Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = black hole mimic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 852 KiB  
Article
Non-Keplerian Charged Accretion Disk Orbiting a Black Hole Pulsar
by Audrey Trova and Eva Hackmann
Universe 2025, 11(2), 45; https://doi.org/10.3390/universe11020045 - 1 Feb 2025
Viewed by 684
Abstract
Recent studies have focused on how spinning black holes (BHs) within a binary system containing a strongly magnetized neutron star, then immersed in external magnetic fields, can acquire charge through mechanisms like the Wald process and how this charge could power pulsar-like electromagnetic [...] Read more.
Recent studies have focused on how spinning black holes (BHs) within a binary system containing a strongly magnetized neutron star, then immersed in external magnetic fields, can acquire charge through mechanisms like the Wald process and how this charge could power pulsar-like electromagnetic radiation. Those objects called “Black hole pulsar” mimic the behaviour of a traditional pulsar, and they can generate electromagnetic fields, such as magnetic dipoles. Charged particles within an accretion disk around the black hole would then be influenced not only by the gravitational forces but also by electromagnetic forces, leading to different geometries and dynamics. In this context, we focus here on the interplay of the magnetic dipole and the accretion disk. We construct the equilibrium structures of non-conducting charged perfect fluids orbiting Kerr black holes under the influence of a dipole magnetic field aligned with the rotation axis of the BH. The dynamics of the accretion disk in such a system are shaped by a complex interplay between the non-uniform, non-Keplerian angular momentum distribution, the black hole’s induced magnetic dipole, and the fluid’s charge. We show how these factors jointly influence key properties of the disk, such as its geometry, aspect ratio, size, and rest mass density. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024 – Compact Objects)
Show Figures

Figure 1

12 pages, 784 KiB  
Article
Thermal Profile of Accretion Disk Around Black Hole in 4D Einstein–Gauss–Bonnet Gravity
by Odilbek Kholmuminov, Bakhtiyor Narzilloev and Bobomurat Ahmedov
Universe 2025, 11(2), 38; https://doi.org/10.3390/universe11020038 - 26 Jan 2025
Viewed by 837
Abstract
In this study, we investigate the properties of a thin accretion disk around a static spherically symmetric black hole in 4D Einstein–Gauss–Bonnet gravity, with an additional coupling constant, α, appearing in the spacetime metric. Using the Novikov–Thorne accretion disk model, we examine [...] Read more.
In this study, we investigate the properties of a thin accretion disk around a static spherically symmetric black hole in 4D Einstein–Gauss–Bonnet gravity, with an additional coupling constant, α, appearing in the spacetime metric. Using the Novikov–Thorne accretion disk model, we examine the thermal properties of the disk, finding that increasing α reduces the energy, angular momentum, and effective potential of a test particle orbiting the black hole. We demonstrate that α can mimic the spin of a Kerr black hole in general relativity up to a 0.23 M for the maximum value of α. Our analysis of the thermal radiation flux shows that larger α values increase the flux and shift its maximum towards the central black hole, while far from the black hole, the solution recovers the Schwarzschild limit. The impact of α on the radiative efficiency of the disk is weak but can slightly alter it. Assuming black-body radiation, we observe that the disk’s temperature peaks near its inner edge and is higher for larger α values. Lastly, the electromagnetic spectra reveal that the disk’s luminosity is lower in Einstein–Gauss–Bonnet gravity compared to general relativity, with the peak luminosity shifting toward higher frequencies, corresponding to the soft X-ray band as α increases. Full article
Show Figures

