Geodesics for the Painlevé–Gullstrand Form of Lense–Thirring Spacetime
Abstract
:1. Introduction
2. Killing Tensor and Carter Constant
3. Conservation Laws
3.1. Four Conserved Quantities
3.2. Simplified Conservation Laws
- Is ? (Bound orbits);
- Is ? (Marginal orbits);
- Or is ? (Unbound orbits).
3.3. Forbidden Declination Range
- For we have ; the motion is restricted to the equatorial plane;
- For with the range of is a priori unconstrained; ;
- For with the declination is fixed, , and the motion is restricted to a constant declination conical surface.
4. General Geodesics—Explicit Quantitative Analysis
4.1. Trajectories
4.2. Integrating the Affine Parameter
- Outgoing geodesic , hence ;
- Ingoing geodesic , hence .
4.3. Integrating the Epoch
4.4. Integrating the Declination
4.5. Integrating the Azimuth
4.6. Summary of Generic Geodesic Evolution
5. Geodesics with Carter Constant Zero
5.1. Null Geodesics (Photons) with Carter Constant Zero
5.2. Timelike Geodesics (Massive Particles) with Carter Constant Zero
5.2.1. Marginal Geodesics
5.2.2. Unbound Geodesics
5.2.3. Bound Geodesics
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baines, J.; Berry, T.; Simpson, A.; Visser, M. Painleve-Gullstrand form of the Lense-Thirring spacetime. Universe 2021, 7, 105. [Google Scholar] [CrossRef]
- Baines, J.; Berry, T.; Simpson, A.; Visser, M. Killing tensor and Carter constant for Painlevé-Gullstrand form of Lense-Thirring spacetime. Universe 2021, 7, 473. [Google Scholar] [CrossRef]
- Baines, J.; Berry, T.; Simpson, A.; Visser, M. Unit-lapse versions of the Kerr spacetime. Class. Quant. Grav. 2021, 38, 055001. [Google Scholar] [CrossRef]
- Painlevé, P. La mécanique classique et la théorie de la relativité. C. R. Acad. Sci. (Paris) 1921, 173, 677–680. [Google Scholar]
- Painlevé, P. La gravitation dans la mécanique de Newton et dans la mécanique d’Einstein. C. R. Acad. Sci. (Paris) 1921, 173, 873–886. [Google Scholar]
- Gullstrand, A. Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie. Arkiv. Mat. Astron. Och Fysik. 1922, 16, 1–15. [Google Scholar]
- Martel, K.; Poisson, E. Regular coordinate systems for Schwarzschild and other spherical space-times. Am. J. Phys. 2001, 69, 476–480. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, A.J.; Lisle, J.P. The River model of black holes. Am. J. Phys. 2008, 76, 519–532. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; Wiley: Hoboken, NJ, USA, 1972. [Google Scholar]
- Rajan, D.; Visser, M. Global properties of physically interesting Lorentzian spacetimes. Int. J. Mod. Phys. D 2016, 25, 1650106. [Google Scholar] [CrossRef] [Green Version]
- Skakala, J.; Visser, M. The causal structure of spacetime is a parameterized Randers geometry. Class. Quant. Grav. 2011, 28, 065007. [Google Scholar] [CrossRef]
- Arnowitt, R.L.; Deser, S.; Misner, C.W. The Dynamics of general relativity. In Gravitation: An Introduction to Current Research; Witten, L., Ed.; Wiley: New York, NY, USA, 1962; Chapter 7; pp. 227–264. [Google Scholar]
- Arnowitt, R.L.; Deser, S.; Misner, C.W. The Dynamics of general relativity. Gen. Rel. Grav. 2008, 40, 1997–2027. [Google Scholar] [CrossRef] [Green Version]
- Birkhoff, G. Relativity and Modern Physics; Harvard University Press: Cambridge, UK, 1923. [Google Scholar]
