Effects of Blackcurrant Extract and Partially Hydrolyzed Guar Gum Intake on Gut Dysbiosis in Male University Rugby Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statements and Study Participants
2.2. Dietary Assessment
2.3. Measurement of Fecal Organic Acid Concentrations
2.4. Analysis of the Fecal Microbiota
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Effects of Blackcurrant Extract and PHGG Intake on Fecal Organic Acid Concentrations and the Microbiota
3.3. Identification of Participants with Gut Dysbiosis
3.4. Subgroup Analysis of the Effects of Blackcurrant Extract and/or PHGG Intake on the Fecal SCFA Concentrations in Participants with Possible Gut Dysbiosis
3.5. Subgroup Analysis of the Effects of Blackcurrant Extract and PHGG Intake on the Fecal Microbiota in Participants with Possible Gut Dysbiosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef]
- Bedford, A.; Gong, J. Implications of butyrate and its derivatives for gut health and animal production. Anim. Nutr. 2018, 4, 151–159. [Google Scholar] [CrossRef]
- Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and functional importance in the gut. Proc. Nutr. Soc. 2021, 80, 37–49. [Google Scholar] [CrossRef]
- Cong, J.; Zhou, P.; Zhang, R. Intestinal Microbiota-Derived Short Chain Fatty Acids in Host Health and Disease. Nutrients 2022, 14, 1977. [Google Scholar] [CrossRef] [PubMed]
- Takaishi, H.; Matsuki, T.; Nakazawa, A.; Takada, T.; Kado, S.; Asahara, T.; Kamada, N.; Sakuraba, A.; Yajima, T.; Higuchi, H.; et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int. J. Méd Microbiol. 2008, 298, 463–472. [Google Scholar] [CrossRef]
- Di Cagno, R.; De Angelis, M.; De Pasquale, I.; Ndagijimana, M.; Vernocchi, P.; Ricciuti, P.; Gagliardi, F.; Laghi, L.; Crecchio, C.; Guerzoni, M.E.; et al. Duodenal and faecal microbiota of celiac children: Molecular, phenotype and metabolome characterization. BMC Microbiol. 2011, 11, 219. [Google Scholar] [CrossRef] [PubMed]
- Sasso, G.L.; Khachatryan, L.; Kondylis, A.; Battey, J.N.D.; Sierro, N.; ADanilova, N.; Grigoryeva, T.V.; IMarkelova, M.; Khusnutdinova, D.R.; Laikov, A.V.; et al. Inflammatory Bowel Disease–Associated Changes in the Gut: Focus on Kazan Patients. Inflamm. Bowel Dis. 2020, 27, 418–433. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.-M.; Zhao, H.-L.; Guo, G.-J.; Xu, J.; Zhou, Y.-L.; Huang, H.-L.; Nie, Y.-Q. Characterization of short-chain fatty acids in patients with ulcerative colitis: A meta-analysis. BMC Gastroenterol. 2022, 22, 117. [Google Scholar] [CrossRef]