Figure 1

14 pages, 10756 KiB  
Article
Gravitational Waves from Black Hole Emission
by Tousif Islam, Gaurav Khanna and Steven L. Liebling
Universe 2025, 11(1), 21; https://doi.org/10.3390/universe11010021 - 14 Jan 2025
Viewed by 860
Abstract
Using adiabatic point-particle black hole perturbation theory, we simulate plausible gravitational wave (GW) signatures in two exotic scenarios (i) where a small black hole is emitted by a larger one (‘black hole emission’) and (ii) where a small black hole is emitted by [...] Read more.
Using adiabatic point-particle black hole perturbation theory, we simulate plausible gravitational wave (GW) signatures in two exotic scenarios (i) where a small black hole is emitted by a larger one (‘black hole emission’) and (ii) where a small black hole is emitted by a larger one and subsequently absorbed back (‘black hole absorption’). While such scenarios are forbidden in general relativity (GR), alternative theories (such as certain quantum gravity scenarios obeying the weak gravity conjecture, white holes, and Hawking radiation) may allow them. By leveraging the phenomenology of black hole emission and absorption signals, we introduce straightforward modifications to existing gravitational waveform models to mimic gravitational radiation associated with these exotic events. We anticipate that these (incomplete but) initial simulations, coupled with the adjusted waveform models, will aid in the development of null tests for GR using GWs. Full article
Show Figures

Figure 1

31 pages, 1408 KiB  
Article
Black Hole Solutions in Non-Minimally Coupled Weyl Connection Gravity
by Maria Margarida Lima and Cláudio Gomes
Universe 2024, 10(11), 433; https://doi.org/10.3390/universe10110433 - 20 Nov 2024
Viewed by 1046
Abstract
Schwarzschild and Reissner–Nordstrøm black hole solutions are found in the context of a non-minimal matter–curvature coupling with Weyl connection both in vacuum and in the presence of a cosmological constant-like matter content. This model has the advantage of an extra force term which [...] Read more.
Schwarzschild and Reissner–Nordstrøm black hole solutions are found in the context of a non-minimal matter–curvature coupling with Weyl connection both in vacuum and in the presence of a cosmological constant-like matter content. This model has the advantage of an extra force term which can mimic dark matter and dark energy, and simultaneously following Weyl’s idea of unifying gravity and electromagnetism. In fact, vacuum Schwarzschild solutions differ from the ones in a constant curvature scenario in f(R) theories, with the appearance of a coefficient in the term that is linear in r and a corrected “cosmological constant”. Non-vacuum Schwarzschild solutions formally have the same solutions as in the previous case, with the exception being the physical interpretation of a cosmological constant as the source of the matter Lagrangian and not a simple reparameterization of the f(R) description. Reissner–Nordstrøm solutions cannot be found in a vacuum, only in the presence of matter fields, with the result that the solutions also differ from the constant curvature scenario in f(R) theories by the term being linear in r, the corrected/dressed charge, and the cosmological constant. These results have bearings on future numerical simulations for black holes and gravitational waves in next-generation wavelet templates. Full article
(This article belongs to the Section Gravitation)
Show Figures

Figure 1

40 pages, 8293 KiB  
Article
Fractional Einstein–Gauss–Bonnet Scalar Field Cosmology
by Bayron Micolta-Riascos, Alfredo D. Millano, Genly Leon, Byron Droguett, Esteban González and Juan Magaña
Fractal Fract. 2024, 8(11), 626; https://doi.org/10.3390/fractalfract8110626 - 24 Oct 2024
Cited by 2 | Viewed by 1796
Abstract
Our paper introduces a new theoretical framework called the Fractional Einstein–Gauss–Bonnet scalar field cosmology, which has important physical implications. Using fractional calculus to modify the gravitational action integral, we derived a modified Friedmann equation and a modified Klein–Gordon equation. Our research reveals non-trivial [...] Read more.
Our paper introduces a new theoretical framework called the Fractional Einstein–Gauss–Bonnet scalar field cosmology, which has important physical implications. Using fractional calculus to modify the gravitational action integral, we derived a modified Friedmann equation and a modified Klein–Gordon equation. Our research reveals non-trivial solutions associated with exponential potential, exponential couplings to the Gauss–Bonnet term, and a logarithmic scalar field, which are dependent on two cosmological parameters, m and α0=t0H0 and the fractional derivative order μ. By employing linear stability theory, we reveal the phase space structure and analyze the dynamic effects of the Gauss–Bonnet couplings. The scaling behavior at some equilibrium points reveals that the geometric corrections in the coupling to the Gauss–Bonnet scalar can mimic the behavior of the dark sector in modified gravity. Using data from cosmic chronometers, type Ia supernovae, supermassive Black Hole Shadows, and strong gravitational lensing, we estimated the values of m and α0, indicating that the solution is consistent with an accelerated expansion at late times with the values α0=1.38±0.05, m=1.44±0.05, and μ=1.48±0.17 (consistent with Ωm,0=0.311±0.016 and h=0.712±0.007), resulting in an age of the Universe t0=19.0±0.7 [Gyr] at 1σ CL. Ultimately, we obtained late-time accelerating power-law solutions supported by the most recent cosmological data, and we proposed an alternative explanation for the origin of cosmic acceleration other than ΛCDM. Our results generalize and significantly improve previous achievements in the literature, highlighting the practical implications of fractional calculus in cosmology. Full article
Show Figures