- Jebsen, J.T. Über die allgemeinen kugelsymmetrischen Lösungen der Einsteinschen Gravitationsgleichungen im Vakuum. Ark. Mat. Ast. Fys. (Stockholm) 1921, 15, 18. [Google Scholar]
- Deser, S.; Franklin, J. Schwarzschild and Birkhoff a la Weyl. Am. J. Phys. 2005, 73, 261. [Google Scholar] [CrossRef] [Green Version]
- Johansen, N.V.; Ravndal, F. On the discovery of Birkhoff’s theorem. Gen. Rel. Grav. 2006, 38, 537–540. [Google Scholar] [CrossRef] [Green Version]
- Ayon-Beato, E.; Martinez, C.; Zanelli, J. Birkhoff’s theorem for three-dimensional AdS gravity. Phys. Rev. D 2004, 70, 044027. [Google Scholar] [CrossRef] [Green Version]
- Skakala, J.; Visser, M. Birkhoff-like theorem for rotating stars in (2+1) dimensions. arXiv 2009, arXiv:0903.2128. [Google Scholar]
- Thirring, H.; Lense, J. Über den Einfluss der Eigenrotation der Zentralkörperauf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. Leipz. Jg. 1918, 19, 156–163. [Google Scholar]
- Mashoon, B.; Hehl, F.W.; Theiss, D.S. On the influence of the proper rotations of central bodies on the motions of planets and moons in Einstein’s theory of gravity. Gen. Relativ. Gravit. 1984, 16, 727–741. [Google Scholar]
- Pfister, H. On the History of the So-Called Lense–Thirring Effect. Available online: http://philsci-archive.pitt.edu/archive/00002681/01/lense.pdf (accessed on 2 February 2022).
- Kerr, R. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 1963, 11, 237–238. [Google Scholar] [CrossRef]
- Kerr, R. Gravitational collapse and rotation. In Quasi-Stellar Sources and Gravitational Collapse: Including the Proceedings of the First Texas Symposium on Relativistic Astrophysics, Austin, TX, USA, 16–18 December 1963; Robinson, I., Schild, A., Schücking, E.L., Eds.; University of Chicago Press: Chicago, IL, USA, 1965; pp. 99–102. [Google Scholar]
- Newman, E.; Couch, E.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R. Metric of a Rotating, Charged Mass. J. Math. Phys. 1965, 6, 918. [Google Scholar] [CrossRef]
- Dautcourt, G. Race for the Kerr field. Gen. Relativ. Gravit. 2009, 41, 1437–1454. [Google Scholar] [CrossRef] [Green Version]
- Adler, R.J.; Bazin, M.; Schiffer, M. Introduction to General Relativity, 2nd ed.; McGraw–Hill: New York, NY, USA, 1975; [It is important to acquire the 1975 second edition, the 1965 first edition does not contain any discussion of the Kerr spacetime]. [Google Scholar]
- Misner, C.; Thorne, K.; Wheeler, J.A. Gravitation; Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Wald, R. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Hobson, M.P.; Estathiou, G.P.; Lasenby, A.N. General Relativity: An Introduction for Physicists; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- D’Inverno, R. Introducing Einstein’s Relativity; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Hartle, J. Gravity: An Introduction to Einstein’s General Relativity; Addison Wesley: San Francisco, CA, USA, 2003. [Google Scholar]
- Carroll, S. An Introduction to General Relativity: Spacetime and Geometry; Addison Wesley: San Francisco, CA, USA, 2004. [Google Scholar]
- Visser, M. The Kerr spacetime: A brief introduction. arXiv 2007, arXiv:0706.0622. [Google Scholar]
