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Abstract: The present paper is devoted to the study of the event horizon properties of spacetime
around a regular nonminimal magnetic black hole (BH), together with dynamics of magnetized and
magnetically charged particles in the vicinity of the BH. It is shown that the minimum value of the
outer horizon of the extreme charged BH increases with the increase in coupling parameter. It reaches
its maximum value of 1.5M when q → ∞, while the maximal value of the BH charge decreases
and tends toward zero. We also present a detailed analysis of magnetized particles’ motion around
a regular nonminimal magnetic black hole. The particle’s innermost circular stable orbits (ISCOs)
radius decreases as the magnetic charge and the parameter β increase and the coupling parameter of
Yang–Mills field causes a decrease at the values of the magnetic charge near to its maximum. We
show that the magnetic charge can mimic the spin of a rotating Kerr black hole up to the value of
a = 0.7893M, providing the same value for an ISCO of a magnetized particle with the parameter
β = 10.2 when the coupling parameter is q = 0. Moreover, Lyapunov exponents, Keplerian orbits
and harmonic oscillations of magnetized particles motion are also discussed.

Keywords: modified gravity; magnetized particles; magnetic field; center-of-mass energy

PACS: 04.50.-h; 04.40.Dg; 97.60.Gb

1. Introduction

From the theoretical point of view, the demand for the exploration of alternative theo-
ries of gravity is associated with the fundamental problems of classical general relativity,
such as the existence of a singularity at the origin of the exact black hole solutions of field
equations and the fact that it is not compatible with quantum field theory. On the other
hand, the current rich experimental and observational data, in principle, could justify the
general relativity in the strong gravity regime. However, the accuracy of the experiments
and observations does not provide a final answer on the validity of general relativity and
leaves an open window to consider other alternative and modified theories of gravity.

In the literature, there is a large number of alternative and modified theories of gravity
proposed to describe different astrophysical processes and the nature of exotic mysterious
objects. In turn, this creates new problems associated with dealing with the set of a large
number of parameters and obtaining constraints on different theories of gravity using
observational data. One of the attempts to resolve this issue has been the parametrization
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of the spacetime metric surrounding the astrophysical compact object and comparing them
with the parameters of alternate gravity theories [1–3].

Since the electromagnetic field (and other scalar fields associated with them) is an
essential part of spacetime surrounding astrophysical compact objects, one may consider
the theories that couple the gravitational field to other ones to construct solutions within
alternative theories of gravity. One may distinguish the following five types of nonminimal
field theories coupled to gravity:

• Models dealing with scalar fields coupled to gravity. The so-called Scherer–Jordan–
Thiry–Brans–Dicke theory has been widely studied in Refs. [4–9], including the study
of scalar fields conformally coupled to gravity.

• The Einstein–Maxwell model based on the nonminimal coupling of the electromag-
netic field with gravity. The review of this type of theory can be found in Refs. [10–13].

• Models with SU(n) symmetry, usually known as Einstein–Yang–Mills theories, have
been reviewed in Ref. [14].

• So-called Einstein–Yang–Mills–Higgs models have been explored in Refs. [15,16].
• The Einstein–Maxwell-axion models are related to the axion pseudoscalar field cou-

pled with either the electromagnetic or gravitational field [17].

The solutions describing the spacetime surrounding the compact relativistic objects
within nonminimally coupled gravity theories have been obtained in Refs. [18–26]. The dif-
ferent black hole solutions within the Einstein–Yang–Mills theory have been explored
in Refs. [27–32]. Particularly, black hole solutions, including Lorentz group symmetry and
loop quantum gravity in the Einstein–Yang–Mills theory, have been found in Refs. [33,34].
Here, we plan to explore the spacetime structure and test particle dynamics around black
holes described by the solution of the Einstein–Yang–Mills theory coupled with the SU(2)
gauge field [25,35,36].

The electromagnetic field structure and charged/magnetized particle motion around
a black hole can be considered as a useful instrument to explore the gravity theory in a
strong-field regime. Particularly, the solution of the electromagnetic field equation around
a black hole immersed in an external asymptotically uniform magnetic field has been
obtained in [37]. The modification of the astrophysical processes due to the electromagnetic
field has been explored in Refs. [38–43]. A large number of studies have been devoted to
the study and analysis of the spacetime structure and particle dynamics around black holes
in the presence of external electromagnetic fields (see, e.g., Refs. [44–92]).

Magnetized particles’ motion in spacetime around a compact object in the presence
of an external electromagnetic field may be also applied to model various astrophysical
scenarios [93–110].

Here, we aimed to explore the spacetime structure by studying neutral, magnetically
charged, and magnetized particle dynamics around a black hole within the Einstein–Yang–
Mills theory. The paper is organized as follows: in Section 2, we review the spacetime
metric and its properties. We study the magnetized particle motion in Section 3 and
magnetically charged particle dynamics in Section 4. We conclude the results of the paper
in Section 5. Throughout the paper, we use the system of units where G = 1 = c. Greek
(Latin) indices run from 0(1) to 3.