- Morishima, S.; Oda, N.; Ikeda, H.; Segawa, T.; Oda, M.; Tsukahara, T.; Kawase, Y.; Takagi, T.; Naito, Y.; Fujibayashi, M.; et al. Altered Fecal Microbiotas and Organic Acid Concentrations Indicate Possible Gut Dysbiosis in University Rugby Players: An Observational Study. Microorganisms 2021, 9, 1687. [Google Scholar] [CrossRef]
- Clark, A.; Mach, N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: A systematic review for athletes. J. Int. Soc. Sports Nutr. 2016, 13, 43. [Google Scholar] [CrossRef]
- Jang, L.-G.; Choi, G.; Kim, S.-W.; Kim, B.-Y.; Lee, S.; Park, H. The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: An observational study. J. Int. Soc. Sports Nutr. 2019, 16, 21. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Inoue, R.; Tsukahara, T.; Ushida, K.; Chiji, H.; Matsubara, N.; Hara, H. Voluntary Running Exercise Alters Microbiota Composition and Increases n-Butyrate Concentration in the Rat Cecum. Biosci. Biotechnol. Biochem. 2008, 72, 572–576. [Google Scholar] [CrossRef]
- Bressa, C.; Bailén-Andrino, M.; Pérez-Santiago, J.; González-Soltero, R.; Pérez, M.; Montalvo-Lominchar, M.G.; Maté-Muñoz, J.L.; Domínguez, R.; Moreno, D.; Larrosa, M.; et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS ONE 2017, 12, e0171352. [Google Scholar] [CrossRef]
- Oliveira EPde Burini, R.C.; Jeukendrup, A. Gastrointestinal Complaints During Exercise: Prevalence, Etiology, and Nutritional Recommendations. Sports Med. 2014, 44, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Nadatani, Y.; Watanabe, T.; Shimada, S.; Otani, K.; Tanigawa, T.; Fujiwara, Y. Microbiome and intestinal ischemia/reperfusion injury. J. Clin. Biochem. Nutr. 2018, 63, 17–137. [Google Scholar] [CrossRef]
- Morishima, S.; Aoi, W.; Kawamura, A.; Kawase, T.; Takagi, T.; Naito, Y.; Tsukahara, T.; Inoue, R. Intensive, prolonged exercise seemingly causes gut dysbiosis in female endurance runners. J. Clin. Biochem. Nutr. 2020, 68, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Park, Y.; Lee, S.; Kim, D.-O. Extraction, Identification, and Health Benefits of Anthocyanins in Blackcurrants (Ribes nigrum L.). Appl. Sci. 2021, 11, 1863. [Google Scholar] [CrossRef]
- Molan, A.; Liu, Z.; Plimmer, G. Evaluation of the Effect of Blackcurrant Products on Gut Microbiota and on Markers of Risk for Colon Cancer in Humans. Phytother. Res. 2014, 28, 416–422. [Google Scholar] [CrossRef]
- Cao, L.; Gil Lee, S.; Melough, M.M.; Sakaki, J.R.; Maas, K.R.; Koo, S.I.; Chun, O.K. Long-Term Blackcurrant Supplementation Modified Gut Microbiome Profiles in Mice in an Age-Dependent Manner: An Exploratory Study. Nutrients 2020, 12, 290. [Google Scholar] [CrossRef]
- Slavin, J.L.; Greenberg, N.A. Partially hydrolyzed guar gum Clinical nutrition uses. Nutrition 2003, 19, 549–552. [Google Scholar] [CrossRef]
