Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = biscembranoids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1674 KiB  
Article
MS/MS Molecular Networking Unveils the Chemical Diversity of Biscembranoid Derivatives, Neutrophilic Inflammatory Mediators from the Cultured Soft Coral Sarcophyton trocheliophorum
by Ngoc Bao An Nguyen, Lo-Yun Chen, Po-Jen Chen, Mohamed El-Shazly, Tsong-Long Hwang, Jui-Hsin Su, Chun-Han Su, Pei-Tzu Yen, Bo-Rong Peng and Kuei-Hung Lai
Int. J. Mol. Sci. 2022, 23(24), 15464; https://doi.org/10.3390/ijms232415464 - 7 Dec 2022
Cited by 6 | Viewed by 2604
Abstract
Biscembranoids are the distinctive tetraterpenoids owing a 14/6/14 membered tricyclic scaffold that have been mainly discovered in the soft corals, especially the genera Sarcophyton, Lobophytum and Sinularia. Recent findings have demonstrated the great anti-inflammatory potential of biscembranoid analogues in human neutrophils, [...] Read more.
Biscembranoids are the distinctive tetraterpenoids owing a 14/6/14 membered tricyclic scaffold that have been mainly discovered in the soft corals, especially the genera Sarcophyton, Lobophytum and Sinularia. Recent findings have demonstrated the great anti-inflammatory potential of biscembranoid analogues in human neutrophils, motivating more chemical and biological explorations targeting these marine-derived natural products. In the current study, the chemical diversity of biscembranoids derived from the cultured-type Sarcophyton trocheliophorum von Marenzeller was illustrated through MS/MS molecular networking (MN) profiling approach. Based on the MN patterns, the prioritization of unknown biscembranoid derivatives was putatively analyzed. As a result, the biscembrane targeting isolation afforded two new metabolites, sarcotrochelides A (1) and B (2), along with six known analogues (38). Their structures and relative configurations were determined by spectroscopic methods. In vitro neutrophil inflammatory inhibition was further investigated for all isolates based on reduced superoxide anion (O2•−) generation detections. Compounds 58 showed significant dose-dependently inhibitory effects, suggesting the cruciality of 6,7-dihydrooxepin-2(5H)-one moiety and saturated γ-lactone ring in their reactive oxygen species (ROS)-dependent anti-inflammatory properties. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

13 pages, 1136 KiB  
Article
New Biscembranoids Sardigitolides A–D and Known Cembranoid-Related Compounds from Sarcophyton digitatum: Isolation, Structure Elucidation, and Bioactivities
by Tzu-Yin Huang, Chiung-Yao Huang, Chih-Hua Chao, Chi-Chien Lin, Chang-Feng Dai, Jui-Hsin Su, Ping-Jyun Sung, Shih-Hsiung Wu and Jyh-Horng Sheu
Mar. Drugs 2020, 18(9), 452; https://doi.org/10.3390/md18090452 - 29 Aug 2020
Cited by 19 | Viewed by 3629
Abstract
Chemical examination from the cultured soft coral Sarcophyton digitatum resulted in the isolation and structural identification of four new biscembranoidal metabolites, sardigitolides A–D (14), along with three previously isolated biscembranoids, sarcophytolide L (5), glaucumolide A (6 [...] Read more.
Chemical examination from the cultured soft coral Sarcophyton digitatum resulted in the isolation and structural identification of four new biscembranoidal metabolites, sardigitolides A–D (14), along with three previously isolated biscembranoids, sarcophytolide L (5), glaucumolide A (6), glaucumolide B (7), and two known cembranoids (8 and 9). The chemical structures of all isolates were elucidated on the basis of 1D and 2D NMR spectroscopic analyses. Additionally, in order to discover bioactivity of marine natural products, 18 were examined in terms of their inhibitory potential against the upregulation of inflammatory factor production in lipopolysaccharide (LPS)-stimulated murine macrophage J774A.1 cells and their cytotoxicities against a limited panel of cancer cells. The anti-inflammatory results showed that at a concentration of 10 µg/mL, 6 and 8 inhibited the production of IL-1β to 68 ± 1 and 56 ± 1%, respectively, in LPS-stimulated murine macrophages J774A.1. Furthermore, sardigitolide B (2) displayed cytotoxicities toward MCF-7 and MDA-MB-231 cancer cell lines with the IC50 values of 9.6 ± 3.0 and 14.8 ± 4.0 µg/mL, respectively. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents)
Show Figures

Figure 1

42 pages, 2524 KiB  
Review
Chemical Diversity in Species Belonging to Soft Coral Genus Sacrophyton and Its Impact on Biological Activity: A Review
by Yasmin A. Elkhawas, Ahmed M. Elissawy, Mohamed S. Elnaggar, Nada M. Mostafa, Eman Al-Sayed, Mokhtar M. Bishr, Abdel Nasser B. Singab and Osama M. Salama
Mar. Drugs 2020, 18(1), 41; https://doi.org/10.3390/md18010041 - 6 Jan 2020
Cited by 61 | Viewed by 6836
Abstract
One of the most widely distributed soft coral species, found especially in shallow waters of the Indo-Pacific region, Red Sea, Mediterranean Sea, and also the Arctic, is genus Sacrophyton. The total number of species belonging to it was estimated to be 40. [...] Read more.
One of the most widely distributed soft coral species, found especially in shallow waters of the Indo-Pacific region, Red Sea, Mediterranean Sea, and also the Arctic, is genus Sacrophyton. The total number of species belonging to it was estimated to be 40. Sarcophyton species are considered to be a reservoir of bioactive natural metabolites. Secondary metabolites isolated from members belonging to this genus show great chemical diversity. They are rich in terpenoids, in particular, cembranoids diterpenes, tetratepenoids, triterpenoids, and ceramide, in addition to steroids, sesquiterpenes, and fatty acids. They showed a broad range of potent biological activities, such as antitumor, neuroprotective, antimicrobial, antiviral, antidiabetic, antifouling, and anti-inflammatory activity. This review presents all isolated secondary metabolites from species of genera Sacrophyton, as well as their reported biological activities covering a period of about two decades (1998–2019). It deals with 481 metabolites, including 323 diterpenes, 39 biscembranoids, 11 sesquiterpenes, 53 polyoxygenated sterols, and 55 miscellaneous and their pharmacological activities. Full article
Show Figures

