≥173 m) and high-intensity running distance (≥111 m). For repeated responders, total running distance and high-intensity running distance was increased by 16.7% (95% CI [11.0, 22.4%] and 16.6% (95% CI [11.0, 22.2%]. Three participants had enhanced running performance in one trial beyond the SWC, and five participants were considered non-responders. Conclusions: This is the first study on the repeated response by an anthocyanin-rich supplement on high-intensity running performance. New Zealand blackcurrant extract can substantially enhance intermittent high-intensity running performance in consistent responders. Future work should examine dosing strategies of New Zealand blackcurrant, and whether a repeated response rate exceeding 50% can be attained. These findings suggest that NZBC extract could be beneficial for athletes participating in high-intensity team sports. Full article
(This article belongs to the Special Issue Sports Nutrition: Current and Novel Insights—2nd Edition)
Show Figures

Figure 1

17 pages, 4228 KiB  
Article
Anti-Obesity Effects Evaluation of a Blackcurrant Leaf Standardized Hydro-Alcoholic Extract in Wistar Rat Subjected to a High-Fat Diet
by Gwendoline Bréger, Agnès André, César Cotte, Abderrahim Hammaidi, Aline Amérand, Claude Faivre, Lionel Martignat and Mohamed Yassine Mallem
Biology 2024, 13(12), 999; https://doi.org/10.3390/biology13120999 - 1 Dec 2024
Viewed by 1355
Abstract
Blackcurrant (BC) extract was reported to exert anti-obesity effects. However, it is unknown whether BC extract with a composition close to the totum differentially affects obesity when compared to one of its active compounds. We evaluated the anti-obesity effects of a BC standardized [...] Read more.
Blackcurrant (BC) extract was reported to exert anti-obesity effects. However, it is unknown whether BC extract with a composition close to the totum differentially affects obesity when compared to one of its active compounds. We evaluated the anti-obesity effects of a BC standardized hydro-alcoholic leaf extract (BC-HLE) in an HFD-induced obesity rat model and compared them with quercetin (QUE). Thirty-six 12-week-old Wistar rats were divided into six groups: control, HFD, BC-HLE- (41 and 50 mg/kg) and QUE- (0.9 and 50 mg/kg) supplemented HFD rats for 12 weeks. HFD rats developed a moderate obesity, associated with a gut dysbiosis and a change in their total antioxidant capacity. The increase in body weight gain was prevented only by the low dose of BC-HLE and the high dose of QUE. The impaired glucose tolerance by HFD was attenuated by the low dose of QUE. Hepatic glutathione peroxidase activity was increased in the HFD group and only BC-HLE supplementation counteracted this change. The low BC-HLE dose tended to reduce the HFD-induced gut dysbiosis. These findings suggest that while QUE has beneficial effects on obesity-related disorders, the BC-HLE may offer even greater overall benefits and could contribute to preventing obesity and related conditions. Full article
(This article belongs to the Special Issue Physiology and Pathophysiology of Obesity)
Show Figures