- Wiltshire, D.L.; Visser, M.; Scott, S.M. (Eds.) The Kerr Spacetime: Rotating Black Holes in General Relativity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- O’Neill, B. The Geometry of Kerr Black Holes; A.K. Peters: Wellesley, MA, USA, 1995; Reprinted: Dover, DE, USA, 2014; ISBN-13:978-0486493428, ISBN-10: 0486493423. [Google Scholar]
- Doran, C. A New form of the Kerr solution. Phys. Rev. D 2000, 61, 067503. [Google Scholar] [CrossRef] [Green Version]
- Liberati, S.; Tricella, G.; Visser, M. Towards a Gordon form of the Kerr spacetime. Class. Quant. Grav. 2018, 35, 155004. [Google Scholar] [CrossRef] [Green Version]
- Carballo-Rubio, R.; Filippo, F.D.; Liberati, S.; Visser, M. Phenomenological aspects of black holes beyond general relativity. Phys. Rev. D 2018, 98, 124009. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; Barceló, C.; Liberati, S.; Sonego, S. Small, dark, and heavy: But is it a black hole? arXiv 2009, arXiv:0902.0346. [Google Scholar]
- Visser, M. Black holes in general relativity. PoS BHGRS 2008, 1, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Vincent, F.H.; Gourgoulhon, E.; Novak, J. 3+1 geodesic equation and images in numerical spacetimes. Class. Quant. Grav. 2012, 29, 245005. [Google Scholar] [CrossRef] [Green Version]
- Vincent, F.H.; Wielgus, M.; Abramowicz, M.A.; Gourgoulhon, E.; Lasota, J.P.; Paumard, T.; Perrin, G. Geometric modeling of M87* as a Kerr black hole or a non-Kerr compact object. Astron. Astrophys. 2021, 646, A37. [Google Scholar] [CrossRef]
- Bambi, C. A code to compute the emission of thin accretion disks in non-Kerr space-times and test the nature of black hole candidates. Astrophys. J. 2012, 761, 174. [Google Scholar] [CrossRef]
- Glampedakis, K.; Pappas, G. Modification of photon trapping orbits as a diagnostic of non-Kerr spacetimes. Phys. Rev. D 2019, 99, 124041. [Google Scholar] [CrossRef] [Green Version]
- Baines, J.; Berry, T.; Simpson, A.; Visser, M. Darboux diagonalization of the spatial 3-metric in Kerr spacetime. Gen. Rel. Grav. 2021, 53, 3. [Google Scholar] [CrossRef]
- Kroon, J.A.V. On the nonexistence of conformally flat slices in the Kerr and other stationary space-times. Phys. Rev. Lett. 2004, 92, 041101. [Google Scholar] [CrossRef] [Green Version]
- Kroon, J.A.V. Asymptotic expansions of the Cotton-York tensor on slices of stationary space-times. Class. Quant. Grav. 2004, 21, 3237–3250. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo, J.L.; Kroon, J.A.V.; Gourgoulhon, E. From geometry to numerics: Interdisciplinary aspects in mathematical and numerical relativity. Class. Quant. Grav. 2008, 25, 093001. [Google Scholar] [CrossRef]
- Hioki, K.; Maeda, K.i. Measurement of the Kerr Spin Parameter by Observation of a Compact Object’s Shadow. Phys. Rev. D 2009, 80, 024042. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, D.C. Bound Geodesics in the Kerr Metric. Phys. Rev. D 1972, 5, 814–822. [Google Scholar] [CrossRef]
- Page, D.N.; Kubiznak, D.; Vasudevan, M.; Krtous, P. Complete integrability of geodesic motion in general Kerr-NUT-AdS spacetimes. Phys. Rev. Lett. 2007, 98, 061102. [Google Scholar] [CrossRef] [Green Version]
- Pretorius, F.; Khurana, D. Black hole mergers and unstable circular orbits. Class. Quant. Grav. 2007, 24, S83–S108. [Google Scholar] [CrossRef] [Green Version]