2. The Spacetime Properties

The action of the non-minimally coupled Einstein–Yang–Mills theory in four dimen-
sional spacetimes has the following form [25,35]:

S =
∫

d2x
√
−g
[ R

8π
+

1
2

(
FµνFµν +RαβµνFαβFµν

)]
, (1)

where g is the determinant of the metric tensor and R is the Ricci scalar. The Yang–Mills
(YM) tensor, Fµν, is connected to the YM potential, Aµ, by the following relation:

Fµν = ∆µ Aν − ∆ν Aµ + κAµ Aν, (2)
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where ∆µ is the covariant derivative and κ is the structure constant parameter of the Yang–
Mills field. The Riemann tensor for the Yang–Mills field given in [35] takes the following
form under the Wu–Yang ansatz (see [36]) :

Rαβµν = − q
2

{
12Rαβµν + gαµgβν − gανgβµ (3)

+ Rαµgβν − Rανgβµ + Rβνgαµ − Rβµgαν
}

,

where Rαβ is the Ricci tensor and q is the minimally coupled parameter between the
Yang–Mills field and the gravitational field.

The spacetime around magnetically charged regular nonminimal magnetic black holes
can be expressed as [25,35,36]

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2(dθ2 + sin2 θdφ2) , (4)

with the lapse (radial) function

f (r) = 1 +
(

1 +
2Q2

mq
r4

)−1(
−2M

r
+

Q2
m

r2

)
, (5)

where M and Qm are the total mass and magnetic charge of the black hole, respectively.
The electromagnetic field four-potential of the non-rotating regular nonminimal mag-

netic black hole reads
Aα = (0, 0, 0, Qm cos θ) . (6)

In fact, when q = 0, the spacetime metric (5) describes the spacetime around magneti-
cally charged Reissner–Nordström black holes.

Now, we explore the properties of the event horizon of the regular nonminimal
magnetic BH spacetime governed by the lapse function (5) and see how it depends on the
nonminimal parameter, q, and the regular BH charge, Qm.

Figure 1 shows the radial dependence of the lapse function of the extreme charged regular
nonminimal magnetic BH for the different values of the nonminimal coupling parameter.

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

r/M

f(r)

RN BH

q=0.5

q=1

Figure 1. The radial dependence of the lapse function for the different values of the nonminimal
parameter and the corresponding values of the magnetic charge Qm → Qextr.
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Generally, the radius of the event horizon of a BH is described by the standard way,
setting grr → ∞, grr = 0 or, equivalently, through the solution of the equation

f (r) = 0 , (7)

from which we have

( rh
M

)
±
= 1 + Y1 ±

{
2 +

2
Y
− Y1

3 3
√

2M2

−Q2
m

M2

(
4
3
− 2

Y
+

3
√

2
(
24q + Q2

m
)

3Y1

)} 1
2

, (8)

where

1
2

Y3 = 108M2qQ2
m − 72qQ4

m + Q6
m (9)

+

√(
108M2qQ2

m − 72qQ4
m + Q6

m
)2 − (24qQ2

m + Q4
m)

3 ,

Y2
1 = 1− 2Q2

m
3M2 +

Y
3 3
√

2
+

3
√

2Q2
m

3Y

(
24q + Q2

m

)
,

and ±stands for the outer and inner horizons.
One can see the effects of the nonminimal coupling parameter, q, and the BH charge,

Qm, on the event horizon in Equation (8).
The dependence of the event horizon of the regular nonminimal magnetic BH from

the BH charge is shown in Figure 2 for the different values of the nonminimal coupling
parameter. One can see from the figure that an increase in the magnetic charge of a BH
increases the inner horizon radius and decreases the outer one. It is also clearly seen
from the graph that for specific values of the nonminimal coupling parameter, we gain
corresponding values of the magnetic charge parameter, causing the inner and outer
horizons to meet each other.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

Qm/M

r

M

q=0

q=0
.1q=0

.5q=1q=
10

Figure 2. The dependence of event horizon radius from the magnetic charge of the regular magnetic
BH – Qm, for the different values of the nonminimal coupling parameter, q. In the figure, q/M2 is
presented as q.
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The extreme value of the BH charge and minimal value of the event horizon can be
easily found by setting the following system of equations and solving them with respect to
r and Qm:

f (r) = 0 = f ′(r) , (10)

from which we have

3(rh)min
M

= 1 + X + X−1(1− 12q) (11)

3Q2
extr

M2 = X−2
{

1− 96q2 + q
(

16X2 − 62X + 121
)

+ X2 + X− 2XX1 + 5X1

}
, (12)

where

X3 = 1 + 3(21q + X1), X2
1 = 3q(q + 2)(64q + 3) . (13)

One may see the effect of the coupling parameter, q, on the extreme value of the
magnetic BH and the minimal value of its outer horizon using Equations (11) and (12).

One can now show the dependence of the extreme values of the BH charge and
minimal value of the outer event horizon from the coupling parameter, as shown in
Figure 3. One can see from Figure 3 that when the nonminimal coupling parameter is
q = 0 (pure RN BH case), the extreme value of the charge and the minimal value of the
event horizon are equal to each other and become Qextr = (rh)min = M. One may see
that the minimal value of the event horizon increases with the increase in the coupling
parameter, while the extreme charge decreases. The limits of the minimal outer horizon and
the magnetic charge of the magnetic BH for the infinite value of the coupling parameter
can be written as

lim
q→∞

rmin
M

=
3
2

, lim
q→∞

Qextr

M
= 0. (14)

0 2 4 6 8 10

1.0

1.1

1.2

1.3

1.4

1.5

q/M2

r

M

Figure 3. Cont.
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0 2 4 6 8 10

0.4

0.6

0.8

1.0

q/M2

Qm

M

Figure 3. The dependence of the minimum value of outer (event) horizon radius (on the top panel)
and maximum value of the magnetic charge, Qm (in the bottom panel), from the nonminimal
coupling parameter, q, which allows the existence of BH.

