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Abstract: Biscembranoids are the distinctive tetraterpenoids owing a 14/6/14 membered tricyclic
scaffold that have been mainly discovered in the soft corals, especially the genera Sarcophyton, Lobo-
phytum and Sinularia. Recent findings have demonstrated the great anti-inflammatory potential of
biscembranoid analogues in human neutrophils, motivating more chemical and biological explo-
rations targeting these marine-derived natural products. In the current study, the chemical diversity
of biscembranoids derived from the cultured-type Sarcophyton trocheliophorum von Marenzeller was
illustrated through MS/MS molecular networking (MN) profiling approach. Based on the MN
patterns, the prioritization of unknown biscembranoid derivatives was putatively analyzed. As
a result, the biscembrane targeting isolation afforded two new metabolites, sarcotrochelides A (1)
and B (2), along with six known analogues (3–8). Their structures and relative configurations were
determined by spectroscopic methods. In vitro neutrophil inflammatory inhibition was further
investigated for all isolates based on reduced superoxide anion (O2

•−) generation detections. Com-
pounds 5–8 showed significant dose-dependently inhibitory effects, suggesting the cruciality of
6,7-dihydrooxepin-2(5H)-one moiety and saturated γ-lactone ring in their reactive oxygen species
(ROS)-dependent anti-inflammatory properties.

Keywords: Sarcophyton trocheliophorum; biscembranoids; MS/MS molecular networking;
anti-inflammation; antioxidant; natural products
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1. Introduction

Biscembranoids are the distinctive tetraterpenoids owing a 14/6/14 membered tri-
cyclic scaffold that have been mainly discovered in the marine organisms, especially the
soft corals belonging to the genus Sarcophyton [1–28]. These secondary metabolites was
first found in 1986 [1] and exhibited various bioactivities, ranging from anti-cancer, anti-
inflammatory, neuroprotective, anti-microbial, and immunomodulatory activities. The
anti-inflammatory effect accounts for the majority of bioactivities of the tetraterpene deriva-
tives. Recent studies have also shown the great anti-inflammatory potential of biscembra-
noid analogues in human neutrophils, which has attracted more chemical and biological
explorations targeting these marine-derived natural products.

Due to the promising pharmacological actions, higher quantity of potent marine-
derived compounds is required for subsequent preclinical and clinical trials, but the yields
of the secondary metabolites obtained from the wild-type marine organism are usually
insufficient for these purposes. Therefore, marine aquaculture has emerged as an effective
approach to maintain a sustainable, consistent, and reproducible supply of marine-derived
natural products.

In the current study, a MS/MS molecular networking method has been utilized to
assist in the discovery of new biscembranoids from the cultured soft coral Sarcophyton troche-
liophorum. Based on the MN patterns and NMR spectra, the fraction that was putatively
identified to contain biscembranoids was subjected to further purification steps. The bis-
cembrane targeting isolation afforded two new metabolites, sarcotrochelide A (1) and B (2),
along with six known analogues (3–8) (Figure 1). Their structures were determined by spec-
troscopic methods. In vitro neutrophil inflammatory inhibition was further investigated
for all isolates based on ROS generation detections using luminol enhanced chemilumines-
cence. Compounds 5–8 showed significant dose-dependently inhibitory effects, suggesting
the cruciality of 6,7-dihydrooxepin-2(5H)-one moiety in their anti-inflammatory properties.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 2 of 13 
 

 

Keywords: Sarcophyton trocheliophorum; biscembranoids; MS/MS molecular networking;  
anti-inflammation; antioxidant; natural products 
 

1. Introduction 
Biscembranoids are the distinctive tetraterpenoids owing a 14/6/14 membered tricy-

clic scaffold that have been mainly discovered in the marine organisms, especially the soft 
corals belonging to the genus Sarcophyton [1–28]. These secondary metabolites was first 
found in 1986 [1] and exhibited various bioactivities, ranging from anti-cancer, anti-in-
flammatory, neuroprotective, anti-microbial, and immunomodulatory activities. The anti-
inflammatory effect accounts for the majority of bioactivities of the tetraterpene deriva-
tives. Recent studies have also shown the great anti-inflammatory potential of biscembra-
noid analogues in human neutrophils, which has attracted more chemical and biological 
explorations targeting these marine-derived natural products. 

Due to the promising pharmacological actions, higher quantity of potent marine-de-
rived compounds is required for subsequent preclinical and clinical trials, but the yields 
of the secondary metabolites obtained from the wild-type marine organism are usually 
insufficient for these purposes. Therefore, marine aquaculture has emerged as an effective 
approach to maintain a sustainable, consistent, and reproducible supply of marine-de-
rived natural products. 