Figure 1

12 pages, 264 KiB  
Article
Can Black Holes or Other Relativistic Space Objects Be a Source of Dark Energy?
by Serge Parnovsky
Particles 2024, 7(2), 297-308; https://doi.org/10.3390/particles7020018 - 29 Mar 2024
Viewed by 1458
Abstract
We consider the hypothesis that the sources of dark energy (DE) could be black holes (BHs) or more exotic objects, such as naked singularities or gravastars. We propose a definition of the presence of DE in the Universe and a criterion for what [...] Read more.
We consider the hypothesis that the sources of dark energy (DE) could be black holes (BHs) or more exotic objects, such as naked singularities or gravastars. We propose a definition of the presence of DE in the Universe and a criterion for what can be considered the source of this dark energy. It is based on the idea of the accelerated expansion of the Universe, which requires antigravity caused by large negative pressure. A recently proposed hypothesis, that the mass of BHs increases with time according to the same law as the volume of the part of the Universe containing it and the population of BHs can mimic DE, is examined. We demonstrate the reasons why it cannot be accepted, even if all the assumptions on which this hypothesis is based are considered true. Full article
(This article belongs to the Special Issue Feature Papers for Particles 2023)
29 pages, 9649 KiB  
Article
AnaBHEL (Analog Black Hole Evaporation via Lasers) Experiment: Concept, Design, and Status
by Pisin Chen, Gerard Mourou, Marc Besancon, Yuji Fukuda, Jean-Francois Glicenstein, Jiwoo Nam, Ching-En Lin, Kuan-Nan Lin, Shu-Xiao Liu, Yung-Kun Liu, Masaki Kando, Kotaro Kondo, Stathes Paganis, Alexander Pirozhkov, Hideaki Takabe, Boris Tuchming, Wei-Po Wang, Naoki Watamura, Jonathan Wheeler and Hsin-Yeh Wu
Photonics 2022, 9(12), 1003; https://doi.org/10.3390/photonics9121003 - 19 Dec 2022
Cited by 14 | Viewed by 4747
Abstract
Accelerating relativistic mirrors have long been recognized as viable settings where the physics mimic those of the black hole Hawking radiation. In 2017, Chen and Mourou proposed a novel method to realize such a system by traversing an ultra-intense laser through a plasma [...] Read more.
Accelerating relativistic mirrors have long been recognized as viable settings where the physics mimic those of the black hole Hawking radiation. In 2017, Chen and Mourou proposed a novel method to realize such a system by traversing an ultra-intense laser through a plasma target with a decreasing density. An international AnaBHEL (Analog Black Hole Evaporation via Lasers) collaboration was formed with the objectives of observing the analog Hawking radiation, shedding light on the information loss paradox. To reach these goals, we plan to first verify the dynamics of the flying plasma mirror and characterize the correspondence between the plasma density gradient and the trajectory of the accelerating plasma mirror. We will then attempt to detect the analog Hawking radiation photons and measure the entanglement between the Hawking photons and their “partner particles”. In this paper, we describe our vision and strategy of AnaBHEL using the Apollon laser as a reference, and we report on the progress of our R&D concerning the key components in this experiment, including the supersonic gas jet with a graded density profile, and the superconducting nanowire single-photon Hawking detector. In parallel to these hardware efforts, we performed computer simulations to estimate the potential backgrounds, and derived analytic expressions for modifications to the blackbody spectrum of the Hawking radiation for a perfectly reflecting point mirror, due to the semi-transparency and finite-size effects specific to flying plasma mirrors. Based on this more realistic radiation spectrum, we estimate the Hawking photon yield to guide the design of the AnaBHEL experiment, which appears to be achievable. Full article
(This article belongs to the Special Issue Progress in Laser Accelerator and Future Prospects)
Show Figures

