Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = bis(3,5-dimethylpyrazole) ligands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2204 KB  
Article
2,2-Bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethanol: A Versatile Heteroscorpionate Ligand for Transition and Main Group Metal Complexes
by Uwe Böhme, Betty Günther and Anke Schwarzer
Crystals 2025, 15(10), 865; https://doi.org/10.3390/cryst15100865 - 30 Sep 2025
Viewed by 444
Abstract
2,2-Bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethanol (HL) is a heteroscorpionate ligand capable of coordinating metal ions through two nitrogen atoms and one oxygen atom. We report a base free synthetic route to metal complexes of L and explore the resulting structural diversity. Notably, complex composition varies substantially depending [...] Read more.
2,2-Bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethanol (HL) is a heteroscorpionate ligand capable of coordinating metal ions through two nitrogen atoms and one oxygen atom. We report a base free synthetic route to metal complexes of L and explore the resulting structural diversity. Notably, complex composition varies substantially depending on the metal ion, including dinuclear molybdenum species and distinct coordination behavior with silicon and copper. The isolated compounds include the dinuclear, oxygen-bridged complexes (LMoO2)2O and (LMoO)(μ-O)2, as well as the mononuclear complexes LTi(NMe2)3, LZrCl3, LGeCl3, LWO2Cl, LCu(acetate)2H, and LSiMe2Cl. Single crystal X-ray diffraction reveals that the bulky complex structures generate cavities in the crystal lattice, frequently occupied by solvent molecules. The titanium, zirconium, molybdenum, tungsten, and germanium complexes exhibit octahedral coordination, while structural peculiarities are observed for copper and silicon. The copper(II) complex shows a distorted octahedral geometry with one elongated ligand bond; the silicon complex is pentacoordinated in the solid state. Additional characterization includes melting points, NMR, and IR spectroscopy. The developed synthetic strategy provides a straightforward and versatile route to heteroscorpionate metal complexes. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Figure 1

26 pages, 19737 KB  
Article
Exploring the Antitumor Potential of Copper Complexes Based on Ester Derivatives of Bis(pyrazol-1-yl)acetate Ligands
by Maura Pellei, Carlo Santini, Luca Bagnarelli, Chiara Battocchio, Giovanna Iucci, Iole Venditti, Carlo Meneghini, Simone Amatori, Paolo Sgarbossa, Cristina Marzano, Michele De Franco and Valentina Gandin
Int. J. Mol. Sci. 2022, 23(16), 9397; https://doi.org/10.3390/ijms23169397 - 20 Aug 2022
Cited by 15 | Viewed by 3542
Abstract
Bis(pyrazol-1-yl)acetic acid (HC(pz)2COOH) and bis(3,5-dimethyl-pyrazol-1-yl)acetic acid (HC(pzMe2)2COOH) were converted into the methyl ester derivatives 1 (LOMe) and 2 (L2OMe), respectively, and were used for the preparation of Cu(I) and Cu(II) complexes 3 [...] Read more.
Bis(pyrazol-1-yl)acetic acid (HC(pz)2COOH) and bis(3,5-dimethyl-pyrazol-1-yl)acetic acid (HC(pzMe2)2COOH) were converted into the methyl ester derivatives 1 (LOMe) and 2 (L2OMe), respectively, and were used for the preparation of Cu(I) and Cu(II) complexes 310. The copper(II) complexes were prepared by the reaction of CuCl2·2H2O or CuBr2 with ligands 1 and 2 in methanol solution. The copper(I) complexes were prepared by the reaction of Cu[(CH3CN)4]PF6 and 1,3,5-triaza-7-phosphaadamantane (PTA) or triphenylphosphine with LOMe and L2OMe in acetonitrile solution. Synchrotron radiation-based complementary techniques (XPS, NEXAFS, and XAS) were used to investigate the electronic and molecular structures of the complexes and the local structure around copper ions in selected Cu(I) and Cu(II) coordination compounds. All Cu(I) and Cu(II) complexes showed a significant in vitro antitumor activity, proving to be more effective than the reference drug cisplatin in a panel of human cancer cell lines, and were able to overcome cisplatin resistance. Noticeably, Cu complexes appeared much more effective than cisplatin in 3D spheroid cultures. Mechanistic studies revealed that the antitumor potential did not correlate with cellular accumulation but was consistent with intracellular targeting of PDI, ER stress, and paraptotic cell death induction. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