In the current study, a MS/MS molecular networking method has been utilized to 
assist in the discovery of new biscembranoids from the cultured soft coral Sarcophyton 
trocheliophorum. Based on the MN patterns and NMR spectra, the fraction that was puta-
tively identified to contain biscembranoids was subjected to further purification steps. The 
biscembrane targeting isolation afforded two new metabolites, sarcotrochelide A (1) and 
B (2), along with six known analogues (3–8) (Figure 1). Their structures were determined 
by spectroscopic methods. In vitro neutrophil inflammatory inhibition was further inves-
tigated for all isolates based on ROS generation detections using luminol enhanced chem-
iluminescence. Compounds 5–8 showed significant dose-dependently inhibitory effects, 
suggesting the cruciality of 6,7-dihydrooxepin-2(5H)-one moiety in their anti-inflamma-
tory properties. 

 
Figure 1. The identified biscembranoids from the cultured soft coral Sarcophyton trocheliophorum. 

1 2 3 4

O

O

O
COOMe

HO
OOH

OHH

H

O

O

O
COOMe

O

O

H H

HO

O OO

AcO
HH H

OH

O
O

O OO

AcO
HH H

OH

O
O

5 6

O
OO

AcO
HH H

OH

O
O

7 8

O OO

AcO
HH H

OH

O
O

(E)

O

OO
COOMe

O

O

H H

HO

(E)

O

OO
COOMe

OHH H

HO
OOH

1
2

3
4

5

6

7
8

9
10

11
12

13

14

15

16

17

18

19 4120

21
22

23 24
25

26

27

28
29

30
31

32

33

34

35

36

37

38 39

40

1
2

3
4

5

6

7

9

8

10

11
12

13

14

15
16 17

18

19

20

21
22 24

23 25
26

27

28

29
30

31

32

33
34

35

36

37

38
39

40

Figure 1. The identified biscembranoids from the cultured soft coral Sarcophyton trocheliophorum.

2. Results and Discussion
2.1. Characterizing the Distribution of Anti-Inflammatory Biscembranoids Using
Multi-informative Molecular Networking (MIMN)

In order to facilitate the operating process for probing anti-inflammatory biscembranoids,
a multi-informative molecular networking (MIMN) was applied [29]. In the primary extrac-
tion and fractionation part, the organic extract (using dichloromethane:methanol = 1:1) of the
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cultured-type Sarcophyton trocheliophorum was fractionationed into the EtOAc and the aqueous
layers through liquid-liquid partitioning approaches. The chromatographic separation (normal
phase) on EtOAc soluble residue further afforded 20 subfractions. Then the chemical and
anti-inflammatory MIMN profiles of these fractions were constructed based on the MS/MS
analysis and superoxide anion (O2

•−) inhibitory assessments in activated neutrophils (Table 1),
respectively. The followed-up clustering, classification, and annotation were performed on the
GNPS platform (https://gnps.ucsd.edu, accessed on 17 April 2022).

Table 1. Effects of crude samples on superoxide anion generation and elastase release in fMLF/CB-
induced human neutrophils.

Sample
Superoxide Anion Elastase Release

IC50 (µg/mL) a Inh% IC50 (µg/mL) a Inh%

DCM/MeOH extract 3.54 ± 1.96 38.95 ± 4.18 ***

EtOAc-soluble extract 18.97 ± 4.17 * 27.13 ± 8.44 *

Water-soluble extract b 2.08 ± 1.90 −0.48 ± 0.70

Fraction 12 5.45 ± 0.66 70.40 ± 2.57 *** 7.48 ± 0.99 61.14 ± 4.59 ***

Percentage of inhibition (Inh%) at 10 µg/mL. Results are presented as mean ± S.E.M. (n = 3). * p < 0.05,
*** p < 0.001 compared with the control (DMSO). a Concentration necessary for 50% inhibition (IC50). b The water
fraction was dissolved in H2O.

Based on the MIMN analyzing results, the clusters of cembrane dimer (m/z 650–750)
and monomer (m/z 290–350) exhibited the greatest anti-inflammatory potential with in-
hibition rate over 70% at the concentration of 10 µg/mL (Figure 2A). The insight MIMN
patterns of metabolite distribution (Figure 2B) revealed that the fraction 12 from the EtOAc-
soluble extract contained a variety of anti-inflammatory biscembranoids, resulting the
further isolation targeting these characteristic tetraterpenoids from fraction 12.

2.2. Chemical Identification of Isolated Compounds

The target isolation of Fraction 12 of soft coral S. trocheliophorum yielded eight com-
pounds (1–8), including six known ones (3–8) identified as ximaolide A (3) [9], methyl
tortuoate D (4) [18], glaucumolide A (5) [20], glaucumolide B (6) [20], bistrochelide A
(7) [18], and bistrochelide B (8) [18] by comparing their NMR spectroscopic data with those
reported in the literature.