Figure 1

12 pages, 333 KiB  
Article
Damour–Solodukhin Wormhole as a Black Hole Mimicker: The Role of Observers’ Location
by Kamal K. Nandi, Ramis Kh. Karimov, Ramil N. Izmailov and Alexander A. Potapov
Universe 2022, 8(10), 525; https://doi.org/10.3390/universe8100525 - 9 Oct 2022
Cited by 2 | Viewed by 1697
Abstract
It has been recently argued that in semi-classical gravity, a minimal 2-sphere is not a horizon but a tiny throat of a wormhole, such as the Damour–Solodukhin wormhole (DSWH), with a free parameter λ0 separating it from a Schwarxzschild black hole [...] Read more.
It has been recently argued that in semi-classical gravity, a minimal 2-sphere is not a horizon but a tiny throat of a wormhole, such as the Damour–Solodukhin wormhole (DSWH), with a free parameter λ0 separating it from a Schwarxzschild black hole (BH) (λ=0). As shown by DS, their horizonless WH can mimic many properties of a black hole (BH). Assuming that observing a BH mimicker is equivalent to observing a BH itself, we ask the question as to which identity of the object, a WH or a BH, an observer is likely to observe in a single experiment. To answer this, we introduce Tangherlini’s new concept of indeterminacy in the gravitational field by portraying the field as a refractive medium. We then postulate that the identity of the observed object will depend on the probabilistic outcome of photon motion probing the object. The probabilities will be described by Fresnel reflection (R) and transmission (T) coefficients derived by Tangherlini on the basis of a non-quantum statistical indeterminacy of photon motion in ordinary optical media. By adapting this approach to a gravitational “effective optical medium,” we obtain two intriguing results: (i) The Fresnel coefficients at the DSWH throat are independent of mass M but dependent solely on the parameter λ0. (ii) Depending on the location of the observer, what is a DSWH to one observer may appear as a BH to another observer for the same value of λ0. Full article
(This article belongs to the Section Gravitation)
Show Figures

Figure 1

14 pages, 491 KiB  
Article
AdS Black Holes in the Framework of Nonlinear Electrodynamics, Thermodynamics, and Joule–Thomson Expansion
by Sergey Il’ich Kruglov
Symmetry 2022, 14(8), 1597; https://doi.org/10.3390/sym14081597 - 3 Aug 2022
Cited by 13 | Viewed by 1861
Abstract
The thermodynamics and phase transitions of magnetic Anti-de Sitter black holes were studied. We considered extended-phase-space thermodynamics, with the cosmological constant being a thermodynamic pressure and the black hole mass being treated as a chemical enthalpy. The extended-phase-space thermodynamics of black holes mimic [...] Read more.
The thermodynamics and phase transitions of magnetic Anti-de Sitter black holes were studied. We considered extended-phase-space thermodynamics, with the cosmological constant being a thermodynamic pressure and the black hole mass being treated as a chemical enthalpy. The extended-phase-space thermodynamics of black holes mimic the behavior of a Van der Waals liquid. Quantities conjugated to the coupling of nonlinear electrodynamics (NED) and a magnetic charge are obtained. Thermodynamic critical points of phase transitions are investigated. It was demonstrated that the first law of black hole thermodynamics and the generalized Smarr relation hold. The Joule–Thomson adiabatic expansion of NED-AdS black holes is studied. The dependence of inversion temperature on pressure and the minimum of the inversion temperature are found. Full article
(This article belongs to the Special Issue Symmetry and Problems in Modern Cosmology)
Show Figures