16 pages, 3099 KB  
Article
Selective Cytotoxicity of Complexes with N,N,N-Donor Dipodal Ligand in Tumor Cells
by Malgorzata Tyszka-Czochara, Anna Adach, Tomasz Grabowski, Paweł Konieczny, Paweł Pasko, Joanna Ortyl, Tomasz Świergosz and Marcin Majka
Int. J. Mol. Sci. 2021, 22(4), 1802; https://doi.org/10.3390/ijms22041802 - 11 Feb 2021
Cited by 19 | Viewed by 3662
Abstract
The present article demonstrates selective cytotoxicity against cancer cells of the complexes [Co(LD)2]I2∙CH3OH (1), [CoLD(NCS)2] (2) and [VOLD(NCS)2]∙C6H5CH3 (3) containing the dipodal [...] Read more.
The present article demonstrates selective cytotoxicity against cancer cells of the complexes [Co(LD)2]I2∙CH3OH (1), [CoLD(NCS)2] (2) and [VOLD(NCS)2]∙C6H5CH3 (3) containing the dipodal tridentate ligand LD = N,N-bis(3,5-dimethylpyrazol-1-ylmethyl)amine), formed in situ. All tested complexes expressed greater anticancer activities and were less toxic towards noncancerous cells than cisplatin. Cobalt complexes (1 and 2) combined high cytotoxicity with selectivity towards cancer cells and caused massive tumour cell death. The vanadium complex (3) induced apoptosis specifically in cancer cells and targeted proteins, controlling their invasive and metastatic properties. The presented experimental data and computational prediction of drug ability of coordination compounds may be helpful for designing novel and less toxic metal-based anticancer species with high specificities towards tumour cells. Full article
(This article belongs to the Collection Feature Papers in Molecular Pharmacology)
Show Figures

Figure 1

15 pages, 4110 KB  
Article
Dinuclear Silver(I) Nitrate Complexes with Bridging Bisphosphinomethanes: Argentophilicity and Luminescence
by Kristina F. Baranova, Aleksei A. Titov, Oleg A. Filippov, Alexander F. Smol’yakov, Alexey A. Averin and Elena S. Shubina
Crystals 2020, 10(10), 881; https://doi.org/10.3390/cryst10100881 - 29 Sep 2020
Cited by 7 | Viewed by 3059
Abstract
Two silver nitrate complexes with bisphosphines were obtained and characterized: [Ag(dcypm)]2(NO3)2 (1; dcypm = bis(dicyclohexylphosphino)methane) and [Ag(dppm)]2(Me2PzH)n(NO3)2 (n = 1, 2a; n = 2, [...] Read more.
Two silver nitrate complexes with bisphosphines were obtained and characterized: [Ag(dcypm)]2(NO3)2 (1; dcypm = bis(dicyclohexylphosphino)methane) and [Ag(dppm)]2(Me2PzH)n(NO3)2 (n = 1, 2a; n = 2, 2b; dppm = bis(diphenylphosphino)methane, Me2PzH = 3,5-dimethylpyrazole). The steric repulsions of bulky cyclohexyl substituents prevent additional ligand coordination to the silver atoms in 1. Compounds obtained feature the bimetallic eight-member cyclic core [AgPCP]2. The intramolecular argenthophilic interaction (d(Ag···Ag) = 2.981 Å) was observed in complex 1. In contrast, the coordination of pyrazole led to the elongation of Ag···Ag distance to 3.218(1) Å in 2a and 3.520 Å in 2b. Complexes 1 and 2a possess phosphorescence both in the solution and solid state. Time-dependent density-functional theory (TD-DFT) calculations demonstrate the origin of their different emission profile. In the case of 1, upon excitation, the electron leaves the Ag–P bonding orbital and locates on the intramolecular Ag···Ag bond (metal-centered character). Complex 2a at room temperature exhibits a phosphorescence originating from the 3(M + LP+N)LPhCT state. At 77 K, the photoluminescence spectrum of complex 2a shows two bands of two different characters: 3(M + LP+N)LPhCT and 3LCPh transitions. The contribution of Ag atoms to the excited state in both complexes 2a and 2b decreased relative to 1 in agreement with the structural changes caused by pyrazole coordination. Full article
Show Figures