- Ohashi, Y.; Sumitani, K.; Tokunaga, M.; Ishihara, N.; Okubo, T.; Fujisawa, T. Consumption of partially hydrolysed guar gum stimulates Bifidobacteria and butyrate-producing bacteria in the human large intestine. Benef. Microbes 2014, 6, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Abe, A.; Morishima, S.; Kapoor, M.P.; Inoue, R.; Tsukahara, T.; Naito, Y.; Ozeki, M. Partially hydrolyzed guar gum is associated with improvement in gut health, sleep, and motivation among healthy subjects. J. Clin. Biochem. Nutr. 2023, 72, 189–197. [Google Scholar] [CrossRef]
- Yasukawa, Z.; Inoue, R.; Ozeki, M.; Okubo, T.; Takagi, T.; Honda, A.; Naito, Y. Effect of Repeated Consumption of Partially Hydrolyzed Guar Gum on Fecal Characteristics and Gut Microbiota: A Randomized, Double-Blind, Placebo-Controlled, and Parallel-Group Clinical Trial. Nutrients 2019, 11, 2170. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.D.; Myers, S.D.; Blacker, S.D.; Willems, M.E.T. New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists. Eur. J. Appl. Physiol. 2015, 115, 2357–2365. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Comparison of relative validity of food group intakes estimated by comprehensive and brief-type self-administered diet history questionnaires against 16 d dietary records in Japanese adults. Public. Heal. Nutr. 2011, 14, 1200–1211. [Google Scholar] [CrossRef]
- Inoue, R.; Sakaue, Y.; Sawai, C.; Sawai, T.; Ozeki, M.; Romero-Pérez, G.A.; Tsukahara, T. A preliminary investigation on the relationship between gut microbiota and gene expressions in peripheral mononuclear cells of infants with autism spectrum disorders. Biosci. Biotechnol. Biochem. 2016, 80, 1–9. [Google Scholar] [CrossRef]
- Herlemann, D.P.; Labrenz, M.; Jürgens, K.; Bertilsson, S.; Waniek, J.J.; Andersson, A.F. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011, 5, 1571–1579. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Janssen, S.; McDonald, D.; Gonzalez, A.; Navas-Molina, J.A.; Jiang, L.; Xu, Z.Z.; Winker, K.; Kado, D.M.; Orwoll, E.; Manary, M.; et al. Phylogenetic Placement of Exact Amplicon Sequences Improves Associations with Clinical Information. mSystems 2018, 3, e00021-18. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhan, L.; Tang, W.; Wang, Q.; Dai, Z.; Zhou, L.; Feng, T.; Chen, M.; Wu, T.; Hu, E.; et al. MicrobiotaProcess: A comprehensive R package for deep mining microbiome. Innovation 2023, 4, 100388. [Google Scholar] [CrossRef] [PubMed]
- DeGruttola, A.K.; Low, D.; Mizoguchi, A.; Mizoguchi, E. Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm. Bowel Dis. 2016, 22, 1137–1150. [Google Scholar] [CrossRef]