However, in real astrophysical conditions, such a parameter can take limited values
and the given expressions above should be considered as the mathematical demonstration
of the limits of the given quantities.

3. Magnetized Particles Motion

In this section, we focus on the dynamics of magnetized particles with magnetic dipole
moment around regular nonminimal magnetic BH.

3.1. Magnetic Interaction

One can easily calculate the orthonormal radial component of the magnetic field
generated by the magnetic charge of the RN-BH using the electromagnetic four-potentials
given in Equation (6) in the following form:

Br̂ =
Qm

r2 . (15)

The radial component of the magnetic field around a magnetically charged black hole
formally coincides with the standard Newtonian expression.

The dynamics of a magnetized particle around a regular nonminimal magnetic black
hole can be studied using the following Hamilton–Jacobi Equation [93]

gµν ∂S
∂xµ

∂S
∂xν

= −
(

m− 1
2
DµνFµν

)2

, (16)

where the term DµνFµν stands for the interaction between the magnetic dipole moment
of the magnetized particle, µν, and the magnetic field generated by the magnetic charge
of the regular nonminimal magnetic black hole. We assume that the magnetized dipole
moment of the magnetized particle has to be satisfied by the following condition with the
corresponding polarization tensor, Dαβ:

Dαβ = ηαβσνuσµν , Dαβuβ = 0 . (17)
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The interaction term DµνFµν can be determined by the relation between the electro-
magnetic field tensor, Fαβ, which is expressed through the components of electric, Eα, and
magnetic, Bα, fields in the following form:

Fαβ = wαEβ − wβEα − ηαβσγwσBγ . (18)

Taking into account the condition given in Equation (17) and non-zero components of
the electromagnetic field tensor, one can write the interaction term in the following form:

DαβFαβ = 2µαBα = 2�α̂Bα̂ . (19)

It is known that the magnetic interactions are in the equilibrium state with minimal
interaction energy when the directions of magnetic field lines and the magnetic dipole
moment of the magnetized particle are parallel to each other. For this case, the direction of
the magnetic dipole moment of the magnetized particle lies at the equatorial plane, being
parallel to the magnetic field generated by the magnetic charge of the regular nonminimal
magnetic RB BH with the orthonormal components, µî = (µr̂, 0, 0). One may now rewrite
the magnetic interaction using Equations (17) and (19) in the following form:

DαβFαβ =
2µQm

r2 . (20)

where µ =
(

µîµ
î
)1/2

is the norm of the magnetic dipole moment of the magnetized particle.
Now, after obtaining the exact expression for the interaction term in Equation (16),

one may analyze the dynamics of the magnetized particles around the regular nonminimal
magnetic BH. Since the magnetic field generated by the magnetic regular BH does not
violate the axially symmetric spacetime, we still have two conserved quantities of motion
of the magnetized particles: energy, pt = −E, and angular momentum, pφ = L, which
allows using the following form of the action:

S = −Et + Lφ + Sθ + Sr . (21)

Using (19), (16) and the action (21), the radial part of motion of a magnetized particle
around a magnetically charged regular nonminimal black hole at the equatorial plane
(where θ = π/2 and pθ = 0) can be written in the following form:

ṙ2 = E2 −Veff(r;L, Qm, q, β) , (22)

where the effective potential has the form:

Veff(r;L, Qm, q, β) =

[(
1− β

MQm

r2

)2
+
L2

r2

]

×
[

1 +
(

1 +
2Q2

mq
r4

)−1(
−2M

r
+

Q2
m

r2

)]
, (23)

with specific energy, E = E/m, and angular momentum, L = L/m, together with the
parameter β = µ/(mM) being responsible for the interaction between the magnetic dipole
moment of the magnetized particle and the magnetic charge of the central gravitating ob-
ject. In the case of a typical neutron star with the dipole magnetic moment, µ = (1/2)BR3,



Galaxies 2021, 9, 71 8 of 27

treated as a magnetized particle orbiting an SMBH, the parameter β takes the follow-
ing value:

β ' 0.128
(

B
1012G

)(
R

106cm

)
×

(
m

1.4M�

)−1( M
106M�

)−1
, (24)

where B, m, and R are the surface magnetic field, mass, and radius of the neutron star,
respectively, and M is the mass of the central SMBH. Now, one may evaluate the value of
the interaction parameter β for the magnetar SGR (PSR) J1745–2900 with magnetic dipole
moment µ ' 1.6× 1032G · cm3 and mass m ' 1.41M� orbiting the SMBH Sgr A* with the
mass M ' 3.8× 106M� at the center of the Milky Way [111] as:

β =
µPSR J1745−2900

mPSR J1745−2900MSgrA∗
≈ 10.2 . (25)

In our further analysis of magnetized particle dynamics, we use an astrophysically
relevant value for the parameter β = 10.2, treating the magnetar (SGR) PSR J1745-2900 as a
magnetized test particle in SMBH Sgr A* environment.