Figure 1

9 pages, 11776 KiB  
Interesting Images
Black Mantle Tissue of Endolithic Mussels (Leiosolenus spp.) Is Cloaking Borehole Orifices in Caribbean Reef Corals
by Bert W. Hoeksema, Annabel Smith-Moorhouse, Charlotte E. Harper, Roel. J. van der Schoot, Rosalie F. Timmerman, Roselle Spaargaren and Sean J. Langdon-Down
Diversity 2022, 14(5), 401; https://doi.org/10.3390/d14050401 - 20 May 2022
Cited by 10 | Viewed by 3703
Abstract
Bioerosion caused by boring mussels (Mytilidae: Lithophaginae) can negatively impact coral reef health. During biodiversity surveys of coral-associated fauna in Curaçao (southern Caribbean), morphological variation in mussel boreholes was studied. Borings were found in 22 coral species, 12 of which represented new host [...] Read more.
Bioerosion caused by boring mussels (Mytilidae: Lithophaginae) can negatively impact coral reef health. During biodiversity surveys of coral-associated fauna in Curaçao (southern Caribbean), morphological variation in mussel boreholes was studied. Borings were found in 22 coral species, 12 of which represented new host records. Dead corals usually showed twin siphon openings, for each mussel shaped like a figure of eight, which were lined with a calcareous sheath and protruded as tubes from the substrate surface. Most openings surrounded by live coral tissue were deeper and funnel-shaped, with outlines resembling dumbbells, keyholes, ovals or irregular ink blotches. The boreholes appeared to contain black siphon and mantle tissue of the mussel. Because of the black color and the hidden borehole opening in live host corals, the mantle tissue appeared to mimic dark, empty holes, while they were actually cloaking live coral tissue around the hole, which is a new discovery. By illustrating the morphological range of borehole orifices, we aim to facilitate the easy detection of boring mussels for future research. Full article
(This article belongs to the Special Issue Diversity of Coral-Associated Fauna II)
Show Figures

Figure 1

22 pages, 354 KiB  
Article
Geodesics for the Painlevé–Gullstrand Form of Lense–Thirring Spacetime
by Joshua Baines, Thomas Berry, Alex Simpson and Matt Visser
Universe 2022, 8(2), 115; https://doi.org/10.3390/universe8020115 - 10 Feb 2022
Cited by 14 | Viewed by 2102
Abstract
Recently, the current authors have formulated and extensively explored a rather novel Painlevé–Gullstrand variant of the slow-rotation Lense–Thirring spacetime, a variant which has particularly elegant features—including unit lapse, intrinsically flat spatial 3-slices, and a separable Klein–Gordon equation (wave operator). This spacetime also possesses [...] Read more.
Recently, the current authors have formulated and extensively explored a rather novel Painlevé–Gullstrand variant of the slow-rotation Lense–Thirring spacetime, a variant which has particularly elegant features—including unit lapse, intrinsically flat spatial 3-slices, and a separable Klein–Gordon equation (wave operator). This spacetime also possesses a non-trivial Killing tensor, implying separability of the Hamilton–Jacobi equation, the existence of a Carter constant, and complete formal integrability of the geodesic equations. Herein, we investigate the geodesics in some detail, in the general situation demonstrating the occurrence of “ultra-elliptic” integrals. Only in certain special cases can the complete geodesic integrability be explicitly cast in terms of elementary functions. The model is potentially of astrophysical interest both in the asymptotic large-distance limit and as an example of a “black hole mimic”, a controlled deformation of the Kerr spacetime that can be contrasted with ongoing astronomical observations. Full article
(This article belongs to the Section Gravitation)
22 pages, 918 KiB  
Article
Ringing of the Regular Black Hole with Asymptotically Minkowski Core
by Alexander Marcus Simpson
Universe 2021, 7(11), 418; https://doi.org/10.3390/universe7110418 - 2 Nov 2021
Cited by 15 | Viewed by 1587
Abstract
A Regge–Wheeler analysis is performed for a novel black hole mimicker ‘the regular black hole with asymptotically Minkowski core’, followed by an approximation of the permitted quasi-normal modes for propagating waveforms. A first-order WKB approximation is computed for spin zero and spin one [...] Read more.
A Regge–Wheeler analysis is performed for a novel black hole mimicker ‘the regular black hole with asymptotically Minkowski core’, followed by an approximation of the permitted quasi-normal modes for propagating waveforms. A first-order WKB approximation is computed for spin zero and spin one perturbations of the candidate spacetime. Subsequently, numerical results analysing the respective fundamental modes are compiled for various values of the a parameter (which quantifies the distortion from Schwarzschild spacetime), and for various multipole numbers . Both electromagnetic spin one fluctuations and scalar spin zero fluctuations on the background spacetime are found to possess shorter-lived, higher-energy signals than their Schwarzschild counterparts for a specific range of interesting values of the a parameter. Comparison between these results and some analogous results for both the Bardeen and Hayward regular black holes is considered. Analysis as to what happens when one permits perturbations of the Regge–Wheeler potential itself is then conducted, first in full generality, before specialising to Schwarzschild spacetime. A general result is presented explicating the shift in quasi-normal modes under perturbation of the Regge–Wheeler potential. Full article
Show Figures