Sarcotrochelide A (1) was isolated as a white powder. The positive mode high resolu-
tion electrospray ionization mass spectrum (HRESIMS) showed a peak at m/z 681.4362,
suggesting a molecular formula of C41H60O8 (calcd. for [C41H60O8 + H]+, 681.4366), and
implying 12 degrees of unsaturation. The signal at 3417 cm−1 in the IR spectrum indicated
the presence of the hydroxy group. A total of 41 carbons in the structure of compound
1 were deduced from the 13C NMR spectrum. The multiplicity of carbon signals was
determined from distortionless enhancement by polarization transfer (DEPT) and heteronu-
clear single quantum coherence (HSQC) spectra, including nine methyls (including one
methoxyl), eleven methylenes, ten methines, and eleven non-protonated carbons. The 1H
and 13C NMR spectra signals (Table 2) showed three olefinic methyl groups [δH 1.89 (s);
1.74 (s); 1.62 (s); δC 26.3, 18.7, 17.3], two methyls attached to oxygen-bearing quaternary
carbon [δH 1.25 (s); 1.25 (s); δC 16.3, 18.7], two methyls of an isopropyl group [δH 0.74
(d, J = 6.8 Hz); 0.95 (d, J = 6.8 Hz); δC 18.4, 21.2], and one methoxy group [δH 3.50, s; δC
51.3], two trisubstituted double bond [δH 6.59 (brs); 5.10 (d, J = 11.1 Hz); δC 126.7, CH;
126.7, CH; 134.0, C; 161.1, C]; one tetrasubstituted double bond (δC 130.4, C; 131.2, C); three
oxygen-bearing methines [δH 2.29 (dd, J = 8.8, 4.1 Hz); 2.91 (dd, J = 6.1, 4.3 Hz); 4.79, (dd,
J = 10.7, 2.1 Hz); δC 60.8, CH; 61.5, CH; 65.1, CH]; two oxygenated quaternary carbon (δC
59.4, 60.0), and four carbonyl carbons (δC 174.6, 203.3, 209.4, 214.8). The spectral analysis
suggested the possible presence of a biscembranoid framework.

https://gnps.ucsd.edu
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Table 2. 1H (600 MHz, CDCl3) and 13C (150 MHz, CDCl3) NMR data for 1.

Position δH (J in Hz) a δC
b Mult. c COSY HMBC

1. 50.8, qC

2 3.74, dd (8.3, 8.3) 44.6, CH H-36 C-1, -3, -4, -6, -14, -20,
-21, -35, -36

3 203.3, qC
4 6.59, brs 126.7, CH H-19 C-3, -6, -19
5 161.1, qC

6 1.56–1.65, m;
3.25–3.31, m 32.4, CH2 C-4, -5, -7, -8, -19

7 1.53–1.59, m;
1.24–1.28, m 24.6, CH2 H-8 C-8, -9

8 1.63–1.71, m;
1.26–1.36, m 30.9, CH2 H-7, -9 C-9, -10

9 2.73–2.81, m 43.9, CH H-8, -18 C-7, -8, -10, 18
10 214.8, qC

11 2.71–2.80, m;
2.05–2.11, m 34.8, CH2 H-12 C-10, -12, -13, -15

12 2.95, ddd (10.0, 4.9,
2.8) 53.2, CH H-11, -15 C-14, -15, -16

13 209.4, qC

14 2.71–2.77, m; 3.05, d
(18.6) 47.0, CH2

C-1, -2, -12, -13, -20,
-21

15 2.14–2.23, m 29.2, CH H-12, -16, -17 C-11, -12, -13, -17
16 0.74, d (6.8) 18.4, CH3 H-15 C-12, -15, -17
17 0.95, d (6.8) 21.2, CH3 H-15 C-12, -15, -16
18 1.06, d (6.8) 17.4, CH3 H-9 C-8, -9, -10
19 1.89, s 26.3, CH3 H-4 C-3, -4, -5, -6, -7
20 174.6, qC

21 3.26, d (11.1) 43.2, CH H-22 C-1, -2, -20, -22, -23,
-33, -34

22 5.10, d (11.1) 126.7, CH H-21, -38 C-1, -21, -24, -34, -38
23 134.0, qC

24 2.19–2.30, m;
2.03–2.12, m 36.3, CH2 H-25 C-22, -23, -25, -26, -38

25 1.71–1.79, m;
1.47–1.58, m 26.3, CH2 H-24, -26 C-23, -24, -26, -27

26 2.91, dd (6.1, 4.3) 61.5, CH H-25 C-24, -25, -27, -28
27 59.4, qC
28 2.03–2.12, m 36.3, CH2 H-29 C-27, -29, -39

29 1.52–1.59, m;
1.60–1.66, m 24.0, CH2 H-28, -30 C-28

30 2.29, dd (8.8, 4.1) 60.8, CH H-29 C-28, -29, -32
31 60.0, qC

32 1.95, dd (14.5, 10.0);
1.78–1.88, m 39.7, CH2 H-33 C-30, -31, -33, -34, -40

33 4.79, dd (10.7, 2.1) 65.1, CH H-32 C-21, -31, -32, -35
34 131.2, qC
35 130.4, qC
36 2.20–2.34, m 33.2, CH2 H-2 C-1, -2, -3, -34, -35, -37