3.2. Stable Circular Orbits

Now, we study the effects of the magnetic charge of the regular BH and the minimal
coupling parameters on the ISCO radius of magnetized particles with the parameter β > 0
around the regular nonminimal magnetic BH.

In order to describe the circular stable orbits of the magnetized particles around the
central BH, we use the following standard conditions:

Veff = E2, V′eff = 0 , V′′eff ≥ 0 . (26)

From the first equation in Equation (26), one can find the specific angular momentum
and energy of the magnetized particle for circular orbits in the following form:

L2 =
r2 − βMQm

2r5Q2
m(Mq + 2qr + r3) + 4q2r2Q4

m + r9(r− 3M)

×
{

Qm

(
Qm

[
Qm

(
2qQm

[
βMQm

(
4q + r2

)
+ r4

]
+ βMr3

[
8qr + 3r3 − 2Mq

])
− r5

(
6Mq + r3

)]
+ βMr7(2r− 5M)

)
+ Mr9

}
, (27)

and

E2 =

[
Q2

m
(
2q + r2)+ r3(r− 2M)

]2(r4 − β2M2Q2
m
)

2r7Q2
m(Mq + 2qr + r3) + 4q2r4Q4

m + r11(r− 3M)
. (28)

The dependence of specific angular momentum and energy of magnetized particles on
the parameter β = 10.2 at circular orbits around magnetically charged regular nonminimal
BHs is plotted in Figure 4 for the different values of the nonminimal coupling parameter
and fixed values of the magnetic charge of the central object. One can see from the figure
that the increase in both the magnetic charge of the BH and the nonminimal coupling
parameter causes a decrease in the minimum value of the angular momentum, while
the energy’s minimum increases. Moreover, the energy and angular momentum exhibit
minimum decreases in the presence of non-zero BH charge and the coupling parameter, as
is seen in Figure 5.
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β=10.2 Qm/M=0.8

Schw BH

RN BH

q=1
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β=10.2; Qm/M=0.8
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q=0.5
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Figure 4. The radial dependence of the specific angular momentum (top panel) and energy (bottom
panel) of the magnetized particles for circular orbits around the regular nonminimal magnetic BH
for the different values of the nonminimal coupling parameter and fixed values of magnetic charge
of the BH and the parameter β = 10.2.

The possible values of specific energy and angular momentum of magnetized particles,
with the parameter β = 10.2, around magnetically charged BHs for stable and unstable
circled orbits are presented in Figure 6. One can see from the figures that the energy of
the particles decreases due to the existence of magnetic interaction between the magnetic
dipoles and the magnetic field created by the charged BH. The comparison of the extremely
charged RN and the regular magnetic BHs show that the energy at the ISCO of particles
around RN BH is smaller than the magnetic BH one for a neutral particle, while for
magnetized particles, it is bigger for RN BH than the regular magnetic BH due to the
extreme charge of the former.
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Figure 5. The dependence of the minimum distance for the magnetized particles corresponding to
circular orbits around the regular nonminimal magnetic BH from the BH charge for the different
values of the nonminimal coupling parameter.

0 2 4 6 8 10 12
0.90

0.92

0.94

0.96

0.98

1.00

1.02

ℒ/M

ℰ

Schw BH

◼

ℰISCO=0.9412

max

min

2 4 6 8 10 12
0.90

0.92

0.94

0.96

0.98

1.00

1.02

ℒ/M

ℰ

RN BH; Q=Qm

◼

◼

ℰISCO
β=0

=0.9319

ℰISCO
β=10.2

=0.9106

max

min

2 4 6 8 10 12
0.90

0.92

0.94

0.96

0.98

1.00

1.02

ℒ/M

ℰ

q/M2=1; Q=Qm

◼

◼

ℰISCO
β=0

=0.9418

ℰISCO
β=10.2

=0.9007

max

min

Figure 6. Relations between the specific energy and angular momentum of the magnetized particles,
with the parameter β = 10.2, corresponding to stable (corresponding to the minimum of effective
potential) and unstable (corresponding to the maximum of effective potential) orbits around an
extremely charged regular nonminimal magnetic BH. The comparisons between Schwarzschild and
extremely charged RN BHs are provided. The values of energy and angular momentum are located
at the ISCO radius, where lines of max and min are connected.

Now, one may study the ISCO radius of the magnetized particles around regular
nonminimal magnetic BH using the standard conditions given in Equation (26), producing
the following equation:

64β2M2q3Q8
m + 4r3Q6

m

{
β2M2

[
Mq(22q + 3r2)

+ 24q2r + 28qr3 + 6r5
]
+ 8q2r3

}
+ 2Mr10Q2

m

×
[

β2M(30M2 − 21Mr + 4r2)− 12Mq

+ 9(4qr + r3)
]
− 2r6Q4

m

{
β2M2

[
4M2q (29)

+ M(84qr + 37r3)− 12(2qr2 + r4)
]
+ 2Mqr

× (30q− r2) + 4(6qr4 + r6)
}
+ 2Mr14(r− 6M) ≥ 0 ,

providing the solution for the radial coordinate, which gives the ISCO radius.
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One may easily see that Equation (29) is quite complicated and impossible to solve
analytically. Hence, we provide analysis of the effects of the magnetic charge of the BH
and the nonminimal coupling parameter on the ISCO radius of the magnetized particles
numerically with plots.