Figure 1

19 pages, 995 KiB  
Article
Dynamics of Test Particles and Twin Peaks QPOs around Regular Black Holes in Modified Gravity
by Javlon Rayimbaev, Pulat Tadjimuratov, Ahmadjon Abdujabbarov, Bobomurat Ahmedov and Malika Khudoyberdieva
Galaxies 2021, 9(4), 75; https://doi.org/10.3390/galaxies9040075 - 7 Oct 2021
Cited by 41 | Viewed by 2429
Abstract
In this work, we have presented a detailed analysis of the event horizon of regular black holes (BHs) in modified gravity known as MOG, the so-called regular MOG BH. The motion of neutral particles around the BH has also been explored. The test [...] Read more.
In this work, we have presented a detailed analysis of the event horizon of regular black holes (BHs) in modified gravity known as MOG, the so-called regular MOG BH. The motion of neutral particles around the BH has also been explored. The test particle motion study shows that the positive (negative) values of the MOG parameter mimic the spin of a rotating Kerr BH, providing the same values for the innermost stable pro-grade (retrograde) orbits of the particles in the range of the spin parameter a/M(0.4125,0.6946). The efficiency of energy release from the accretion disk by the Novikov–Thorne model has been calculated, and the efficiency was shown to be linearly proportional to the increase of the MOG parameter α. Moreover, we have developed a new methodology to test gravity theories in strong-field regimes using precision data from twin-peaked quasiperiodic oscillations (QPOs) of objects calculating possible values of upper and lower frequencies. However, it is obtained that the positive MOG parameter can not mimic the spin of Kerr BHs in terms of the same QPO frequencies. We have provided possible ranges for upper and lower frequencies of twin-peak QPOs with the ratio of the upper and lower frequencies of 3:2 around regular MOG BHs in the different models. Moreover, as an example, we provide detailed numerical analysis of the QPO of GRS 1915+105 with the frequencies νU=168±5Hz and νL=113±3Hz. It is shown that the central BH of the QPO object can be a regular MOG BH when the value of the parameter is α=0.28440.1317+0.0074 and shines in the orbits located at the distance r/M=7.63220.0826+0.0768 from the central BH. It is also shown that the orbits where QPOs shine are located near the innermost stable circular orbit (ISCO) of the test particle. The correlation between the radii of ISCO and the QPO orbits is found, and it can be used as a new theoretical way to determine ISCO radius through observational data from the QPOs around various compact objects. Full article
(This article belongs to the Special Issue Particles and Fields in Black Hole Environment)
Show Figures

