Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = biomimetic octopus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 8698 KiB  
Article
Octopus-Inspired Biomimetic Annular Sealing Grooves: Design and Performance Optimization Under Extreme Conditions
by Zhipeng Pan, Shijun Xu, Xiang Guan, Zhihong Wang, Zhenghai Qi, Xiangrui Ye, Jianyang Dong, Yongming Yao and Zhengzhi Mu
Biomimetics 2025, 10(5), 322; https://doi.org/10.3390/biomimetics10050322 - 16 May 2025
Viewed by 557
Abstract
This study introduces an innovative annular sealing groove design inspired by the hierarchical structure of octopus suckers, addressing the limitations of conventional seals under extreme conditions in aerospace engineering. Using finite element analysis, eight bionic configurations with varying groove parameters (width, depth, number) [...] Read more.
This study introduces an innovative annular sealing groove design inspired by the hierarchical structure of octopus suckers, addressing the limitations of conventional seals under extreme conditions in aerospace engineering. Using finite element analysis, eight bionic configurations with varying groove parameters (width, depth, number) were systematically evaluated under cryogenic (−196.25 °C) and high-pressure (2 MPa) scenarios. Results show that the optimized bionic6 configuration (seven grooves, 0.4 mm width, 0.4 mm depth) achieved a 21.71% improvement in average von Mises stress compared to the original design, demonstrating enhanced leakage resistance. Parameter interaction analysis revealed groove number as the most significant factor affecting performance, followed by width, while depth showed minimal influence. The hierarchical groove architecture effectively mimicked the multi-level sealing mechanism of octopus suckers, reducing leakage paths and improving adaptability to irregular surfaces. This work bridges biological inspiration and engineering application, providing a scalable solution for extreme environments. The identified optimal parameters lay a theoretical foundation for designing high-performance seals in aerospace, cryogenic storage, and advanced manufacturing. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Figure 1

15 pages, 6147 KiB  
Article
Design and Control of Dual-Segment Multi-Wire Driven Bionic Soft Arm with Integrated Suction Cups
by Zhaosheng Wu, Qiuxuan Wu, Fulin Du, Zikai Zhao, Shoucheng Xiang, Hongkun Zhou, Yanbin Luo and Zhiyuan Hu
Biomimetics 2025, 10(3), 133; https://doi.org/10.3390/biomimetics10030133 - 24 Feb 2025
Cited by 2 | Viewed by 835
Abstract
Given the growing complexity of underwater operation tasks, particularly in confined spaces, turbulent environments, and dynamic object manipulation, the limitations of traditional rigid robotic arms are becoming ever more evident. To tackle these challenges, this paper proposes the development of a soft robotic [...] Read more.
Given the growing complexity of underwater operation tasks, particularly in confined spaces, turbulent environments, and dynamic object manipulation, the limitations of traditional rigid robotic arms are becoming ever more evident. To tackle these challenges, this paper proposes the development of a soft robotic arm modeled after octopus tentacles, incorporating biomimetic suckers. To tackle these challenges, this paper proposes the development of a soft robotic arm modeled after octopus tentacles, incorporating biomimetic suckers. By imitating the functional structure and suction cups of an octopus arm, a soft arm with a dual-segment continuous structure and eight-wire drive control is designed, integrating a flexible suction cup at the distal segment. A three-dimensional, dual-segment eight-wire driven segmented constant curvature motion model is developed to enable precise bending and rotational movements. In underwater grasping experiments, the soft robotic arm exhibited enhanced grasping stability, particularly in underwater environments, where it effectively copes with fluid disturbances and the capture of dynamic objects. This substantially increased the reliability and efficiency of underwater operations. Full article
(This article belongs to the Special Issue Bioinspired Engineered Systems)
Show Figures