Figure 7 illustrates the effects of the magnetic charge and the nonminimal coupling
parameter on the ISCO radius of magnetized particles around the regular nonminimal
magnetic black hole. In the top panel of the figure, we fixed the nonminimal coupling
parameter as q/M2 = 1, and one can see that an increase in the magnetic charge and
the parameter β decreases the ISCO radius. There is an upper limit for the value of the
parameter β that allows the ISCO to exist, and such an upper value decreases as the
magnetic charge grows.

0 10 20 30 40

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

β

r

M

q=1 Qm/M=0.2

Qm/M=0.4

Qm/M=0.6

RN BH

q=0.5

q=1
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2.5

3.0
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4.0

4.5

5.0

5.5

6.0

Qm/M

r

M

β=10.2

Figure 7. The dependence of the ISCO radius of magnetized particles around regular nonminimal
magnetic black holes from the magnetic charge of the BH for different values of the magnetic charge
(on the top panel) and the nonminimal coupling parameter (on the bottom one), for the fixed value
of the parameter β = 10.2.
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3.3. Kerr BH versus Regular Nonminimal Magnetic BH

It is extremely difficult to distinguish the effects of the spin of a central black hole
through the measurements of ISCO radii of test particles from observational data of BHs.
In most cases, astrophysical black holes are treated as rotating black holes and consequently,
a question arises as to whether effects of the BH charge and spin parameters on ISCO are
similar. In the other words, how can we be sure that a central BH is charged or spinning?
Here, we aimed to provide simple calculations on ISCO radii and to show a new way to
distinguish the effects of spin from a magnetic charge of different BHs.

Now, we concentrate on the possibility of distinguishing the effects of magnetic charge
of the regular nonminimal magnetic black holes and rotating Kerr black holes through the
investigation of the dynamics of magnetized particles, assuming that a magnetized test
particle has the same magnetic parameter β = 10.2 as the magnetar (SGR) PSR J1745-2900
orbiting around SMBH SgrA*.

In Figure 8, we show the degeneracy values of the magnetic charge of the regular
nonminimal magnetic BH and spin of the Kerr BH for the different values of the nonminimal
coupling parameter. The derivation of the degeneracy between these two spacetime
parameters is based on the idea that both the Kerr BH spacetime and the spacetime around
a regular nonminimal magnetic BH can have the same ISCO location that coincides with
the inner edge of the accretion disk around a BH. One can see that the charge of the pure
magnetically charged RN BH (q = 0) can mimic the spin parameter up to a/M = 0.7893
with its value, Qm/M ∈ (0, 0.645), while at q/M2 = 1, the BH charge mimics up to
a/M = 0.82.

0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

Qm/M

a

M

β=10.2

q=
0

q=
1

Figure 8. Relation between the magnetic charge of a regular nonminimal magnetic black hole and
spin of rotating Kerr black hole providing the same value of ISCO radius for the magnetized particle
with the parameter β = 10.2. Here, the unit of the coupling parameter, q, is given in M2.

3.4. Instability of Circular Orbit

Here, we study the instability of circular orbits for magnetized particles around
the magnetic BH by using the Lyapunov exponent describing the measurement of the
average rate at which nearby trajectories converge or diverge in the phase space. In other
words, the Lyapunov characteristic exponent of a dynamical system is a quantity that
characterizes the rate of separation of infinitely close trajectories. A negative Lyapunov
exponent designates the convergence between nearby trajectories. A positive Lyapunov
exponent determines the divergence between nearby geodesics in which the path of such
a system is the most active to change the starting circumstances. A vanishing Lyapunov
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exponent designates the existence of marginal stability. Geodesic stability analysis in
terms of Lyapunov exponents begins with the equations of motion, schematically written
as [112,113]:

λ =

√
−∂rrVeff(r;L, Qm, q, β)

2ṫ2

=
2 f (r)− r f ′(r)

4r2(r4 − β2M2Q2
m)

{
r2 f ′′(r)

[(
r2 − βMQm

)2

+r2L
]
− 4r f ′(r)

[
r2L− 2βMQm

(
r2 − βMQm

)]
−4βMQm f (r)

(
3r2 − 5βMQm

)
+ 6r2L f (r)

} 1
2

(30)

The radial dependence of the Lyapunov exponent for neutral (top panel) and magne-
tized particles (bottom panel) around magnetically charged BHs is presented in Figure 9. It
is seen from the figure that the distance where unstable orbits become stable for neutral
particles shifts towards the central BH due to the presence of the magnetic charge of the
BH. Moreover, one can see that the distance is closer to the central object in the case of the
RN BH than the regular magnetic BH one.
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Q=Qextr
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q=100

Figure 9. The radial dependence of Lyupanov exponent for neutral and magnetized particles around
the regular nonminimal magnetic black hole for the various values of the coupling parameter, q.
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Now, we plan to analyze possible values of the Lyapunov exponent for magnetized
particles at the fixed orbits. Here, we provide the analysis graphically in Figure 10 for the
different values of the parameter β at the distance r = 3M from the central BH.
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q=1

q=0.8
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0.000

Qm/M

λ

ℒ/M=4.3; β=5; r/M=3 q=10
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Figure 10. The dependence of Lyupanov exponent for magnetized particles from the magnetic charge of a
regular nonminimal magnetic black hole for the different values of magnetic parameter β at the distance
3M from the central BH. We use the value of the specific angular momentum of the particle, L = 4.3M.