37 1.74, s 18.7, CH3
C-1, -2, -21, -34, -35,

-36
38 1.62, s 17.3, CH3 H-22 C-1, -21, -22, -23, -24
39 1.24, s 16.3, CH3 C-26, -27, -28
40 1.25, s 18.7, CH3 C-30, -31, -32
41 3.50, s 51.3, CH3 C-20

a Spectroscopic data of 1 were recorded at 600 MHz in CDCl3. b Spectroscopic data of 1 was recorded at 150 MHz
in CDCl3. c Attached protons were deduced by DEPT experiments.
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The correlations spectroscopy (COSY) spectrum (Figure 3) of 1 was applied to identify
seven different spin systems from H-2 to H2-36; H2-6 via H2-7, H2-8, H-9, and H3-18;
isopropyl protons H3-16 and H3-17 via H-15, H-12, and H-11; H-21 to H-22; H2-24 via
H2-25 and H2-26; H2-28 via H2-29 and H-30; and H2-32 to H-33. These units were assembled
by heteronuclear multiple bond correlation (HMBC) (Figure 3) of H3-16 to C-12, C-15, and
C-17; H3-18 to C-8, C-9, and C-10; H3-19 to C-4, C-5, and C-6; H3-37 to C-34, C-35, and
C-36; H3-38 to C-22, C-23, and C-24; H3-39 to C-26, C-27, and C-28; H3-40 to C-30, C-31,
and C-32; H-2 to C-1, C-3, C-4, and C-20; H2-11 to C-10 and C-13; H2-14 to C-1; and H-33
to C-34. The above-mentioned group accounted for ten of the total twelve degrees of
unsaturation, implying the presences of two additional rings. These were suggested to be
two trisubstituted epoxide groups with methyl singlets at δH 1.24 (3H, s, H3-39) and 1.25
(3H, s, H3-40), epoxymethine multiplets at δH 2.91 (H-26) and 2.29 (H-30), and 13C NMR
signals at 61.5 (C-26), 59.4 (C-27), 60.8 (C-30), and 60.0 (C-31). The gross structure of 1 was
thus confirmed as shown in Figure 1, which possesses a biscembranoid skeleton similar to
ximaolide A (3) [9].
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Figure 3. The selected 1H-1H COSY and HMBC correlations of 1 and 2.

The relative stereochemistry of 1 was elucidated by correlations in the nuclear Over-
hauser effect relationships (NOESY) experiment. As shown in Figure 4, the NOESY correla-
tions of H-4 (δH 6.59, br s) with H3-19 (δH 1.89, s), together with the obviously downfield-
shifted methyl at C-19 (δC 26.3, CH3), suggested a cis geometry of C-4/C-5 trisubstituted
double bond. Assuming the β-orientations of H-2 and H3-41 as previously reported, one
of the methylene protons at C-14 (δH 3.05, d, J = 18.6 Hz) exhibited NOE correlations
with H-2 and was assigned as H-14β, while the other (δH 2.71–2.77, m) was denoted as H-
14α. The NOESY correlations observed between H-9 with H-11α (δH 2.71–2.80, m), H-11α
(δH 2.71–2.80, m) with H-12 and H-14α, reflected the α-orientations of H-9 and H-12. Fur-
thermore, the correlations of H-2 with H-22; H-22 with H-26; H-26 with H-30 and H3-39;
H-30 with H-33 and H3-40, determined the β-orientation of the H-26, H-30, H-33, H3-39,
and H3-40. Moreover, the 13C NMR signal of C-38 (δC 17.3, CH3) indicated the E geometry
of the trisubstituted C-22/C-23 double bond. On the basis of the above observations and as
the relative configurations of 1 determined as shown, the structure of compound 1 could
be fully established as 1S*, 2S*, 9R*, 12S*, 21S*, 26R*, 27R*, 30R*, 31R*, 33R*.
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Sarcotrochelide B (2) was isolated as a white powder. Its formula was determined
as C41H62O9 by the HRESIMS ion at m/z 699.4467 (calcd. for [C41H62O9 + H]+, 699.4472),
indicating 11 indices of hydrogen deficiency. The hydroxy-containing structure of 2 was
inferred from the IR signal at 3417 cm–1. 41 carbons, including 9 methyls, 11 methylenes,
10 methines, and 11 quaternary carbons, were revealed by the 13C NMR spectrum. The
NMR signals (Table 3) showed three olefinic methyl groups (δH 1.89, s; 1.61, s; 1.72, s and
δC 26.4; 18.1; 16.4, respectively), two methyl groups linked to oxygen-bearing quaternary
carbons (δH 1.17, s; 1.19, s and δC 20.6; 21.4, respectively), one methoxy group (δH 3.50, s;
δC 51.1), two methyls of an isopropyl group (δH 2.32–2.38, m; 0.74, d, J = 6.8 Hz; 0.98, d,
J = 6.8 Hz; δc 28.6, CH;18.2, CH3; 21.4, CH3), two trisubstituted double bonds (δH 6.59, s;
δc 126.4, CH; 161.4, C and δH 4.99, d, J= 10.8 Hz; δc 128.0, CH; 137.2, C, respectively), one
tetrasubstituted double bond ( δc 125.3, C and 132.2, C), three oxymethines (δH 3.27, m; 3.96,
dd, J= 10.3, 6.3 Hz; 5.05, d, J= 11.2 Hz and δc 74.1, CH; 88.4, CH; 67.5, CH, respectively),
two oxygen-bearing quaternary carbons (δc 86.0, C and 76.3, C), and four carbonyl carbons
(δc 202.9, C; 214.7, C; 208.7, C and 174.9,C). These findings established the biscembranoid
scaffold of 2. The COSY signals (Figure 3) revealed seven different spin systems from H-2
to H2-36; H2-6 via H2-7, H2-8, H-9 and H3-18; H2-11 via H-12, H-15, H3-16 and H3-17; H-21
to H-22; H-24 via H2-25 and H-26; H2-28 via H2-29 and H-30; and H2-32 to H-33. These
units were assembled by heteronuclear multiple bond correlation (HMBC) of H3-16 to C-12,
C-15 and C-17; H3-18 to C-8, C-9 and C-10; H3-19 to C-4, C-5 and C-6; H3-37 to C-34, C-35
and C-36; H3-38 to C-22, C-23 and C-24; H3-39 to C-26, C-27 and C-28; H3-40 to C30, C-31
and C-32; H-2 to C-1, C-3, C-14 and C-20; H2-11 to C-10; H-12 to C-13; H2-14 to C-1, C-13
and C-20; and H-33 to C-34. The above-mentioned biscembrane framework put paid to
ten of the total eleven unsaturated degrees, implying the existence of an additional ring.
It was suggested to be of an ester ring between C-27 and C-30 established via an HMBC
from H2-28 to C-27 and C-30. The gross structure of 2 was thereby confirmed, as shown in
Figure 2, which possesses a biscembranoid skeleton similar to methyl tortuoate D (4) [18].