Figure 1

27 pages, 1732 KiB  
Article
Dynamics of Magnetized and Magnetically Charged Particles around Regular Nonminimal Magnetic Black Holes
by Javlon Rayimbaev, Bakhtiyor Narzilloev, Ahmadjon Abdujabbarov and Bobomurat Ahmedov
Galaxies 2021, 9(4), 71; https://doi.org/10.3390/galaxies9040071 - 30 Sep 2021
Cited by 30 | Viewed by 2570
Abstract
The present paper is devoted to the study of the event horizon properties of spacetime around a regular nonminimal magnetic black hole (BH), together with dynamics of magnetized and magnetically charged particles in the vicinity of the BH. It is shown that the [...] Read more.
The present paper is devoted to the study of the event horizon properties of spacetime around a regular nonminimal magnetic black hole (BH), together with dynamics of magnetized and magnetically charged particles in the vicinity of the BH. It is shown that the minimum value of the outer horizon of the extreme charged BH increases with the increase in coupling parameter. It reaches its maximum value of 1.5M when q, while the maximal value of the BH charge decreases and tends toward zero. We also present a detailed analysis of magnetized particles’ motion around a regular nonminimal magnetic black hole. The particle’s innermost circular stable orbits (ISCOs) radius decreases as the magnetic charge and the parameter β increase and the coupling parameter of Yang–Mills field causes a decrease at the values of the magnetic charge near to its maximum. We show that the magnetic charge can mimic the spin of a rotating Kerr black hole up to the value of a=0.7893M, providing the same value for an ISCO of a magnetized particle with the parameter β=10.2 when the coupling parameter is q=0. Moreover, Lyapunov exponents, Keplerian orbits and harmonic oscillations of magnetized particles motion are also discussed. Full article
Show Figures

Figure 1

22 pages, 2265 KiB  
Article
Regular Bardeen Black Holes in Anti-de Sitter Spacetime versus Kerr Black Holes through Particle Dynamics
by Bakhtiyor Narzilloev, Javlon Rayimbaev, Ahmadjon Abdujabbarov and Bobomurat Ahmedov
Galaxies 2021, 9(3), 63; https://doi.org/10.3390/galaxies9030063 - 6 Sep 2021
Cited by 31 | Viewed by 3997
Abstract
In this work, test particle dynamics around a static regular Bardeen black hole (BH) in Anti-de Sitter spacetime has been studied. It has been shown for neutral test particles that parameters of a regular Bardeen black hole in Anti-de Sitter spacetime can mimic [...] Read more.
In this work, test particle dynamics around a static regular Bardeen black hole (BH) in Anti-de Sitter spacetime has been studied. It has been shown for neutral test particles that parameters of a regular Bardeen black hole in Anti-de Sitter spacetime can mimic the rotation parameter of the Kerr metric up to the value a0.9 providing the same innermost stable circular orbit (ISCO) radius. We have also explored the dynamics of magnetized particles with a magnetic dipole moment around a magnetically charged regular Bardeen black hole in Anti-de Sitter spacetime. As a realistic astrophysical scenario of the study, we have treated neutron stars orbiting a supermassive black hole (SMBH), in particular, the magnetar PSR J1745-2900 orbiting Sgr A* with the parameter β=10.2, as magnetized test particles. The magnetized particles dynamics shows that the parameter β, negative values of cosmological constant and magnetic charge parameter of the central BH cause a decrease in the ISCO radius. We have compared the effects of the magnetic charge of the Bardeen BH with the spin of rotating Kerr BH and shown that magnetic charge parameter can mimic the spin in the range a/M(0,0.7896) when Λ=0 at the range of its values g/M(0,0.648). Full article
(This article belongs to the Special Issue Particles and Fields in Black Hole Environment)
Show Figures

Figure 1

Back to TopTop