Figure 1

38 pages, 3303 KiB  
Article
Antimicrobial Effectiveness of Ribes nigrum L. Leaf Extracts Prepared in Natural Deep Eutectic Solvents (NaDESs)
by Maria-Beatrice Solcan, Ana-Maria Vlase, Gabriel Marc, Dana Muntean, Tibor Casian, George Cosmin Nadăș, Cristiana Ștefania Novac, Daniela-Saveta Popa and Laurian Vlase
Antibiotics 2024, 13(12), 1118; https://doi.org/10.3390/antibiotics13121118 - 22 Nov 2024
Cited by 3 | Viewed by 1357
Abstract
Background: Blackcurrant (Ribes nigrum L.) leaves are valuable sources of bioactive compounds, including phenolic acids, flavonoids, and tannins, which contribute to their potent antioxidant, anti-inflammatory, and antimicrobial properties. Objectives: The overall aim of this study was to investigate the antimicrobial potential of [...] Read more.
Background: Blackcurrant (Ribes nigrum L.) leaves are valuable sources of bioactive compounds, including phenolic acids, flavonoids, and tannins, which contribute to their potent antioxidant, anti-inflammatory, and antimicrobial properties. Objectives: The overall aim of this study was to investigate the antimicrobial potential of extracts rich in bioactive compounds from blackcurrant leaves prepared in natural deep eutectic solvents (NaDESs). The objectives included the optimization of polyphenols extraction in NaDESs, characterization of the phytochemical composition by liquid chromatography–mass spectrometry (LC-MS), explanation of the chemical interactions between solvent systems and the main bioactive compound (chlorogenic acid) by molecular dynamics simulations, and evaluation of biological efficacy through antimicrobial tests. Methods: Two hydrogen-bond acceptors (HBAs) and three hydrogen-bond donors (HBDs) were tested. The experimental design included variables such as the HBA:HBD molar ratio, water percentage, extraction time, and extraction techniques used, specifically ultrasound-assisted extraction (UAE) and ultra-turrax extraction (UTE). The evaluated responses included the total polyphenol content, total flavonoid content, and total antioxidant activity. Antimicrobial assays were performed on four Gram-positive and three Gram-negative bacterial species, as well as one fungus, Candida albicans. Results: The extracts obtained by UAE showed higher concentrations of polyphenols and increased antioxidant potential. LC-MS analysis revealed the predominant presence of chlorogenic acid. The extracts showed significant activities against Gram-positive bacteria and Candida albicans. Conclusions: This study highlights the antioxidant and antimicrobial potentials of blackcurrant leaves extracts prepared in NaDESs, confirming that this type of solvent enhances polyphenols extraction and offers perspectives for new therapeutic formulations. Full article
Show Figures

Figure 1

20 pages, 4630 KiB  
Article
Valorisation of Blackcurrant Pomace by Extraction of Pectin-Rich Fractions: Structural Characterization and Evaluation as Multifunctional Cosmetic Ingredient
by Marija Ćorović, Anja Petrov Ivanković, Ana Milivojević, Milica Veljković, Milica Simović, Paula López-Revenga, Antonia Montilla, Francisco Javier Moreno and Dejan Bezbradica
Polymers 2024, 16(19), 2779; https://doi.org/10.3390/polym16192779 - 30 Sep 2024
Cited by 4 | Viewed by 1461
Abstract
Blackcurrant pomace is a widely available waste stream derived from the industrial production of juice rich in pectin and unextracted polyphenols. Since pectin, an emerging class of gastrointestinal prebiotics, is also a common cosmetic ingredient, the aim of this work was to evaluate [...] Read more.
Blackcurrant pomace is a widely available waste stream derived from the industrial production of juice rich in pectin and unextracted polyphenols. Since pectin, an emerging class of gastrointestinal prebiotics, is also a common cosmetic ingredient, the aim of this work was to evaluate blackcurrant pomace as a source of pectin-rich fractions suitable for application in prebiotic cosmetics. Hereby, this raw material was valorised by sequential extraction of acid-soluble (by citric acid, CAP) and Ca-bound (by ammonium oxalate, AOPP) pectic polysaccharides. Both fractions had favourable physicochemical features and a similar degree of methyl-esterification between low- and high-methoxyl pectin (approx. 50%), but CAP had significantly higher galacturonic acid content (72.3%), branching, and purity. Regardless of that, both had very high oil (18.96 mL/g for CAP and 19.32 mL/g for AOPP) and water (9.97 mL/g for CAP and 7.32 mL/g for AOPP)-holding capacities and excellent emulsifying properties, making them promising cosmetic ingredients. The polyphenol content was 10 times higher in CAP, while corresponding antioxidant activity was 3-fold higher. Finally, the influence of varying CAP and AOPP concentrations on common skin pathogen, Staphylococcus aureus, and beneficial skin bacteria, Staphylococcus epidermidis, was examined. The results show significant prebiotic potential of two pectic fractions since they were capable of selectively stimulating S. epidermidis, while S. aureus growth was inhibited, whereas CAP demonstrated a particularly high capacity of up to 2.2, even with methicillin-resistant S. aureus. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