The relative configurations of rings A and B of compound 2 were identical to those of
co-occurring compound 1 as determined by the similar NOESY and the NMR data. NOESY
correlations (Figure 4) of H3-40/H-30, H-30/H3-39, H3-39/H3-38, and H3-38/H-21 were
observed, suggesting that H-21, H-30, H3-39, and H3-40 were co-facial and were assigned
as α-orientations. In consequence, NOE correlations of H-2/H-22, H-22/H2-24, H-22/H-
26, H-26/H-28a (δH 2.34–2.40, m), H-26/H-29b (δH 1.54–1.60, m), H-29b/H-33 suggested
that H-26 and H-33 was β-oriented. Therefore, the structure of 1 was unambiguously
elucidated as shown in Figure 2. On the basis of the above observations and as the relative
configurations of 2 have been determined as shown, the structure of compound 2 could be
fully established as 1S*, 2S*, 9R*, 12S*, 21S*, 26R*, 27R*, 30R*, 31S*, 33R*.
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Table 3. 1H (600 MHz, CDCl3) and 13C (150 MHz, CDCl3) NMR data for 2.

Position δH (J in Hz) a δC
b Mult. c COSY HMBC

1 50.5, qC
2 3.45–3.49, m 44.1, CH H-36 C-1, -3, -14, -20, -36
3 202.9, qC
4 6.59, s 126.4, CH H-19 C-3, -6, -19
5 161.4, qC

6 1.59–1.67, m;
3.20–3.26, m 33.0, CH2 H-7 C-5, -7, -19

7 1.22–1.29, m;
1.53–1.60, m 25.0, CH2 H-6, -8

8 1.75–1.82, m;
1.27–1.34, m 31.0, CH2 H-7, -9

9 2.87–2.94, m 43.6, CH H-8, -18 C-8, -10, -18
10 214.7, qC

11 2.74, dd (16.2, 9.7);
2.13–2.21, m 34.6, CH2 H-12 C-10, -12, -13, -15

12 2.99–3.03, m 53.9, CH H-11, -15
13 208.7, qC

14 3.18, d (18.2); 2.58, d
(18.2) 46.0, CH2 C-1, -2, -13, -20, -21

15 2.32–2.38 m 28.6, CH H-12, -16, -17 C-11, -12, -16, -17
16 0.74, d (6.5) 18.2, CH3 H-15 C-12, -15, -17
17 0.98, d (6.9) 21.4, CH3 H-15 C-12, -15, -16
18 1.07, d (6.6) 17.9, CH3 H-9 C-8, -9, -10
19 1.89, s 26.4, CH3 H-4 C-4, -5, -6, -7
20 174.9, qC

21 3.67, d (10.8) 42.9, CH H-22 C-1, -2, -14, -22, -23,
-33, -34, -35

22 4.99, d (10.8) 128.0, CH H-21, -38 C-24
23 137.2, qC
24 2.08–2.17, m 37.0, CH2 H-25 C-22, -23, -25, -26, -38