Graphical abstract

19 pages, 2221 KB  
Article
Synthesis and Cytotoxic Activity Evaluation of New Cu(I) Complexes of Bis(pyrazol-1-yl) Acetate Ligands Functionalized with an NMDA Receptor Antagonist
by Maura Pellei, Luca Bagnarelli, Lorenzo Luciani, Fabio Del Bello, Gianfabio Giorgioni, Alessandro Piergentili, Wilma Quaglia, Michele De Franco, Valentina Gandin, Cristina Marzano and Carlo Santini
Int. J. Mol. Sci. 2020, 21(7), 2616; https://doi.org/10.3390/ijms21072616 - 9 Apr 2020
Cited by 28 | Viewed by 3738
Abstract
In the present article, copper(I) complexes of bis(pyrazol-1-yl) carboxylic acid (LH), bis(3,5-dimethylpyrazol-1-yl) carboxylic acid (L2H), and bis(pyrazol-1-yl) acetates conjugated with an N-methyl-d-aspartate (NMDA) receptor antagonist (LNMDA or L2NMDA) and phosphane ligands (triphenylphosphine or 1,3,5-triaza-7-phosphaadamantane) were [...] Read more.
In the present article, copper(I) complexes of bis(pyrazol-1-yl) carboxylic acid (LH), bis(3,5-dimethylpyrazol-1-yl) carboxylic acid (L2H), and bis(pyrazol-1-yl) acetates conjugated with an N-methyl-d-aspartate (NMDA) receptor antagonist (LNMDA or L2NMDA) and phosphane ligands (triphenylphosphine or 1,3,5-triaza-7-phosphaadamantane) were synthesized. The selection of an NMDA antagonist for the coupling with LH and L2H was suggested by the observation that NMDA receptors are expressed and play a role in different types of cancer models. All the new complexes showed a significant antitumor activity on a panel of human tumor cell lines of different histology, with cisplatin-sensitive, cisplatin-resistant, or multi-drug-resistant phenotype. Their half maximal inhibitory concentration (IC50) values were in the low- and sub-micromolar range and, in general, significantly lower than that of cisplatin. Interestingly, the fact that all the complexes proved to be significantly more active than cisplatin even in three-dimensional (3D) spheroids of H157 and BxPC3 cancer cells increased the relevance of the in vitro results. Finally, morphological analysis revealed that the most representative complex 8 induced a massive swelling of the endoplasmic reticulum (ER) membrane, which is a clear sign of ER stress. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Advances in Biochemistry)
Show Figures

Graphical abstract

18 pages, 2140 KB  
Article
Syntheses and Biological Studies of Cu(II) Complexes Bearing Bis(pyrazol-1-yl)- and Bis(triazol-1-yl)-acetato Heteroscorpionate Ligands
by Maura Pellei, Valentina Gandin, Luciano Marchiò, Cristina Marzano, Luca Bagnarelli and Carlo Santini
Molecules 2019, 24(9), 1761; https://doi.org/10.3390/molecules24091761 - 7 May 2019
Cited by 24 | Viewed by 4636
Abstract
Copper(II) complexes of bis(pyrazol-1-yl)- and bis(triazol-1-yl)-acetate heteroscorpionate ligands have been synthesized. The copper(II) complexes [HC(COOH)(pzMe2)2]Cu[HC(COO)(pzMe2)2]·ClO4, [HC(COOH)(pz)2]2Cu(ClO4)2 (pzMe2 = 3,5-dimethylpyrazole; pz = pyrazole) were prepared by [...] Read more.
Copper(II) complexes of bis(pyrazol-1-yl)- and bis(triazol-1-yl)-acetate heteroscorpionate ligands have been synthesized. The copper(II) complexes [HC(COOH)(pzMe2)2]Cu[HC(COO)(pzMe2)2]·ClO4, [HC(COOH)(pz)2]2Cu(ClO4)2 (pzMe2 = 3,5-dimethylpyrazole; pz = pyrazole) were prepared by the reaction of Cu(ClO4)2·6H2O with bis(3,5-dimethylpyrazol-1-yl)acetic acid (HC(COOH)(pzMe2)2) and bis(pyrazol-1-yl)acetic acid (HC(COOH)(pz)2) ligands in ethanol solution. The copper(II) complex [HC(COOH)(tz)2]2Cu(ClO4)2·CH3OH (tz = 1,2,4-triazole) was prepared by the reaction of Cu(ClO4)2·6H2O with bis(1,2,4-triazol-1-yl)acetic acid (HC(COOH)(tz)2) ligand in methanol solution. The synthesized Cu(II) complexes, as well as the corresponding uncoordinated ligands, were evaluated for their cytotoxic activity in monolayer and 3D spheroid cancer cell cultures with different Pt(II)-sensitivity. The results showed that [HC(COOH)(pzMe2)2]Cu[HC(COO)(pzMe2)2]·ClO4 was active against cancer cell lines derived from solid tumors at low IC50 and this effect was retained in the spheroid model. Structure and ultra-structure changes of treated cancer cells analyzed by Transmission Electron Microscopy (TEM) highlighted the induction of a cytoplasmic vacuolization, thus suggesting paraptotic-like cancer cell death triggering. Full article
(This article belongs to the Special Issue Metal-Based Drugs)
Show Figures