- Fujita, R.; Hikida, W. Analytical solutions of bound timelike geodesic orbits in Kerr spacetime. Class. Quant. Grav. 2009, 26, 135002. [Google Scholar] [CrossRef] [Green Version]
- Hackmann, E.; Lammerzahl, C.; Kagramanova, V.; Kunz, J. Analytical solution of the geodesic equation in Kerr-(anti) de Sitter space-times. Phys. Rev. D 2010, 81, 044020. [Google Scholar] [CrossRef] [Green Version]
- Sereno, M.; De Luca, F. Analytical Kerr black hole lensing in the weak deflection limit. Phys. Rev. D 2006, 74, 123009. [Google Scholar] [CrossRef]
- Sereno, M.; De Luca, F. Primary caustics and critical points behind a Kerr black hole. Phys. Rev. D 2008, 78, 023008. [Google Scholar] [CrossRef] [Green Version]
- Gralla, S.E.; Lupsasca, A. Lensing by Kerr Black Holes. Phys. Rev. D 2020, 101, 044031. [Google Scholar] [CrossRef] [Green Version]
- Gralla, S.E.; Lupsasca, A. Null geodesics of the Kerr exterior. Phys. Rev. D 2020, 101, 044032. [Google Scholar] [CrossRef] [Green Version]
- Warburton, N.; Barack, L.; Sago, N. Isofrequency pairing of geodesic orbits in Kerr geometry. Phys. Rev. D 2013, 87, 084012. [Google Scholar] [CrossRef] [Green Version]
- de Felice, F. Equatorial geodesic motion in the gravitational field of a rotating source. Nuovo Cim. B 1968, 57, 351. [Google Scholar] [CrossRef]
- Rana, P.; Mangalam, A. Astrophysically relevant bound trajectories around a Kerr black hole. Class. Quant. Grav. 2019, 36, 045009. [Google Scholar] [CrossRef] [Green Version]
- Gariel, J.; MacCallum, M.A.H.; Marcilhacy, G.; Santos, N.O. Kerr Geodesics, the Penrose Process and Jet Collimation by a Black Hole. Astron. Astrophys. 2010, 515, A15. [Google Scholar] [CrossRef] [Green Version]
- Gariel, J.; Santos, N.O.; Wang, A. Observable acceleration of jets by a Kerr black hole. Gen. Rel. Grav. 2017, 49, 43. [Google Scholar] [CrossRef] [Green Version]
- Paganini, C.F.; Ruba, B.; Oancea, M.A. Characterization of Null Geodesics on Kerr Spacetimes. arXiv 2016, arXiv:1611.06927. [Google Scholar]
- Lämmerzahl, C.; Hackmann, E. Analytical Solutions for Geodesic Equation in Black Hole Spacetimes. Springer Proc. Phys. 2016, 170, 43–51. [Google Scholar] [CrossRef]
- Boccaletti, D.; Catoni, F.; Cannata, R.; Zampetti, P. Integrating the geodesic equations in the Schwarzschild and Kerr space-times using Beltrami’s geometrical method. Gen. Relativ. Gravit. 2005, 37, 2261. [Google Scholar] [CrossRef] [Green Version]
- Barausse, E.; Berti, E.; Hertog, T.; Hughes, S.A.; Jetzer, P.; Pani, P.; Sotiriou, T.P.; Tamanini, N.; Witek, H.; Yagi, K.; et al. Prospects for Fundamental Physics with LISA. Gen. Rel. Grav. 2020, 52, 81. [Google Scholar] [CrossRef]
- Cardoso, V.; Hopper, S.; Macedo, C.F.B.; Palenzuela, C.; Pani, P. Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale. Phys. Rev. D 2016, 94, 084031. [Google Scholar] [CrossRef] [Green Version]
- Mazza, J.; Franzin, E.; Liberati, S. A novel family of rotating black hole mimickers. J. Cosmol. Astropart. Phys. 2021, 04, 082. [Google Scholar] [CrossRef]
- Franzin, E.; Liberati, S.; Mazza, J.; Simpson, A.; Visser, M. Charged black-bounce spacetimes. J. Cosmol. Astropart. Phys. 2021, 07, 036. [Google Scholar] [CrossRef]
- Simpson, A.; Visser, M. The eye of the storm: A regular Kerr black hole. arXiv 2021, arXiv:2111.12329. [Google Scholar]