Figure 1

27 pages, 3358 KiB  
Review
A Nanorobotics-Based Approach of Breast Cancer in the Nanotechnology Era
by Anca-Narcisa Neagu, Taniya Jayaweera, Krishan Weraduwage and Costel C. Darie
Int. J. Mol. Sci. 2024, 25(9), 4981; https://doi.org/10.3390/ijms25094981 - 2 May 2024
Cited by 2 | Viewed by 4825
Abstract
We are living in an era of advanced nanoscience and nanotechnology. Numerous nanomaterials, culminating in nanorobots, have demonstrated ingenious applications in biomedicine, including breast cancer (BC) nano-theranostics. To solve the complicated problem of BC heterogeneity, non-targeted drug distribution, invasive diagnostics or surgery, resistance [...] Read more.
We are living in an era of advanced nanoscience and nanotechnology. Numerous nanomaterials, culminating in nanorobots, have demonstrated ingenious applications in biomedicine, including breast cancer (BC) nano-theranostics. To solve the complicated problem of BC heterogeneity, non-targeted drug distribution, invasive diagnostics or surgery, resistance to classic onco-therapies and real-time monitoring of tumors, nanorobots are designed to perform multiple tasks at a small scale, even at the organelles or molecular level. Over the last few years, most nanorobots have been bioengineered as biomimetic and biocompatible nano(bio)structures, resembling different organisms and cells, such as urchin, spider, octopus, fish, spermatozoon, flagellar bacterium or helicoidal cyanobacterium. In this review, readers will be able to deepen their knowledge of the structure, behavior and role of several types of nanorobots, among other nanomaterials, in BC theranostics. We summarized here the characteristics of many functionalized nanodevices designed to counteract the main neoplastic hallmark features of BC, from sustaining proliferation and evading anti-growth signaling and resisting programmed cell death to inducing angiogenesis, activating invasion and metastasis, preventing genomic instability, avoiding immune destruction and deregulating autophagy. Most of these nanorobots function as targeted and self-propelled smart nano-carriers or nano-drug delivery systems (nano-DDSs), enhancing the efficiency and safety of chemo-, radio- or photodynamic therapy, or the current imagistic techniques used in BC diagnosis. Most of these nanorobots have been tested in vitro, using various BC cell lines, as well as in vivo, mainly based on mice models. We are still waiting for nanorobots that are low-cost, as well as for a wider transition of these favorable effects from laboratory to clinical practice. Full article
(This article belongs to the Special Issue The Interplay among Biomolecules and Nanomaterials)
Show Figures

Figure 1

26 pages, 20509 KiB  
Review
Biomimetic Structure and Surface for Grasping Tasks
by Jingyang Li, Fujie Yin and Yu Tian
Biomimetics 2024, 9(3), 144; https://doi.org/10.3390/biomimetics9030144 - 27 Feb 2024
Cited by 6 | Viewed by 4010
Abstract
Under water, on land, or in the air, creatures use a variety of grasping methods to hunt, avoid predators, or carry food. Numerous studies have been conducted to construct a bionic surface for grasping tasks. This paper reviews the typical biomimetic structures and [...] Read more.
Under water, on land, or in the air, creatures use a variety of grasping methods to hunt, avoid predators, or carry food. Numerous studies have been conducted to construct a bionic surface for grasping tasks. This paper reviews the typical biomimetic structures and surfaces (wedge-shaped surface, suction cup surface and thorn claw surface) for grasping scenarios. Initially, progress in gecko-inspired wedge-shaped adhesive surfaces is reviewed, encompassing the underlying mechanisms that involve tuning the contact area and peeling behavior. The applications of grippers utilizing this adhesive technology are also discussed. Subsequently, the suction force mechanisms and applications of surfaces inspired by octopus and remora suction cups are outlined. Moreover, this paper introduces the applications of robots incorporating the principles of beetle-inspired and bird-inspired thorn claw structures. Lastly, inspired by remoras’ adhesive discs, a composite biomimetic adhesive surface is proposed. It integrates features from wedge-shaped, suction cup, and claw thorn surfaces, potentially surpassing the adaptability of basic bioinspired surfaces. This surface construction method offers a potential avenue to enhance adhesion capabilities with superior adaptability to surface roughness and curvature. Full article
Show Figures

Figure 1

17 pages, 4817 KiB  
Article
Polyurethane Shape Memory Polymer/pH-Responsive Hydrogel Hybrid for Bi-Function Synergistic Actuations
by Shuyi Peng, Xingyu Cao, Ye Sun, Lin Chen, Chao Ma, Lang Yang, Hongliang Zhao, Qijie Liu, Zhenzhong Liu and Chunxin Ma
Gels 2023, 9(5), 428; https://doi.org/10.3390/gels9050428 - 21 May 2023
Cited by 13 | Viewed by 3199
Abstract
Stimuli-responsive actuating hydrogels response to the external stimulus with complex deformation behaviors based on the programmable anisotropic structure design are one of the most important smart soft materials, which have great potential applications in artificial muscles, smart values, and mini-robots. However, the anisotropic [...] Read more.
Stimuli-responsive actuating hydrogels response to the external stimulus with complex deformation behaviors based on the programmable anisotropic structure design are one of the most important smart soft materials, which have great potential applications in artificial muscles, smart values, and mini-robots. However, the anisotropic structure of one actuating hydrogel can only be programmed one time, which can only provide single actuating performance, and subsequently, has severely limited their further applications. Herein, we have explored a novel SMP/hydrogel hybrid actuator through combining polyurethane shape memory polymer (PU SMP) layer and pH-responsive polyacrylic-acid (PAA) hydrogel layer by a napkin with UV-adhesive. Owing to both the super-hydrophilicity and super-lipophilicity of the cellulose-fiber based napkin, the SMP and the hydrogel can be bonded firmly by the UV-adhesive in the napkin. More importantly, this bilayer hybrid 2D sheet can be programmed by designing a different temporary shape in heat water which can be fixed easily in cool water to achieve various fixed shapes. This hybrid with a fixed temporary shape can achieve complex actuating performance based on the bi-functional synergy of temperature-triggered SMP and pH-responsive hydrogel. The relatively high modulus PU SMP achieved high to 87.19% and 88.92% shape-fixing ratio, respectively, correspond to bending and folding shapes. The hybrid actuator can actuate with the 25.71 °/min actuating speed. Most importantly, one SMP/hydrogel bi-layer hybrid sheet was repeatedly programmed at least nine times in our research to fix various temporary 1D, 2D and 3D shapes, including bending, folding and spiraling shapes. As a result, only one SMP/hydrogel hybrid can provide various complex stimuli-responsive actuations, including the reversable bending-straightening, spiraling-unspiraling. A few of the intelligent devices have been designed to simulate the movement of the natural organisms, such as bio-mimetic “paw”, “pangolin” and “octopus”. This work has developed a new SMP/hydrogel hybrid with excellent multi-repeatable (≥9 times) programmability for high-level complex actuations, including the 1D to 2D bending and the 2D to 3D spiraling actuations, which also provides a new strategy to design other new soft intelligent materials and systems. Full article
(This article belongs to the Special Issue Functional Gel Materials and Applications)
Show Figures