Graphical abstract

14 pages, 2191 KB  
Article
Polymers of ε-Caprolactone Using New Copper(II) and Zinc(II) Complexes as Initiators: Synthesis, Characterization and X-Ray Crystal Structures
by Andrés F. Posada, Mario A. Macías, Santiago Movilla, Gian Pietro Miscione, León D. Pérez and John J. Hurtado
Polymers 2018, 10(11), 1239; https://doi.org/10.3390/polym10111239 - 8 Nov 2018
Cited by 16 | Viewed by 4842
Abstract
Five of six new Zn(II) and Cu(II) complexes were active in the ring-opening polymerization (ROP) of ε-caprolactone (CL) under solvent-free conditions, producing polycaprolactones (PCLs) of high crystallinity with molecular weights between 22,900 and 38,700 g mol−1 and decomposition temperatures above 260 °C. [...] Read more.
Five of six new Zn(II) and Cu(II) complexes were active in the ring-opening polymerization (ROP) of ε-caprolactone (CL) under solvent-free conditions, producing polycaprolactones (PCLs) of high crystallinity with molecular weights between 22,900 and 38,700 g mol−1 and decomposition temperatures above 260 °C. 1H NMR analysis demonstrated that the PCLs obtained were mainly linear, having hydroxymethylene groups at the chain ends. The results obtained indicated a significant improvement in terms of the ratio of monomer:initiator compared to related Cu(II) and Zn(II) complexes. In addition, the structures of the complexes 1 and 4 were determined by single-crystal X-ray diffraction. The synthesis and full characterization of all complexes are described in this paper. Full article
Show Figures

Graphical abstract

17 pages, 4437 KB  
Article
Cobalt(II) Complexes with N,N,N-Scorpionates and Bidentate Ligands: Comparison of Hydrotris(3,5-dimethylpyrazol-1-yl)borate Tp* vs. Phenyltris(4,4-dimethyloxazolin-2-yl)borate ToM to Control the Structural Properties and Reactivities of Cobalt Centers
by Toshiki Nishiura, Takahiro Uramoto, Yuichiro Takiyama, Jun Nakazawa and Shiro Hikichi
Molecules 2018, 23(6), 1466; https://doi.org/10.3390/molecules23061466 - 16 Jun 2018
Cited by 7 | Viewed by 5840
Abstract
Scorpionate ligands Tp* (hydrotris(3,5-dimethylpyrazol-1-yl)borate) and ToM (tris(4,4-dimethyloxazolin-2-yl)phenylborate) complexes of cobalt(II) with bidentate ligands were synthesized. Both Tp* and ToM coordinate to cobalt(II) in a tridentate fashion when the bidentate ligand is the less hindered acetylacetonate. In crystal structures, the geometry of [...] Read more.
Scorpionate ligands Tp* (hydrotris(3,5-dimethylpyrazol-1-yl)borate) and ToM (tris(4,4-dimethyloxazolin-2-yl)phenylborate) complexes of cobalt(II) with bidentate ligands were synthesized. Both Tp* and ToM coordinate to cobalt(II) in a tridentate fashion when the bidentate ligand is the less hindered acetylacetonate. In crystal structures, the geometry of cobalt(II) supported by the N3O2 donor set in the Tp* complex is a square-pyramid, whereas that in the ToM complex is close to a trigonal-bipyramid. Both Tp*- and ToM-acac complexes exhibit solvatochromic behavior, although the changing structural equilibria of these complexes in MeCN are quite different. In the bis(1-methylimidazol-2-yl)methylphenylborate (LPh) complexes, Tp* retains the tridentate (к3) mode, whereas ToM functions as the bidentate (к2) ligand, giving the tetrahedral cobalt(II) complex. The bowl-shaped cavity derived from the six methyl groups on ToM lead to susceptibility to the bulkiness of the opposite bidentate ligand. The entitled scorpionate compounds mediate hydrocarbon oxidation with organic peroxides. Allylic oxidation of cyclohexene occurs mainly on the reaction with tert-butyl hydroperoxide (TBHP), although the catalytic efficiency of the scorpionate ligand complexes is lower than that of Co(OAc)2 and Co(acac)2. On cyclohexane oxidation with meta-chloroperbenzoic acid (mCPBA), both ToM and Tp* complexes function as catalysts for hydroxylation. The higher electron-donating ToM complexes show faster initial reaction rates compared to the corresponding Tp* complexes. Full article
(This article belongs to the Special Issue Scorpionate Ligands: Ever-Young Chemistry Tools)
Show Figures