Galaxies 2021, 9, 71 15 of 27

Plots in Figure 10 indicate that the Lyapunov exponent (LE) is negative for the magne-
tized particles with the smaller β parameter, while for bigger values of the parameter β
and for the magnetic charge of the BH, the LE increases and takes positive values.

Now, we are interested in which values of β parameter the LE vanishes. Here, we fix
the magnetic charge as Q = Qextr and L = 4.3M.

Now, we show in which values (the coupling parameter, the BH charge, and the
parameter β) the LE equals zero, as shown in Figure 11. We find the coupling parameter of
the Yang–Mills field, for which the LE becomes zero when the values of the BH charge are
close to zero.

2 3 4 5 6
0

5

10

15

r/M

β

ℒ/M=4.3; λ=0

Q=Qextr

RN BH

q=1

q=2

q=10

q=20

Figure 11. Relations between the parameter β and distance, where the Lyapunov exponent for
magnetized particles around extremely charged magnetic regular BHs is zero for the different values
of the coupling parameter of the Yang–Mills field with the comparison to the extremely charged RN
BH. Here, the coupling parameter, q is given in the unit of M2.

3.5. Keplerian Frequency

The angular velocity of particles measured by a distant observer or so-called Keplerian
frequency is determined as [26,113,114]:

ΩK =
dφ

dt
=

φ̇

ṫ
, (31)

or explicitly,

ΩK =

(
2qQ2

mr + r5)−1√
βMQm + r2

{
r8
(

Mr−Q2
m

)
+ 8βMq2Q5

m

+βMQmr6
[
r(2r− 5M) + 3Q2

m

]
+ 2qQ2

mr2 (32)

×
[
r2
(

Q2
m − 3Mr

)
+ βMQm

{
r(4r−M) + Q2

m

}]} 1
2

.
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In further calculations, we convert the units of fundamental frequencies from geo-
metrical (1/cm) to Hz (international unit systems, s−1), which makes our analysis more
understandable:

ν =
1

2π

c3

GM
Ω , Hz , (33)

where c = 3 · 1010 cm/s and gravitational constant G = 6.67 · 10−8 cm3/(g · s2).
The radial dependence of the Keplerian frequency of test particles around a BH is

shown in Figure 12. One can see from the bottom panel of the figure that the increase in the
coupling parameter and the parameter β causes the decrease in the Keplerian frequency.
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Figure 12. The radial dependence of the Keplerian frequencies of neutral and magnetized particles
around extreme Kerr BH, extremely charged RN, and the nonminimal magnetic BHs for the different
values of the nonminimal coupling parameter, q.
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3.6. Epicyclic Motion of Test Magnetized Particles

In this subsection, we provide detailed analysis of the fundamental frequencies of the
tested neutral particles moving around a BH. The effective potential can be expanded in
terms of r and θ in the form

Veff(r, θ) = Veff(r0, θ0) + ∂rVeff(r, θ)
∣∣∣
r0,θ0

δr

+∂θVeff(r, θ)
∣∣∣
r0,θ0

δθ + ∂r∂θVeff(r, θ)
∣∣∣
r0,θ0

δr δθ

+
1
2

∂2
r Veff(r, θ)

∣∣∣
r0,θ0

δr2 +
1
2

∂2
θVeff(r, θ)

∣∣∣
r0,θ0

δθ2. (34)

Here, we provide a careful analysis of this expansion, showing that the condition
∂rVeff = 0 makes the first term of Equation (34) zero, and the second term vanishes due to
the stability conditions of the effective potential in the third and last terms of Equation (23).
Thus, only two terms remain, which are proportional to the second-order derivatives of the
effective potential with respect to the coordinates r and θ. The equation of motion in our
calculations can be derived by replacing the derivation with respect to the affine parameter
in Equation (23) into the time derivative, i.e., dt/dλ = ut. This replacement allows one
to obtain physical quantities measured by an observer at infinity. In order to obtain
harmonic oscillator equations for displacements δr and δθ, we substitute Equation (34) into
Equation (23) and follow all the above-mentioned facts [26,113]:

d2δr
dt2 + Ω2

r δr = 0 ,
d2δθ

dt2 + Ω2
θδθ = 0 , (35)

where Ωr and Ωθ are, respectively, the radial and vertical angular frequencies measured by
a distant observer, defined as:

Ω2
r = − 1

2grr ṫ2 ∂2
r Veff(r, θ)

∣∣∣
θ=π/2

, (36)

Ω2
θ = − 1

2gθθ ṫ2 ∂2
θVeff(r, θ)

∣∣∣
θ=π/2

. (37)

Finally, expressions for the frequencies of the radial and vertical oscillations of magne-
tized particle take the following form:

Ωr =

(
2qQ2 + r4)−4

r2
(
r4 − β2 M2Q2

){2
(

r2
(

r(r− 2M) + Q2
)
+ 2qQ2

){
r6
[
2qQ2r3

(
MQ2 + 18Mr2 − 6r

(
M2 + 2Q2

))
(38)

+4q2
(

4Q6 − 15MQ4r
)
+ r6

(
9MQ2r + Mr2(r− 6M)− 4Q4

)}
+ β2 M2Q2

(
2qQ2r5

[
3MQ2 − 42Mr2 + 28Q2r

+12r3 − 2M2r
]
+ r8

[
r2
(

30M2 − 21Mr + 4r2
)
+ Q2r(12r− 37M) + 12Q4

]
+ 4q2Q4r3(11M + 12r) + 32q3Q6

)]}
,

Ωθ = Ωφ = ΩK . (39)

In fact, from Equation (38), it is difficult to see the effects of the magnetic coupling and
magnetized parameters on the radial frequency. For this reason, we plot the equation by
varying the parameters.

In Figure 13, we show the frequency of radial oscillations of the tested magnetized
particles around the magnetic BH as a function of the radial coordinate. Here, we also show
comparisons of the results with the case of an RN BH and the tested neutral particles. It is
found that the frequency grows with the increase in the BH charge, nonminimal coupling,
and magnetized parameters. It is seen that the effect of the magnetic parameter of a particle
is stronger than the BH charge and nonminimal coupling parameters due to dominant
effects of Lorentz forces.
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Figure 13. The radial dependence of frequencies of radial oscillations of test magnetized particles
along stable orbits around a nonminimal magnetic BH for the different values of the nonminimal
coupling parameter, q. The results are shown in comparison with the RN and Schwarzschild BH cases.

4. Magnetically Charged Particle Motion

This section is devoted to the magnetically charged particle motion around a regular
nonminimal magnetic black hole. As the magnetically charged particle, we use a particle
that has a non-zero magnetic monopole. The Hamilton–Jacobi equation of motion is one
of the best tools to investigate the motion of magnetically charged particles in the axially
symmetric spacetime of a regular nonminimal magnetic black hole. For the magnetically
charged particle which is electrically neutral, the equation of motion reads as [87]:

gαβ

(
∂S
∂xα

+ igA?
α

)(
∂S
∂xβ

+ igA?
β

)
= −m2 , (40)

where g characterizes the magnetic charge of the test particle and A?
α is the dual vector

potential with only one nonvanishing component, that has the form [87]:

A?
t = − iQm

r
. (41)

For the action (21), the explicit form of the equation of motion becomes

(
2qQ2

m + r4)(E − gQm
r

)2

r2(r(r− 2M) + Q2
m) + 2qQ2

m
− L

2 csc(θ)
r2 (42)

−
[

1 +
r2(Q2

m − 2Mr
)

2qQ2
m + r4

](
∂Sr

dr

)2
− 1

r2

(
∂Sθ

dθ

)2
= 1,

with the specific magnetic charge of the test particle g = qm/m.
The expression that comes from the equation of motion for the magnetically charged

test particle moving at the equatorial plane (θ = π/2) then takes the following form:

Veff =
gQm

r
+

√√√√√(1 +
L2

r2

)1 +
r4
(

Q2
m

r2 − 2M
r

)
2qQ2

m + r4

 . (43)
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This effective potential has radial dependence, as shown in Figure 14. The top panel
shows that the increase in the value of the magnetic charge of the test particle makes the
effective potential stronger, which strengthens the attractive force between the black hole
and test particle, which in turn makes the ISCO radius bigger (which is discussed later).
The increase in the parameter q in the middle plot shifts the maximum point to the left side
that corresponds to the shift of minimum circular orbits for the given angular momentum
and energy of the test particle. One can see in the last panel that the increase in these
two parameters discussed makes the ISCO radius smaller, similar to the behaviour of the
rotation parameter of the Kerr metric.
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Figure 14. Cont.
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Figure 14. Effective potential of magnetically charged particle orbiting around a nonminimal mag-
netic regular black hole. Here, we provide units of the angular momentum and BH charge in
[L] = [Qm] = M, and the coupling parameters of Yang–Mills field in [q] = M2.

From the well-known set of conditions on the effective potential given in Equation (26),
one can find the dependence of the angular momentum of the particle from the circular
orbit radius, as in Figure 15. These lines give us a more clear demonstration of the shift of
the ISCO radius compared to the effective potential, since the minimum of these lines gives
us the exact values of the ISCO radius for given values of black hole parameters and the
magnetic charge of the test particle. From the first figure, it is apparent that the increase in
the magnetic charge of the test particle shifts the ISCO towards bigger orbits. The second
plot illustrates how the increase in the magnetic charge parameter of the nonminimal
regular black hole makes the ISCO smaller. Furthermore, the last plot shows the shift of
ISCO toward a small radius for bigger values of parameter q.
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Figure 15. Cont.



Galaxies 2021, 9, 71 21 of 27

Qm = 0

Qm = 0.5

Qm = 0.8

2 5 10 20 50

10

20

30

40

50

r/M

ℒ2

M2

g = 0.3, q = 1

q = 0

q = 3

q = 5

5 10 20
10

20

30

40

50

r/M

ℒ2

M2

g = 0.5, Qm = 0.5

Figure 15. The radial dependence of angular momentum of the magnetically charged particle making
circular revolutions on the equatorial plane of the nonimimal regular magnetic BH. Units of the
angular momentum and BH charge and the coupling parameters of Yang–Mills field are taken as
[L] = [Qm] = M and [q] = M2, respectively.