- Mosca, A.; Leclerc, M.; Hugot, J.P. Gut Microbiota Diversity and Human Diseases: Should We Reintroduce Key Predators in Our Ecosystem? Front. Microbiol. 2016, 7, 455. [Google Scholar] [CrossRef]
- Levy, M.; Kolodziejczyk, A.A.; Thaiss, C.A.; Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 2017, 17, 219–232. [Google Scholar] [CrossRef]
- Reichardt, N.; Duncan, S.H.; Young, P.; Belenguer, A.; McWilliam Leitch, C.; Scott, K.P.; Flint, H.J.; Louis, P. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014, 8, 1323–1335. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef]
- Sun, M.; Li, D.; Hua, M.; Miao, X.; Su, Y.; Chi, Y.; Li, Y.; Sun, R.; Niu, H.; Wang, J. Analysis of the alleviating effect of black bean peel anthocyanins on type 2 diabetes based on gut microbiota and serum metabolome. J. Funct. Foods 2023, 102, 105456. [Google Scholar] [CrossRef]
- Reider, S.J.; Moosmang, S.; Tragust, J.; Trgovec-Greif, L.; Tragust, S.; Perschy, L.; Przysiecki, N.; Sturm, S.; Tilg, H.; Stuppner, H.; et al. Prebiotic Effects of Partially Hydrolyzed Guar Gum on the Composition and Function of the Human Microbiota-Results from the PAGODA Trial. Nutrients 2020, 12, 1257. [Google Scholar] [CrossRef]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humaran, L.G.; Gratadoux, J.-J.; Blugeon, S.; Bridonneau, C.; Furet, J.-P.; Corthier, G.; et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef]
- Lopez-Siles, M.; Duncan, S.H.; Garcia-Gil, L.J.; Martinez-Medina, M. Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics. ISME J. 2017, 11, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Alqudah, S.; Claesen, J. Mechanisms of gut bacterial metabolism of dietary polyphenols into bioactive compounds. Gut Microbes 2024, 16, 2426614. [Google Scholar] [CrossRef] [PubMed]
- Morishima, S.; Abe, A.; Okamoto, S.; Kapoor, M.P.; Matsuura, S.; Kuriya, K.; Ozeki, M.; Nishio, M.; Miura, H.; Inoue, R. Partially hydrolyzed guar gum ingestion suppresses atopic dermatitis-like symptoms through prebiotic effect in mice. J. Clin. Biochem. Nutr. 2025, 76, 280–288. [Google Scholar] [CrossRef] [PubMed]
Item | PC | BC | GG | CO | p-Value a |
---|---|---|---|---|---|
N | 22 | 23 | 23 | 20 | N/A |
Age | 19.6 ± 1.4 | 19.7 ± 1.0 | 20.0 ± 1.3 | 20.1 ± 1.3 | 0.61 |
Height, cm | 173.0 ± 6.0 | 173.0 ± 6.4 | 172.7 ± 4.2 | 172.0 ± 4.0 | 0.96 |
Body weight, kg | 85.4 ± 12.8 | 82.2 ± 11.6 | 84.4 ± 9.6 | 84.4 ± 11.0 | 0.83 |
Body mass index | 28.0 ± 3.2 | 27.6 ± 3.5 | 28.5 ± 3.6 | 28.5 ± 3.2 | 0.71 |
Team position, N | |||||
Backs | 8 | 10 | 10 | 7 | N/A |
Forwards | 14 | 13 | 13 | 13 | N/A |
Item | PC (n = 22) | BC (n = 23) | GG (n = 23) | CO (n = 20) | ||||
---|---|---|---|---|---|---|---|---|