25 1.91–2.00, m;
1.26–1.33, m 29.7, CH2 H-24, -26 C-23

26 3.24–3.30 m 74.1, CH H-25
27 86.0, qC

28 2.34–2.40, m;
1.64–1.71, m 36.1, CH2 H-29 C-26, -27, -29, -30, -39

29 1.82–1.87, m;
1.54–1.60 m 27.0, CH2 H-28, -30 C-27, -28, -31

30 3.96, dd (10.3, 6.3) 88.4, CH H-29 C-31, -32, -40
31 76.3, qC

32 2.19–2.26, m;
1.03–1.08, m 39.5, CH2 H-33 C-31, -32, -40

33 5.05, d (11.2) 67.5, CH H-32 C-21, -31, -32, -34, -35
34 125.3, qC
35 132.2, qC

36 2.41–2.51, m;
1.97–2.04, m 33.4, CH2 H-2, -37 C-1, -2, -34, -35, 37

37 1.61, s 18.1, CH3 H-36 C-21, -34, -35, -36
38 1.72, s 16.4, CH3 H-22 C-1, -22, -23, -24
39 1.17, s 20.6, CH3 C-26, -27, -28
40 1.19, s 21.4, CH3 C-30, -31, -32
41 3.50, s 51.1, CH3 C-20

a Spectroscopic data of 2 were recorded at 600 MHz in CDCl3. b Spectroscopic data of 2 was recorded at 150 MHz
in CDCl3. c Attached protons were deduced by DEPT experiments.

2.3. Bioactivities of the Biscembranoids

The activation effects of N-formyl-methionyl-leucyl-phenylalanine (fMLF) and
pathogen-associated molecular patterns (PAMPs) on neutrophils can cause a series of
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inflammatory responses, such as respiratory burst (O2•− generation) and degranulation
(elastase release) [30]. In order to evaluate the anti-inflammatory activities of the cultured
soft coral S. trocheliophorum, the EtOAc, MeOH, and water-soluble extracts, and fraction 12
were assayed in fMLF-induced human neutrophils. All eight pure compounds obtained
from fraction 12 were also evaluated for their anti-inflammatory effects in the same in vitro
tests. The results showed that fraction 12 exhibited the highest inhibitory effects on super-
oxide anion generation and elastase release with IC50 5.45 and 7.48 µg/mL, respectively,
among the crude samples (Table 1).

For pure derivatives, compound 6 displayed the strongest activity against superoxide
anion generation and elastase release in fMLF/CB-induced human neutrophils, followed
by compounds 5, 7, and 8, respectively (Table 4).

Table 4. Effects of compounds on superoxide anion generation and elastase release in fMLF/CB-
induced human neutrophils.

Compound
Superoxide Anion Elastase Release

IC50 (µM) a Inh% IC50 (µM) a Inh%

Sarcotrochelide A (1) 16.92 ± 5.98 * 13.86 ± 5.87

Sarcotrochelide B (2) 10.15 ± 2.39 * 10.79 ± 4.60

Ximaolide A (3) 19.69 ± 5.00 * 26.64 ± 5.02 **

Methyl tortuoate D (4) 17.61 ± 1.99 *** 25.67 ± 5.27 **

Glaucumolide A (5) 5.46 ± 0.57 73.76 ± 3.84 *** 6.22 ± 0.36 67.50 ± 1.73 ***

Glaucumolide B (6) 1.98 ± 0.32 98.52 ± 0.50 *** 2.76 ± 0.47 101.94 ± 3.57 ***

Bistrochelide A (7) 8.29 ± 0.48 56.19 ± 2.83 *** 48.61 ± 0.96 ***

Bistrochelide B (8) 45.39 ± 4.30 *** 38.67 ± 4.81 **

LY294002 b 1.62 ± 0.42 92.61 ± 3.81 *** 2.22 ± 0.49 86.85 ± 6.37 ***

Percentage of inhibition (Inh%) at 10 µM. Results are presented as mean ± S.E.M. (n = 3–5). * p < 0.05,
** p < 0.01, *** p < 0.001 compared with the control (DMSO). a Concentration necessary for 50% inhibition
(IC50). b Positive control.

The significant difference in the anti-inflammatory effects of the isolates may be caused
by some variations in their structures. The common characteristics of the four most active
compounds is that they share a 6,7-dihydrooxepin-2(5H)-one moiety and a saturated γ-
lactone ring. In addition, compound 6 possesses a 11Z and 22E double bonds instead of
an E geometry of ∆11(12) and ∆22(23) in compound 5 and a Z geometry of ∆11(12) and ∆22(23)

in compound 7. Additionally, when compared to compound 6, the 11,12-double bond
was replaced by a 10,11-double bond in compound 8, which suggested that the reduced
anti-inflammatory effect of compound 8 might be caused by this minor change.