Figure 1

18 pages, 2810 KB  
Article
Solventless Synthesis of Poly(pyrazolyl)phenyl-methane Ligands and Thermal Transformation of Tris(3,5-dimethylpyrazol-1-yl)phenylmethane
by Edith Rodríguez-Venegas, Efrén V. García-Báez, Francisco J. Martínez-Martínez, Alejandro Cruz and Itzia I. Padilla-Martínez
Molecules 2017, 22(3), 441; https://doi.org/10.3390/molecules22030441 - 11 Mar 2017
Cited by 1 | Viewed by 6883
Abstract
The solventless synthesis of tris(pyrazolyl)phenylmethane ligands of formula C6H5C(PzR2)3 (R = H, Me), starting from PhCCl3 and 3,5-dimethylpyrazole (PzMe2) or pyrazole (Pz) was performed. The sterically crowded C6H5C(PzMe2 [...] Read more.
The solventless synthesis of tris(pyrazolyl)phenylmethane ligands of formula C6H5C(PzR2)3 (R = H, Me), starting from PhCCl3 and 3,5-dimethylpyrazole (PzMe2) or pyrazole (Pz) was performed. The sterically crowded C6H5C(PzMe2)3 is thermally transformed into the bis(pyrazolyl)(p-pyrazolyl)phenylmethane ligand PzMe2-C6H4CH(PzMe2)2. In this compound both PzMe2 rings are linked through the N-atom to the methine C-atom. At higher temperatures, the binding mode of PzMe2 changes from N1 to C4. All transformations occurred via quinonoid carbocation intermediates that undergo an aromatic electrophilic substitution on the 4-position of PzMe2. Reaction conditions were established to obtain five tris(pyrazolyl)phenylmethane ligands in moderate to good yields. 1H- and 13C-NMR spectroscopy and X-ray diffraction of single crystals support the proposed structures. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