0 wk | 4 wk | 0 wk | 4 wk | 0 wk | 4 wk | 0 wk | 4 wk | |
Total SCFA a, mM | 95.06 ± 28.28 | 84.35 ± 32.84 | 26.11 ± 15.69 | 85.89 ± 27.11 *** | 97.66 ± 43.94 | 96.01 ± 30.35 | 86.02 ± 29.71 | 95.99 ± 31.29 |
Acetate, mM | 59.50 ± 18.42 | 52.41 ± 22.08 | 16.77 ± 11.57 | 54.81 ± 21.03 *** | 61.10 ± 27.33 | 59.65 ± 22.75 | 57.15 ± 22.70 | 61.82 ± 22.37 |
Propionate, mM | 21.76 ± 8.70 | 19.19 ± 9.25 | 5.34 ± 3.49 | 18.06 ± 6.53 *** | 18.36 ± 11.52 | 19.44 ± 6.24 | 16.87 ± 8.46 | 23.01 ± 13.23 # |
Iso-butyrate, mM | 2.25 ± 2.02 | 1.26 ± 1.06 * | 0.37 ± 0.33 | 1.29 ± 1.03 *** | 1.48 ± 2.08 | 1.29 ± 1.06 | 0.86 ± 0.94 | 0.76 ± 1.18 |
Butyrate, mM | 8.90 ± 5.55 | 9.59 ± 6.11 | 3.08 ± 1.72 | 9.76 ± 4.84 *** | 14.06 ± 8.10 | 13.34 ± 7.93 | 10.12 ± 5.46 | 9.37 ± 4.99 |
Iso-valerate, mM | 1.76 ± 2.01 | 1.16 ± 1.10 | 0.34 ± 0.36 | 0.75 ± 1.20 * | 1.37 ± 2.20 | 1.21 ± 1.01 | 0.75 ± 0.93 | 0.72 ± 1.06 |
Valerate, mM | 0.90 ± 1.23 | 0.74 ± 1.23 | 0.22 ± 0.35 | 1.23 ± 0.94 *** | 1.29 ± 2.99 | 1.07 ± 1.58 | 0.26 ± 0.47 | 0.30 ± 0.79 |
Succinate, mM | 1.48 ± 2.06 | 2.08 ± 3.83 | 0.59 ± 1.09 | 1.40 ± 6.03 | 2.75 ± 4.82 | 3.36 ± 8.69 | 2.80 ± 3.93 | 2.74 ± 3.93 |
Lactate, mM | 0.27 ± 0.68 | 1.01 ± 3.87 | 0.13 ± 0.42 | 1.03 ± 1.82 | 0.58 ± 1.77 | 0.12 ± 0.32 | 0.94 ± 3.15 | 2.52 ± 9.34 |
Formate, mM | 0.56 ± 1.94 | 0.60 ± 1.37 | 0.10 ± 0.37 | 0.98 ± 1.57 * | 0.08 ± 0.16 | 0.34 ± 0.92 | 0.16 ± 0.36 | 0.41 ± 0.95 |
Group | Taxa a | 0 wk | 4 wk | 0 to 4 wk | p-Value b |
---|---|---|---|---|---|
PC | Blautia spp. | 13.25 ± 10.62 | 8.91 ± 6.18 | ↓ | 0.033 |
Faecalibacterium spp. | 5.75 ± 6.53 | 8.63 ± 7.89 | ↑ | 0.047 | |
Megamonas spp. | 5.19 ± 11.91 | 9.56 ± 18.36 | ↑ | 0.031 | |
[Ruminococcus] gnavus group | 4.59 ± 6.65 | 3.25 ± 4.56 | ↓ | 0.035 | |
Phascolarctobacterium spp. | 1.50 ± 2.33 | 0.83 ± 2.03 | ↓ | 0.013 | |
Dorea spp. | 1.31 ± 2.18 | 0.54 ± 1.16 | ↓ | 0.034 | |
Unclassified Oscillospiraceae | 0.23 ± 0.43 | 0.08 ± 0.16 | ↓ | 0.032 | |
[Clostridium] innocuum group | 0.18 ± 0.37 | 0.11 ± 0.30 | ↓ | 0.007 | |
[Ruminococcus] gauvreauii group | 0.16 ± 0.47 | 0.33 ± 0.82 | ↑ | 0.071 | |
Faecalitalea spp. | 0.10 ± 0.18 | 0.04 ± 0.09 | ↓ | 0.029 | |
BC | Subdoligranulum spp. | 3.37 ± 4.63 | 2.13 ± 2.69 | ↓ | 0.040 |
Megasphaera spp. | 1.85 ± 5.74 | 3.73 ± 9.57 | ↑ | 0.092 | |
Phascolarctobacterium spp. | 0.55 ± 0.88 | 1.28 ± 1.93 | ↑ | 0.088 | |
GG | Streptococcus spp. | 4.36 ± 4.90 | 2.75 ± 3.01 | ↓ | 0.076 |
Unclassified Lachnospiraceae | 3.23 ± 2.82 | 2.08 ± 2.22 | ↓ | 0.010 | |
Megasphaera spp. | 1.71 ± 4.19 | 3.04 ± 5.49 | ↑ | 0.087 | |
Parabacteroides spp. | 0.61 ± 1.01 | 1.14 ± 1.77 | ↑ | 0.095 | |
[Eubacterium] coprostanoligenes group | 0.35 ± 0.76 | 0.08 ± 0.24 | ↓ | 0.033 | |