Now, we turn to the investigation of ISCO for the motion of a magnetically charged
test particle in the spacetime of a nonminimal regular black hole. From the additional
condition on effective potential, V′′eff(r) = 0, or from the minimum condition for the angular
momentum, one can easily find the relation between the ISCO radius and parameters
of spacetime together with the magnetic charge of the test particle, which is shown in
Figure 16. As was expected from the previous discussions, one can see how the ISCO
radius behaves with the increase in the parameters mentioned. From the first figure, it is
clearly seen that the increase in the magnetic charge of the test particle makes the ISCO
radius bigger, which results in linear-like lines in the given range of the magnetic charge
parameter of the test particle for chosen values of parameter q and different values of
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magnetic charge parameter Qm of the black hole. From the second and third plots, one can
see how the ISCO radius decreases with the increase in the magnetic charge parameter
of the black hole and the parameter q for different values of the magnetic charge of the
test particle.
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Figure 16. The dependence between ISCO radius of the magnetically charged test particle and
parameters Qm, q, and g.

Finally, we plan to see how well the parameters of spacetime, together with the
magnetic charge of the test particle, can mimic the rotation parameter of the Kerr black
hole. To do this, we follow the idea that if the black holes are believed to be nonminimal
regular ones with the spacetime metric presented in this work but not the rotating Kerr
one’s, then the combination of these parameters should provide the same ISCO radius for
the corresponding value of the rotation parameter. This idea leads to the investigation
of the degeneracy between the rotation parameter of the Kerr metric and the parameters
of interest for the matching values of the ISCO radius, which is illustrated in Figure 17.
One can understand from the plots that the smaller the magnetic charge of the test particle
we use, the better the mimicry that is obtained between the rotation parameter of the
Kerr metric and magnetic charge of the nonminimal regular black hole and parameter
q. From all three figures, it is easily seen that the middle one has better mimicry results
compared to the other two, and it shows that for the given values of the magnetic charge
of the test particle and parameter q, the magnetic charge of the nonminimal regular black
hole can mimic the rotation parameter of the Kerr black hole up to the values of 0.8, which
leads to the conclusion that black holes in the Universe that are characterized by the Kerr
metric with the spin parameter up to this value can also be interpreted as effectively as the
nonminimal regular BHs studied.
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Figure 17. The degeneracy plot between rotation parameter a and parameters g, Λ, and qm, giving the
same ISCO radius for the magnetically charged test particle orbiting around the regular black hole.

5. Conclusions

In the present work, we studied the effects of the Yang–Mills field on the event
horizon of the spacetime around a regular nonminimal magnetic BH and the dynamics of
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magnetized and magnetically charged particles. Our analysis shows that the minimal outer
horizon which corresponds to the maximum value of the BH charge increases with the
increase in the coupling parameter and reaches its maximum at rh = 1.5M when q→ ∞,
while the maximum charge of the BH decreases and becomes zero.

We also explored the dynamics of magnetized particles around the regular magnetic
BH. Note that we treated the magnetar SRG (PSR) J1745-2900 orbiting around the SMBH
Sgr A* as a magnetized test particle and evaluated the magnetic parameter as β = 10.2.
The performed analysis indicates that the presence of the BH charge and Yang–Mills field
causes an increase in the specific angular momentum of the magnetized particles with
the parameter β = 10.2 along circular orbits, while the energy decreases. We showed that
the ISCO radii of the particles are very sensitive to the increase in the magnetic charge
of the central BH. The ISCO radius decreases with the increase in the value of the BH
charge. However, the increase in the Yang–Mills coupling parameter slightly decreases
the ISCO radius with respect to the RN BH case. Here, we were interested in whether
the BH charge could provide similar gravitational effects on the ISCO position as the spin
of the Kerr BH. We showed that the RN BH can mimic the spin up to a/M ' 0.7893
and it is increased when the coupling parameter is q = 1 mimicking over a/M = 0.82
for the magnetized particles with the parameter β = 10.2. By studying the instability of
orbits of the test magnetized particles with β = 10.2, we showed that higher values of the
coupling parameter of Yang–Mills field make the orbits stable for the magnetic charge near
its extreme value at r = 3M.

Moreover, we investigated magnetically charged particle motion in the spacetime
of a static nonminimal regular black hole that has two extra parameters besides its mass.
A study of the effective potential, angular momentum, and the ISCO showed that these
parameters can mimic the role of the rotation parameter of the Kerr black hole. In turn, we
studied how these parameters can mimic the latter one based on the idea that if black holes
in the Universe can also be characterized by the alternate metric, then additional parameters
included in this metric could provide the same ISCO radii as the spin parameter of the
Kerr black hole. Our calculations showed that the given combinations of the parameters of
the nonminimal regular black hole could mimic the spin parameter of the Kerr black hole
up to around a ≈ 0.8. This result led to the assumption that black holes with spin up to
this value have a great interpretation with the spacetime metric of the nonminimal regular
black hole for the motion of the magnetically charged test particle.
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