11 pages, 449 KB  
Article
Formation of Mixed-Ligand Complexes of Pd2+ with Nucleoside 5'-Monophosphates and Some Metal-Ion-Binding Nucleoside Surrogates
by Oleg Golubev, Tuomas Lönnberg and Harri Lönnberg
Molecules 2014, 19(10), 16976-16986; https://doi.org/10.3390/molecules191016976 - 22 Oct 2014
Cited by 9 | Viewed by 6419
Abstract
Formation of mixed-ligand Pd2+ complexes between canonical nucleoside 5'-monophosphates and five metal-ion-binding nucleoside analogs has been studied by 1H-NMR spectroscopy to test the ability of these nucleoside surrogates to discriminate between unmodified nucleobases by Pd2+-mediated base pairing. The nucleoside [...] Read more.
Formation of mixed-ligand Pd2+ complexes between canonical nucleoside 5'-monophosphates and five metal-ion-binding nucleoside analogs has been studied by 1H-NMR spectroscopy to test the ability of these nucleoside surrogates to discriminate between unmodified nucleobases by Pd2+-mediated base pairing. The nucleoside analogs studied included 2,6-bis(3,5-dimethylpyrazol-1-yl)-, 2,6-bis(1-methylhydrazinyl)- and 6-(3,5-dimethylpyrazol-1-yl)-substituted 9-(β-d-ribofuranosyl)purines 13, and 2,4-bis(3,5-dimethylpyrazol-1-yl)- and 2,4-bis(1-methylhydrazinyl)-substituted 5-(β-d-ribofuranosyl)-pyrimidines 45. Among these, the purine derivatives 1-3 bound Pd2+ much more tightly than the pyrimidine derivatives 4, 5 despite apparently similar structures of the potential coordination sites. Compounds 1 and 2 formed markedly stable mixed-ligand Pd2+ complexes with UMP and GMP, UMP binding favored by 1 and GMP by 2. With 3, formation of mixed-ligand complexes was retarded by binding of two molecules of 3 to Pd2+. Full article
(This article belongs to the Special Issue Nucleoside Modifications)
Show Figures

Graphical abstract

2 pages, 116 KB  
Short Note
Synthesis of tridentate Nitrogen Ligand : N,N-bis-(3,5-dimethylpyrazol-1-ylmethyl)benzylamine (NNNN)
by Maria Daoudi, Brahim Bennani, Assou Zahid, Mohamed Mchich and Taibi Ben Hadda
Molbank 2006, 2006(2), M466; https://doi.org/10.3390/M466 - 28 Feb 2006
Viewed by 4379
Abstract
The product 2 was prepared by the addition of benzylamine (C6H5CH2NH2) to 1 [1] according to the reported procedure [2].[...] Full article
2 pages, 118 KB  
Short Note
Synthesis of tridentate Nitrogen Ligand : N,N-bis-(3,5-dimethylpyrazol-1-ylmethyl)benzylamine (NNNN)
by Maria Daoudi, Brahim Bennani, Assou Zahid, Mohamed Mchichi and Taibi Ben Hadda
Molbank 2005, 2005(6), M450; https://doi.org/10.3390/M450 - 1 Aug 2005
Viewed by 4501
Abstract
The product 2 was prepared by the addition of benzylamine (C6H5CH2NH2) to 1 [1] according to the reported procedure [2].[...] Full article
8 pages, 57 KB  
Article
Synthesis and X-Ray Structure of [N,N-Bis(3,5-dimethylpyrazol-1-ylmethyl)-1-hydroxy-2-aminoethane](3,5-dimethylpyrazole) copper(II) dinitrate
by Mohamed El Kodadi, Fouad Malek, Rachid Touzani, Abdelkrim Ramdani, Sghir El Kadiri and Driss Eddike
Molecules 2003, 8(11), 780-787; https://doi.org/10.3390/81100780 - 15 Nov 2003
Cited by 24 | Viewed by 11945
Abstract
The tridentate ligand N,N-Bis(3,5-dimethylpyrazol-1-ylmethyl)-1-hydroxy-2-aminoethane (L) has been prepared in one step by condensation of two equivalents of 1-hydroxymethyl-3,5-dimethylpyrazole with one equivalent of 2-aminoethanol. This reaction is carried out under microwave irradiation (60 W) in the absence of solvent for 20 min [1]. Using [...] Read more.
The tridentate ligand N,N-Bis(3,5-dimethylpyrazol-1-ylmethyl)-1-hydroxy-2-aminoethane (L) has been prepared in one step by condensation of two equivalents of 1-hydroxymethyl-3,5-dimethylpyrazole with one equivalent of 2-aminoethanol. This reaction is carried out under microwave irradiation (60 W) in the absence of solvent for 20 min [1]. Using this ligand L a new Cu(II) dinitrate complex has been prepared. The singlecrystal X-ray structure of the title compound, [N,N-bis(3,5-dimethylpyrazol-1-ylmethyl)-1-hydroxy-2-aminoethane] (3,5-dimethylpyrazole)copper(II) dinitrate, revels that the copper (II) ion is coordinated to two pyrazole nitrogens, one tertiary amine nitrogen of the ligand L and 3,5-dimethylpyrazole, and in the apical position by an alcohol O atom. Full article
Show Figures

Figure 1

Back to TopTop