Tyzzerella spp. | 0.14 ± 0.23 | 0.04 ± 0.09 | ↓ | 0.036 | |
CO | Blautia spp. | 15.28 ± 7.31 | 10.44 ± 7.45 | ↓ | 0.009 |
Bifidobacterium spp. | 6.95 ± 5.88 | 14.30 ± 14.06 | ↑ | 0.036 | |
Unclassified Lachnospiraceae | 4.07 ± 4.14 | 2.39 ± 2.40 | ↓ | 0.047 | |
[Ruminococcus] torques group | 2.89 ± 3.67 | 1.68 ± 1.84 | ↓ | 0.045 | |
Collinsella spp. | 2.21 ± 1.99 | 4.84 ± 4.96 | ↑ | 0.009 | |
Lachnospira spp. | 0.27 ± 0.64 | 0.03 ± 0.06 | ↓ | 0.087 | |
Lachnospiraceae ND3007 group | 0.26 ± 0.36 | 0.09 ± 0.15 | ↓ | 0.033 | |
Lachnospiraceae UCG-004 | 0.17 ± 0.27 | 0.07 ± 0.15 | ↓ | 0.013 | |
Unclassified Enterobacteriaceae | 0.11 ± 0.18 | 0.63 ± 1.15 | ↑ | 0.050 |
Item | PC (Gut Dysbiosis) (n = 14) | BC (Gut Dysbiosis) (n = 23) | GG (Gut Dysbiosis) (n = 13) | CO (Gut Dysbiosis) (n = 14) | ||||
---|---|---|---|---|---|---|---|---|
0 wk | 4 wk | 0 wk | 4 wk | 0 wk | 4 wk | 0 wk | 4 wk | |
Total SCFA a, mM | 76.83 ± 14.13 | 79.84 ± 31.94 | 26.11 ± 15.69 | 85.89 ± 27.11 *** | 69.13 ± 26.61 | 91.05 ± 24.73 # | 69.78 ± 16.41 | 95.83 ± 36.43 * |
Acetate, mM | 48.39 ± 9.59 | 50.37 ± 20.16 | 16.77 ± 11.57 | 54.81 ± 21.03 *** | 44.97 ± 17.19 | 56.99 ± 16.53 | 45.58 ± 11.31 | 60.58 ± 25.09 # |
Propionate, mM | 17.69 ± 6.20 | 17.93 ± 10.66 | 5.34 ± 3.49 | 18.06 ± 6.53 *** | 11.97 ± 6.68 | 18.18 ± 6.51 # | 13.91 ± 6.25 | 24.30 ± 14.50 * |
Butyrate, mM | 6.70 ± 3.69 | 8.42 ± 6.18 | 3.08 ± 1.72 | 9.76 ± 4.84 *** | 9.61 ± 4.35 | 12.86 ± 7.79 | 8.55 ± 4.21 | 8.89 ± 4.48 |
Iso-butyrate, mM | 2.00 ± 2.18 | 1.28 ± 1.21 # | 0.37 ± 0.33 | 1.29 ± 1.03 *** | 1.11 ± 1.32 | 1.14 ± 1.01 | 0.77 ± 0.87 | 0.82 ± 1.30 |
Valerate, mM | 0.70 ± 1.25 | 0.62 ± 0.89 | 0.22 ± 0.35 | 0.75 ± 1.20 * | 0.59 ± 0.91 | 0.82 ± 1.32 | 0.28 ± 0.50 | 0.42 ± 0.93 |
Iso-Valerate, mM | 1.36 ± 1.78 | 1.23 ± 1.28 | 0.34 ± 0.36 | 1.23 ± 0.94 *** | 0.88 ± 1.25 | 1.06 ± 0.88 | 0.70 ± 0.78 | 0.82 ± 1.20 |
Lactate, mM | 0.28 ± 0.76 | 1.42 ± 4.82 | 0.13 ± 0.42 | 1.40 ± 6.03 | 0.96 ± 2.31 | 0.20 ± 0.41 | 0.30 ± 0.76 | 0.44 ± 0.85 |
Succinate, mM | 1.42 ± 1.94 | 2.72 ± 4.69 | 0.59 ± 1.09 | 1.03 ± 1.82 | 3.63 ± 5.87 | 4.80 ± 11.33 | 2.64 ± 3.83 | 2.99 ± 4.33 |
Formate, mM | 0.85 ± 2.41 | 0.66 ± 1.65 | 0.10 ± 0.37 | 0.98 ± 1.57 * | 0.12 ± 0.21 | 0.55 ± 1.20 | 0.18 ± 0.41 | 0.52 ± 1.12 |
Group | Taxa a | 0 wk | 4 wk | 0 to 4 wk | p-Value b |
---|---|---|---|---|---|
PC (gut dysbiosis) | Blautia spp. | 14.07 ± 11.67 | 8.82 ± 5.93 | ↓ | 0.060 |
Megamonas spp. | 7.59 ± 14.50 | 12.65 ± 22.01 | ↑ | 0.090 | |
Escherichia–Shigella group | 3.33 ± 4.63 | 1.24 ± 2.02 | ↓ | 0.044 | |
Phascolarctobacterium spp. | 1.65 ± 2.78 | 1.05 ± 2.46 | ↓ | 0.081 | |