Graphical abstract

34 pages, 21628 KiB  
Article
Development of a Novel Biomimetic Mechanical Hand Based on Physical Characteristics of Apples
by Meirong Wang, Bin Yan, Sihao Zhang, Pan Fan, Pengzong Zeng, Shuaiqi Shi and Fuzeng Yang
Agriculture 2022, 12(11), 1871; https://doi.org/10.3390/agriculture12111871 - 8 Nov 2022
Cited by 19 | Viewed by 2774
Abstract
For the purpose of minimizing the damage to apples during the operation of an apple-picking robot, improving the stability of an apple-harvesting mechanical hand and reducing the use and operation cost of the robot, a novel biomimetic apple mechanical hand based on negative [...] Read more.
For the purpose of minimizing the damage to apples during the operation of an apple-picking robot, improving the stability of an apple-harvesting mechanical hand and reducing the use and operation cost of the robot, a novel biomimetic apple mechanical hand based on negative pressure air suction is purposely designed based on the physical characteristics of apples by imitating octopus predation. The mechanical hand has four suction cups evenly distributed in the hand, which produce concave deformation under negative vacuum pressure to fit the apple surface and adsorb the apple; the fruit stalk is separated by wrist rotation and dragging in a compound way to complete the picking operation. This paper firstly determines the key parameters of the mechanical hand based on the characteristics of silicone material and the three growth postures of apples, tries to make a physical prototype of the mechanical hand and conducts relevant performance tests on the picking platform built in the laboratory to explore the best combination of parameters and further optimize the manipulator. The results show that the success rate of the biomimetic nondestructive apple picker with the best combination of parameters is 100%, 76% and 68% for three different apple-growth postures and the operation is smooth, reliable, safe and non-invasive. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

15 pages, 5798 KiB  
Article
Biomimetic Self-Adhesive Structures for Wearable Sensors
by Feihu Chen, Liuyang Han, Ying Dong and Xiaohao Wang
Biosensors 2022, 12(6), 431; https://doi.org/10.3390/bios12060431 - 20 Jun 2022
Cited by 10 | Viewed by 3747
Abstract
Inspired by the adhesion ability of various organisms in nature, the research of biomimetic adhesion has shown a promising application prospect in fields such as manipulators, climbing robots and wearable medical devices. In order to achieve effective adhesion between human skin and a [...] Read more.
Inspired by the adhesion ability of various organisms in nature, the research of biomimetic adhesion has shown a promising application prospect in fields such as manipulators, climbing robots and wearable medical devices. In order to achieve effective adhesion between human skin and a variety of wearable sensors, two natural creatures, octopus and mussel, were selected for bio-imitation in this paper. Through imitating the octopus sucker structure, a micro-cavity array with a large inner cavity and small outer cavity was designed. The fabrication was completed by double-layer adhesive photolithography and PDMS molding, and the adhesion capacity of the structure was further enhanced by the coating of thermal responsive hydrogel PNIPAM. The adhesive force of 3.91 N/cm2 was obtained in the range of the human body temperature. PDA-Lap-PAM hydrogel was prepared by combining mussel foot protein (Mfps) with nano-clay (Lap) as biomimetic mussel mucus. It was found that 0.02 g PDA-Lap-PAM hydrogel can obtain about 2.216 N adhesion, with good hydrophilicity. Through oxygen plasma surface treatment and functional silane surface modification, the fusion of the PDMS film with biomimetic octopus sucker structure and the biomimetic mussel mucus hydrogel patch was realized. The biomimetic octopus sucker structure was attached to the human skin surface to solve the problem of shape-preserving attachment, and the biomimetic mussel mucus hydrogel was attached to the sensor surface to solve the problem of sensor surface adaptation. The fusion structure was used to attach a rigid substrate piezoelectric sensor to the skin for a human pulsewave test. The results verified the self-adhesion feasibility of wearable sensors with biomimetic structures. Full article
(This article belongs to the Section Biosensor Materials)
Show Figures

Figure 1

Back to TopTop