3. Materials and Methods
3.1. General Experimental Procedures

The optical rotation was measured by a polarimeter JASCO P-2000 (JASCO, Tokyo,
Japan). The infrared spectra were obtained on a FT-IR spectrophotometer, Nicolet™ iS™
5 FTIR Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). UV spectra were
collected by Spectrophotometer U-3310 UV-Vis (Hitachi, Ltd., Tokyo, Japan). The 1D and
2D NMR spectra were obtained on an Agilent 600 MHz DD2 NMR (Agilent, Santa Clara,
CA, USA). The chloroform-d was used as the internal lock. HRESIMS data in positive mode
were collected on a Waters LC/Q-TOF SYNAPT G2 (Waters Corporation, Milford, MA,
USA) system. All isolations were purified by MPLC and HPLC. The former is Biotage®

Isolera™ Systems (Biotage, Uppsala, Sweden), and the powder was filled in the flash
column, Biotage® SNAP Cartridge KP-Sil 10 g (Biotage, Uppsala, Sweden), the latter is
HPLC system Shimazu LC-2050 (Shimazu, Kyoto, Japan) with a Galaksil column EF-C18-H
(5 µm, 120 Å, 10 × 250 mm, C18; Galak Chromatography, Wuxi, Jiangsu, China).
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3.2. Non-Targeted Fragment Ions Collection Using Ultra-Performance Liquid
Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS)

The acquisition of tandem mass spectral data was carried out based on a Waters
SYNAPT G2 LC/Q-TOF (Waters Corporation, Milford, MA, USA) system. The extracts
were filtered through a 0.45 µm membrane filter and dissolved in methanol to a final
concentration of 5000 ppm for the analysis. For chromatographic part, a C18 column
of Waters Acquity UPLC BEH (Waters, 1.7 µm, 2.1 mm × 100 mm) was used for the
separation and was maintained in a 40 ◦C column oven. The analytes were eluated from
the column by CH3CN (A, containing 0.1% formic acid)/water (W, containing 0.1% formic
acid) gradient sequences: 0.01–25 min, 1–100% A; 25.01–30 min, 100% A, with the flow
rate of 0.5 mL/min. Automatical injections were executed with injected volumes of 5 µL.
The non-targeted MS1 and MS2 data were acquired within the range of m/z 100–2000. The
automated data-dependent acquisition (DDA) approach was used for the acquisition of
MS2 spectra, and five precursor ions were selected for further fragmentations with ramping
of the collision energy from 10–50 eV. Finally, the finalization of MS data were conducted
with the assistance of Waters MassFragment software (MassLynx4.1, Waters, MA, USA).

3.3. GNPS-Based Molecular Networking Analysis

A GNPS web-based platform (https://gnps.ucsd.edu, accessed on 17 April 2022) [31]
was applied to analyze and output the MS/MS molecular networking data (job
ID: edcb54569b0042fea7104782189e34af, 17 April 2022). The pre-processing of MS/MS
raw data was conducted by converting into mzML file using Proteowizard MSConvert
(Ver. 3, GitHub repository, Palo Alto, CA, USA). The conversions were uploaded to GNPS
drive using WinSCP software (Ver. 5.21, SourceForge, San Diego, CA, USA) and performed
molecule networking analysis. The MS/MS spectra were window-filtered according to the
top five strongest ion peaks in the ±50 Da window throughout the spectrum. A molecular
network was then created, in which the edges between nodes were kept if the cosine
scores were above 0.70 and the separated consensus spectra shared at least four matched
peaks. Then the appeared nodes in the network were annotated based on the experimental
MS2 fragmentations of isolates. The data visualization was executed by Cytoscape 3.8.2
(Cytoscape 3.8.2, NRNB, San Diego, CA, USA) [32].

3.4. Animal Material, Extraction, and Isolation

Specimens of the wild-type S. trocheliophorum was originally collected by scuba diving
from the coast of Pingtung, Taiwan, in 2015 (specimen No. 2015-07-ST). These corals
were preserved and aquacultured in National Museum of Marine Biology and Aquarium
(Pingtung, Taiwan). The aquaculture condition was mentioned below [33]: The collected
wild corals were cut into several sub-strains of 4 to 5 cm, and these sub-strains are naturally
placed and attached to porous tiles for domestication and cultivation. These soft corals
were kept in cultured tanks (120 tons) with temperature controlled (25–28 ◦C) coolers and
supported by natural light daily. The ecological environment was settled up with live sea
rocks, live sea sands, snails, paracanthurus hepatus fishes, sea urchins, sea cucumbers,
and other aquaculture soft corals, such as Briareum spp., Paralemnalia sp., Sarcophyton spp.,
and Sinularia spp. The specimens were then collected by hand in July 2020 and were kept
in a −20 ◦C freezer until extraction. A voucher specimen (specimen no. 202007ST1) was
deposited in the Graduate Institute of Pharmacognosy, Taipei Medical University.