Flavonifractor spp. | 0.13 ± 0.15 | 0.25 ± 0.25 | ↑ | 0.058 | |
[Clostridium] innocuum group | 0.19 ± 0.46 | 0.14 ± 0.38 | ↓ | 0.065 | |
BC (gut dysbiosis) | Subdoligranulum spp. | 3.37 ± 4.63 | 2.13 ± 2.69 | ↓ | 0.040 |
Megasphaera spp. | 1.85 ± 5.74 | 3.73 ± 9.57 | ↑ | 0.092 | |
Phascolarctobacterium spp. | 0.55 ± 0.88 | 1.28 ± 1.93 | ↑ | 0.088 | |
GG (gut dysbiosis) | Faecalibacterium spp. | 6.53 ± 7.33 | 8.41 ± 8.10 | ↑ | 0.052 |
Veillonella spp. | 5.95 ± 7.45 | 8.20 ± 8.70 | ↑ | 0.099 | |
[Eubacterium] coprostanoligenes group | 0.46 ± 0.91 | 0.08 ± 0.29 | ↓ | 0.070 | |
Tyzzerella spp. | 0.22 ± 0.26 | 0.07 ± 0.11 | ↓ | 0.047 | |
CO (gut dysbiosis) | Blautia spp. | 16.11 ± 7.74 | 10.54 ± 7.01 | ↓ | 0.027 |
Unclassified Lachnospiraceae | 4.25 ± 4.23 | 2.62 ± 2.76 | ↓ | 0.077 | |
[Ruminococcus] torques group | 3.65 ± 4.04 | 2.04 ± 1.89 | ↓ | 0.062 | |
Fusicatenibacter spp. | 3.65 ± 3.19 | 1.67 ± 1.95 | ↓ | 0.024 | |
Lachnoclostridium spp. | 0.93 ± 1.12 | 0.40 ± 0.38 | ↓ | 0.093 | |
Unclassified Enterobacteriaceae | 0.09 ± 0.16 | 0.72 ± 1.28 | ↑ | 0.074 | |
Lachnospira spp. | 0.16 ± 0.27 | 0.02 ± 0.05 | ↓ | 0.071 | |
Lachnospiraceae ND3007 group | 0.31 ± 0.40 | 0.07 ± 0.11 | ↓ | 0.033 | |
Lachnospiraceae UCG-004 | 0.09 ± 0.17 | 0.04 ± 0.13 | ↓ | 0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miura, H.; Oda, M.; Abe, K.; Ikeda, H.; Fujibayashi, M.; Oda, N.; Segawa, T.; Abe, A.; Ueta, N.; Tsukahara, T.; et al. Effects of Blackcurrant Extract and Partially Hydrolyzed Guar Gum Intake on Gut Dysbiosis in Male University Rugby Players. Microorganisms 2025, 13, 1561. https://doi.org/10.3390/microorganisms13071561
Miura H, Oda M, Abe K, Ikeda H, Fujibayashi M, Oda N, Segawa T, Abe A, Ueta N, Tsukahara T, et al. Effects of Blackcurrant Extract and Partially Hydrolyzed Guar Gum Intake on Gut Dysbiosis in Male University Rugby Players. Microorganisms. 2025; 13(7):1561. https://doi.org/10.3390/microorganisms13071561
Chicago/Turabian StyleMiura, Hiroto, Machi Oda, Kanako Abe, Hiromi Ikeda, Mami Fujibayashi, Naoko Oda, Tomohiro Segawa, Aya Abe, Natsumi Ueta, Takamitsu Tsukahara, and et al. 2025. "Effects of Blackcurrant Extract and Partially Hydrolyzed Guar Gum Intake on Gut Dysbiosis in Male University Rugby Players" Microorganisms 13, no. 7: 1561. https://doi.org/10.3390/microorganisms13071561
APA StyleMiura, H., Oda, M., Abe, K., Ikeda, H., Fujibayashi, M., Oda, N., Segawa, T., Abe, A., Ueta, N., Tsukahara, T., Takagi, T., Naito, Y., & Inoue, R. (2025). Effects of Blackcurrant Extract and Partially Hydrolyzed Guar Gum Intake on Gut Dysbiosis in Male University Rugby Players. Microorganisms, 13(7), 1561. https://doi.org/10.3390/microorganisms13071561