13 pages, 2078 KiB  
Article
Assessment of Enzymatically Derived Blackcurrant Extract as Cosmetic Ingredient—Antioxidant Properties Determination and In Vitro Diffusion Study
by Anja Petrov Ivanković, Marija Ćorović, Ana Milivojević, Stevan Blagojević, Aleksandra Radulović, Rada Pjanović and Dejan Bezbradica
Pharmaceutics 2024, 16(9), 1209; https://doi.org/10.3390/pharmaceutics16091209 - 14 Sep 2024
Cited by 2 | Viewed by 1682
Abstract
Blackcurrant is an anthocyanin-rich berry with proven antioxidant and photoprotective activity and emerging prebiotic potential, widely applied in cosmetic products. Hereby, highly efficient enzyme-assisted extraction of blackcurrant polyphenols was performed, giving extract with very high antioxidant activity. Obtained extract was characterized in terms [...] Read more.
Blackcurrant is an anthocyanin-rich berry with proven antioxidant and photoprotective activity and emerging prebiotic potential, widely applied in cosmetic products. Hereby, highly efficient enzyme-assisted extraction of blackcurrant polyphenols was performed, giving extract with very high antioxidant activity. Obtained extract was characterized in terms of anthocyanin composition, incorporated into three different cosmetic formulations and subjected to Franz cell diffusion study. Experimental values obtained using cellulose acetate membrane for all four dominant anthocyanins (delphinidin 3-glucoside, delphinidin 3-rutinoside, cyanidin 3-glucoside and cyanidin 3-rutinoside) were successfully fitted with the Korsmeyer–Peppas diffusion model. Calculated effective diffusion coefficients were higher for hydrogel compared to oil-in-water cream gel and oil-in-water emulsion, whereas the highest value was determined for cyanidin 3-rutinoside. On the other hand, after a 72 h long experiment with transdermal skin diffusion model (Strat-M® membrane), no anthocyanins were detected in the receptor fluid, and only 0.5% of the initial quantity from the donor compartment was extracted from the membrane itself after experiment with hydrogel. Present study revealed that hydrogel is a suitable carrier system for the topical delivery of blackcurrant anthocyanins, while dermal and transdermal delivery of these molecules is very limited, which implies its applicability for treatments targeting skin surface (i.e., prebiotic, photoprotective). Full article
(This article belongs to the Special Issue Advances in Natural Products for Cutaneous Application)
Show Figures