- Gray, F.; Kubizňák, D. Slowly rotating black holes with exact Killing tensor symmetries. arXiv 2021, arXiv:2110.14671. [Google Scholar]
- Gray, F.; Hennigar, R.A.; Kubiznak, D.; Mann, R.B.; Srivastava, M. Generalized Lense–Thirring metrics: Higher-curvature corrections and solutions with matter. arXiv 2021, arXiv:2112.07649. [Google Scholar]
- Papadopoulos, G.O.; Kokkotas, K.D. On Kerr black hole deformations admitting a Carter constant and an invariant criterion for the separability of the wave equation. Gen. Rel. Grav. 2021, 53, 21. [Google Scholar] [CrossRef]
- Papadopoulos, G.O.; Kokkotas, K.D. Preserving Kerr symmetries in deformed spacetimes. Class. Quant. Grav. 2018, 35, 185014. [Google Scholar] [CrossRef] [Green Version]
- Benenti, S.; Francaviglia, M. Remarks on Certain Separability Structures and Their Applications to General Relativity. Gen. Relativ. Gravit. 1979, 10, 79–92. [Google Scholar] [CrossRef]
- Frolov, V.; Krtous, P.; Kubiznak, D. Black holes, hidden symmetries, and complete integrability. Living Rev. Rel. 2017, 20, 6. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, E. The Carter tensor and the physical-space analysis in perturbations of Kerr-Newman spacetime. arXiv 2021, arXiv:2105.14379. [Google Scholar]
- Ultra-Elliptic and Hyper-Elliptic Integrals. Available online: https://encyclopediaofmath.org/wiki/Hyper-elliptic_integral (accessed on 2 February 2022).
- Spandaw, J.; van Straten, D. Hyperelliptic integrals and generalized arithmetic-geometric mean. Ramanujan J. 2012, 28, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Elliptic Integrals. Available online: https://mathworld.wolfram.com/EllipticIntegral.html; https://mathworld.wolfram.com/CarlsonEllipticIntegrals.html (accessed on 2 February 2022).
- Abelian Integrals. Available online: https://encyclopediaofmath.org/wiki/Abelian_integral (accessed on 2 February 2022).
- Yang, X.; Wang, J. YNOGK: A new public code for calculating null geodesics in the Kerr spacetime. Astrophys. J. Suppl. 2013, 207, 6. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.L.; Wang, J.C. YNOGKM: A new public code for calculating time-like geodesics in the Kerr-Newman spacetime. Astron. Astrophys. 2014, 561, A127. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.K.; Medeiros, L.; Ozel, F.; Psaltis, D. GRay2: A General Purpose Geodesic Integrator for Kerr Spacetimes. Astrophys. J. 2018, 867, 59. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baines, J.; Berry, T.; Simpson, A.; Visser, M. Geodesics for the Painlevé–Gullstrand Form of Lense–Thirring Spacetime. Universe 2022, 8, 115. https://doi.org/10.3390/universe8020115
Baines J, Berry T, Simpson A, Visser M. Geodesics for the Painlevé–Gullstrand Form of Lense–Thirring Spacetime. Universe. 2022; 8(2):115. https://doi.org/10.3390/universe8020115
Chicago/Turabian StyleBaines, Joshua, Thomas Berry, Alex Simpson, and Matt Visser. 2022. "Geodesics for the Painlevé–Gullstrand Form of Lense–Thirring Spacetime" Universe 8, no. 2: 115. https://doi.org/10.3390/universe8020115
APA StyleBaines, J., Berry, T., Simpson, A., & Visser, M. (2022). Geodesics for the Painlevé–Gullstrand Form of Lense–Thirring Spacetime. Universe, 8(2), 115. https://doi.org/10.3390/universe8020115