Figure 1

17 pages, 3348 KiB  
Article
New Cembranoids and a Biscembranoid Peroxide from the Soft Coral Sarcophyton cherbonnieri
by Chia-Chi Peng, Chiung-Yao Huang, Atallah F. Ahmed, Tsong-Long Hwang, Chang-Feng Dai and Jyh-Horng Sheu
Mar. Drugs 2018, 16(8), 276; https://doi.org/10.3390/md16080276 - 6 Aug 2018
Cited by 24 | Viewed by 5176
Abstract
Six new cembranoids, cherbonolides A−E (15) and bischerbolide peroxide (6), along with one known cembranoid, isosarcophine (7), were isolated from the Formosan soft coral Sarcophyton cherbonnieri. The structures of these compounds were elucidated by [...] Read more.
Six new cembranoids, cherbonolides A−E (15) and bischerbolide peroxide (6), along with one known cembranoid, isosarcophine (7), were isolated from the Formosan soft coral Sarcophyton cherbonnieri. The structures of these compounds were elucidated by detailed spectroscopic analysis and chemical methods. Compound 6 was discovered to be the first example of a molecular skeleton formed from two cembranoids connected by a peroxide group. Compounds 17 were shown to have the ability of inhibiting the production of superoxide anions and elastase release in N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLF/CB)-induced human neutrophils. Full article
(This article belongs to the Special Issue Terpenoids from Marine Organisms)
Show Figures

Graphical abstract

14 pages, 3533 KiB  
Article
Biscembranoids and Cembranoids from the Soft Coral Sarcophyton elegans
by Wei Li, Yi-Hong Zou, Man-Xi Ge, Lan-Lan Lou, Yun-Shao Xu, Abrar Ahmed, Yun-Yun Chen, Jun-Sheng Zhang, Gui-Hua Tang and Sheng Yin
Mar. Drugs 2017, 15(4), 85; https://doi.org/10.3390/md15040085 - 23 Mar 2017
Cited by 17 | Viewed by 5290
Abstract
Two novel biscembranoids, sarelengans A and B (1 and 2), five new cembranoids, sarelengans C–G (37), along with two known cembranoids (8 and 9) were isolated from the South China Sea soft coral Sarcophyton elegans [...] Read more.
Two novel biscembranoids, sarelengans A and B (1 and 2), five new cembranoids, sarelengans C–G (37), along with two known cembranoids (8 and 9) were isolated from the South China Sea soft coral Sarcophyton elegans. Their structures were determined by spectroscopic and chemical methods, and those of 1, 4, 5, and 6 were confirmed by single crystal X-ray diffraction. Compounds 1 and 2 represent the first example of biscembranoids featuring a trans-fused A/B-ring conjunction between the two cembranoid units. Their unique structures may shed light on an unusual biosynthetic pathway involving a cembranoid-∆8 rather than the normal cembranoid-∆1 unit in the endo-Diels-Alder cycloaddition. Compounds 2 and 3 exhibited potential inhibitory effects on nitric oxide production in RAW 264.7 macrophages, with IC50 values being at 18.2 and 32.5 μM, respectively. Full article
(This article belongs to the Collection Bioactive Compounds from Marine Invertebrates)
Show Figures

Graphical abstract

12 pages, 357 KiB  
Article
Lobophytones O–T, New Biscembranoids and Cembranoid from Soft Coral Lobophytum pauciflorum
by Pengcheng Yan, Zhiwei Deng, Leen van Ofwegen, Peter Proksch and Wenhan Lin
Mar. Drugs 2010, 8(11), 2837-2848; https://doi.org/10.3390/md8112848 - 10 Nov 2010
Cited by 40 | Viewed by 11077
Abstract
Chemical examination of a Chinese soft coral Lobophytum pauciflorum resulted in the isolation of five new biscembranoids named lobophytones O–S (15) and a new “monomeric” cembrane lobophytone T (6). The structures of the new compounds were elucidated [...] Read more.
Chemical examination of a Chinese soft coral Lobophytum pauciflorum resulted in the isolation of five new biscembranoids named lobophytones O–S (15) and a new “monomeric” cembrane lobophytone T (6). The structures of the new compounds were elucidated by interpretation of 1D and 2D NMR (COSY, HSQC, HMBC, and NOESY) spectroscopic data in association with MS and IR data. Lobophytone Q showed significant inhibition against lipopolysaccharide (LPS)-induced nitric oxide (NO) release in mouse peritoneal macrophages, while lobophytones Q and T showed inhibitory activities against the bacteria S. aureus and S. pneumoniae. Full article
Show Figures

Graphical abstract

Back to TopTop