The cultured-type S. trocheliophorum (1310 g, wet weight) was freeze-dried, then the dry
material (106 g) was extracted exhaustively with dichloromethane and methanol (MeOH)
to afford 38.3 g of residue after being dried under reduced pressure (Figure S51). The
residue was partitioned with ethyl acetate (EtOAc) and water. The EtOAc soluble residue
was subjected to silica gel flash chromatography column, using mixtures of n-hexane,
EtOAc, and MeOH, with increasing polarity (n-hexane:EtOAc:MeOH, 100:0:0, 90:10:0,
84:16:0, 75:25:0, 65:35:0, 50:50:0, 0:100:0, 0:80:20) and the flow rate of 20–30 mL/min, to
yield 20 fractions. After the MN-guided analyzing approach, fraction 12 was selected

https://gnps.ucsd.edu
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and then subjected to RP-HPLC, using acidic water (0.1% v/v acetic acid) and acetonitrile
(CH3CN) with the ratio of 35:65 as the mobile phase for the isocratic mode elution, to
afford glaucumolide A (5) (31.59 mg) (Figures S35–S37), glaucumolide B (6) (53.98 mg)
(Figures S38–S40), and 13 other subfractions. Subfraction 1205 was purified with RP-HPLC,
using 0.1% acetic acid solution:CH3CN (35:65) as the mobile phase for the isocratic mode
elution, to yield sarcotrochelide A (1) (11.7 mg) and B (2) (2.05 mg). Subfraction 1211 was
purified with RP-HPLC, using 0.1% acetic acid solution:MeOH (25:75) as the mobile phase
for the isocratic mode elution, to yield bistrochelide B (8) (2.28 mg) (Figures S48–S50).
Subfraction 1213 was purified with RP-HPLC, using 0.1% acetic acid solution: CH3CN
(35:65) as the mobile phase for the isocratic mode elution, to yield bistrochelide A (7)
(1.49 mg) (Figures S41–S47). Subfraction 1214 was purified with RP-HPLC, using 0.1%
acetic acid solution:MeOH (25:75) as the mobile phase for the isocratic mode elution, to
yield ximaolide A (3) (8.19 mg) (Figures S21–S27) and methyl tortuoate D (4) (2.29 mg)
(Figures S28–S34).

Sarcotrochelide A (1) (Figures S1–S10 and S52): white powder; [α]25
D = +145.0 (c 0.01,

MeOH); UV (MeOH) λmax 206 and 240 nm; IR (KBr) νmax 3417, 2929, 1741, 1704, 1668, 1604,
1434, 1385, 1254, 1207, 1111, 1032 cm−1; 13C and 1H NMR data, Table 2; HRESIMS m/z
681.4362 [M + H]+(calcd. for C41H60O8 + H, 681.4366).

Sarcotrochelide B (2) (Figures S11–S20 and S53): white powder; [α]25
D = +173.6 (c 0.01,

MeOH); UV (MeOH) λmax 206 and 240 nm; IR (KBr) νmax 3417, 2923, 1738, 1701, 1667, 1601,
1416, 1372, 1257, 1206, 1110, 1060 cm−1; 13C and 1H NMR data, Table 3; HRESIMS m/z
699.4467 [M + H]+ (calcd. for C41H62O9 + H, 699.4472).

3.5. Preparation of Human Neutrophils

Venous blood sampling was performed on human donors (aged 20–30 years) according
to an approved protocol (IRB No. 202002493A3). The purification of neutrophils was
achieved according to a reported procedure [34].

3.6. Determination of Superoxide Anion (O2
•−) Generation

Under the treatment of compounds 1–8, the O2
•− generation of human neutrophils

was determined by superoxidase dismutase (SOD) inhibitable reduction in ferricytochrome
c as previously described [35].

3.7. Measurement of Elastase Release

MeO-Suc-Ala-Ala-Pro-Val-p-nitroanilide was used as a substrate in an elastase release
assay to evaluate the degranulation of azurophilic granules as previously described [36].

3.8. Statistics

Statistical analysis was performed using Student’s t-test for calculations.
p values < 0.05 were considered to be statistically significant.

4. Conclusions

The chemical investigation of the cultured soft coral Sarcophyton trocheliophorum led
to the isolation of two novel metabolites 1–2, along with six known analogues of biscem-
branoid 3–8. The in vitro tests showed that compound 5–8 exhibited significant inhibitory
effects on the superoxide anion generation and elastase release in fMLF/CB-induced hu-
man neutrophils. The difference in their bioactivities suggested the importance of the
lactone rings and geometry of double bonds in the structures.

The discovery of two novel biscembranoids demonstrated the chemical diversity of
this type of metabolite in the aquaculture Sarcophyton trocheliophorum. In addition, the two
most bioactive compounds, glaucumolide A (5) and glaucumolide B (6), were obtained
with relatively high quantity, measured at 31.59 mg and 53.98 mg, respectively. The results
suggested that aquaculture of soft coral could be a prolific and sustainable resource for the
drug discovery and development [37].
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