Graphical abstract

10 pages, 1598 KiB  
Article
Beneficial Physiological and Metabolic Effects with Acute Intake of New Zealand Blackcurrant Extract during 4 h of Indoor Cycling in a Male Ironman Athlete: A Case Study
by Mark E. T. Willems, Tilly J. Spurr, Jonathan Lacey and Andrew R. Briggs
J. Funct. Morphol. Kinesiol. 2024, 9(3), 141; https://doi.org/10.3390/jfmk9030141 - 21 Aug 2024
Cited by 2 | Viewed by 2010
Abstract
New Zealand blackcurrant (NZBC) is known to alter exercise-induced physiological and metabolic responses with chronic (i.e., 7 days) dosing. We examined the effects of acute intake of New Zealand blackcurrant (NZBC) extract on 4 h indoor cycling-induced physiological and metabolic responses in a [...] Read more.
New Zealand blackcurrant (NZBC) is known to alter exercise-induced physiological and metabolic responses with chronic (i.e., 7 days) dosing. We examined the effects of acute intake of New Zealand blackcurrant (NZBC) extract on 4 h indoor cycling-induced physiological and metabolic responses in a male amateur Ironman athlete (age: 49 years; BMI: 24.3 kg·m−2; V˙O2max: 58.6 mL·kg−1·min−1; maximal aerobic power: 400 W; history: 14 Ironman events in 16 years) three weeks before competition. Indirect calorimetry was used and heart rate was recorded at 30 min intervals during 4 h indoor (~22.4 °C, relative humidity: ~55%) constant power (165 W) cycling on a Trek Bontrager connected to a Kickr smart trainer. Blood lactate and rating of perceived exertion (RPE) were taken at 60 min intervals. Study was a single-blind placebo-controlled study with capsules (4 × 105 mg anthocyanins) taken 2 h before starting the 4 h of cycling. Water was allowed ad libitum with personalised consumption of gels [a total of eight with three with caffeine (100 mg)], two bananas and 8 × electrolyte capsules (each 250 mg sodium and 125 mg potassium) at personalised time-points. With NZBC extract (CurraNZ), during 4 h of cycling (mean of 8 measurements), minute ventilation was 8% lower than placebo. In addition, there was no difference for oxygen uptake, with carbon dioxide production found to be 4% lower with NZBC extract. With the NZBC extract, the ventilatory equivalents were lower for oxygen and carbon dioxide by 5.5% and 3.7%; heart rate was lower by 10 beats·min−1; lactate was 40% different with lower lactate at 2, 3 and 4 h; RPE was lower at 2, 3 and 4 h; and carbohydrate oxidation was 11% lower. With NZBC extract, there was a trend for fat oxidation to be higher by 13% (p = 0.096), with the respiratory exchange ratio being lower by 0.02 units. Acute intake of New Zealand blackcurrant extract (420 mg anthocyanins) provided beneficial physiological and metabolic responses during 4 h of indoor constant power cycling in a male amateur Ironman athlete 3 weeks before a competition. Future work is required to address whether acute and chronic dosing strategies with New Zealand blackcurrant provide a nutritional ergogenic effect for Ironman athletes to enhance swimming, cycling and running performance. Full article
(This article belongs to the Special Issue Advances in Physiology of Training)
Show Figures

Figure 1

22 pages, 738 KiB  
Article
Blackcurrant Pomace Extract as a Natural Antioxidant in Vienna Sausages Reformulated by Replacement of Pork Backfat with Emulsion Gels Based on High Oleic Sunflower and Flaxseed Oils
by Nicoleta Cîrstea (Lazăr), Violeta Nour, Alexandru Radu Corbu and Georgiana Gabriela Codină
Gels 2024, 10(8), 534; https://doi.org/10.3390/gels10080534 - 13 Aug 2024
Cited by 4 | Viewed by 1441
Abstract
The incorporation of a blackcurrant pomace extract (BPE) at 2.5%, 5.0% and 10.0% into an emulsion gel based on high oleic sunflower and linseed oils was examined in order to obtain a functional ingredient to be used as a pork backfat replacer in [...] Read more.
The incorporation of a blackcurrant pomace extract (BPE) at 2.5%, 5.0% and 10.0% into an emulsion gel based on high oleic sunflower and linseed oils was examined in order to obtain a functional ingredient to be used as a pork backfat replacer in Vienna sausages. The replacement of the pork backfat with the control emulsion gel reduced the cooking loss but negatively affected the color by decreasing L* and a* values as compared with the traditional product. A decrease in the n-6/n-3 ratio from 10.99 to around 1.54 (by 7 times) was achieved through reformulation, while the PUFA/SFA ratio increased from 0.49 to 1.09. The incorporation of BPE did not have a major impact on the fatty acid profile and improved color by increasing redness, but negatively affected the texture by increasing hardness, gumminess and share force as compared with the sausages reformulated without extract. BPE reduced the pH and the thermal stability of the emulsion gels, increased cooking loss and decreased moisture retention in sausages. BPE increased the oxidative stability of Vienna sausages enriched in polyunsaturated fatty acids; however, the incorporation of BPE into the emulsion gels above 5% affected the sensory scores for appearance, texture and general acceptability of the reformulated sausages. Full article
(This article belongs to the Special Issue Food Gels: Structure and Properties)
Show Figures

Graphical abstract

Back to TopTop