Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = bioluminescence in Vibrio fischeri

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4136 KB  
Article
Mechanochemically Modified TiO2 Photocatalysts: Combination of Visible-Light Excitability and Antibacterial Effect
by Orsolya Fónagy, Margit Kovács, Erzsébet Szabó-Bárdos, Petra Csicsor-Kulcsár, Lajos Fodor and Ottó Horváth
Catalysts 2025, 15(4), 316; https://doi.org/10.3390/catal15040316 - 26 Mar 2025
Cited by 1 | Viewed by 860
Abstract
The goal of this work was to prepare modified titanium dioxide catalysts applicable for self-cleaning and disinfecting surfaces, possessing both antibacterial and photocatalytic activity in the visible-light region, via green and affordable synthesis. For this purpose, silverization was chosen due to its antibacterial [...] Read more.
The goal of this work was to prepare modified titanium dioxide catalysts applicable for self-cleaning and disinfecting surfaces, possessing both antibacterial and photocatalytic activity in the visible-light region, via green and affordable synthesis. For this purpose, silverization was chosen due to its antibacterial and electron-capturing effects, and to achieve efficient visible-light excitation, urea was used as a precursor for nitrogen doping. Mechanochemical activation with grinding, as an environmentally friendly process, was applied for the catalyst modification under various conditions, such as the amounts of the modifying substances, the milling time, the ratio of the weights of the material to be ground, and the grinding balls. The photocatalytic activity in the UV and visible range was tested in suspensions with oxalic acid and coumarin as model compounds. The antibacterial effect was measured by the bioluminescence of Vibrio fischeri bacteria. The highest photocatalytic activity in the visible range was observed with the nitrogen-doped titanium dioxide (N-TiO2) prepared with 10% urea. Silveration of N-TiO2 (up to 0.2%) decreased photocatalytic activity while improving the antibacterial efficiency. To maximize both effects, mechanical mixtures of the separately modified catalysts (N-TiO2 and Ag-TiO2) were also examined in different ratios. The 1:1 mixture provided the optimum combination. Full article
(This article belongs to the Special Issue Green Chemistry and Catalysis)
Show Figures

Figure 1

13 pages, 4807 KB  
Article
The High-Efficiency Degradation of Multiple Mycotoxins by Lac-W Laccase in the Presence of Mediators
by Mengshuang Jia, Xiaohu Yu, Kun Xu, Xiaodan Gu, Nicholas J. Harmer, Youbao Zhao, Yuqiang Xiang, Xia Sheng, Chenglong Li, Xiang-Dang Du, Jiajia Pan and Wenbo Hao
Toxins 2024, 16(11), 477; https://doi.org/10.3390/toxins16110477 - 4 Nov 2024
Cited by 10 | Viewed by 2721
Abstract
Mycotoxin cocontamination is a severe threat to health and economic security worldwide. The mycotoxins aflatoxin B1 (AFB1), zearalenone (ZEN), deoxynivalenol, T-2 toxin, fumonisin B1, and ochratoxin A are of particular concern due to their substantial toxicity. Lac-W is [...] Read more.
Mycotoxin cocontamination is a severe threat to health and economic security worldwide. The mycotoxins aflatoxin B1 (AFB1), zearalenone (ZEN), deoxynivalenol, T-2 toxin, fumonisin B1, and ochratoxin A are of particular concern due to their substantial toxicity. Lac-W is a laccase with the unique property of degrading these six mycotoxins in the absence of redox mediators. Nevertheless, their degradation rates are low. This work aims to improve the ability of Lac-W to degrade these six mycotoxins and to elucidate its detoxification mechanism. Including redox mediators increased the Lac-W degradation efficiency drastically, and completely degraded AFB1 and ZEN within one hour. Additionally, Lac-W-AS has good temperature, pH, and ions adaptability in ZEN degradation. Lac-W-AS reduced the ZEN toxicity because ZEN degradation products significantly restored the bioluminescence intensity of Vibrio fischeri. A Lac-W-AS-mediated oxidation product of ZEN was structurally characterized as 15-OH-ZEN by UHPLC-MS/MS. Linear sweep voltammetry showed that AS affected the potential of Lac-W and accelerated the oxidation of ZEN. Finally, the combination of mediators (acetosyringone and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonate)) improved the degradation rate of mycotoxins. This work highlights that the combination of Lac-W with mediators serves as a good candidate for degrading multi-mycotoxin contaminants in food and feedstuff. Full article
Show Figures

Figure 1

14 pages, 11003 KB  
Article
Luminescence Toxicological Analysis of Water Supply Systems in Dispersed Rural Areas: A Case Study in Boyacá, Colombia
by Yadi Johaira Ramos-Parra, Jaime Díaz-Gómez, Mónica Viviana Mesa-Torres, Sergio David Torres-Piraquive, Nohora Yaneth Zipa-Casas, Sandra Suescún-Carrero and Mabel Medina-Alfonso
Water 2023, 15(13), 2474; https://doi.org/10.3390/w15132474 - 5 Jul 2023
Cited by 1 | Viewed by 2900
Abstract
The quality of water supply systems is still a major problem in developing countries, especially in rural areas. The acute bioluminescence V. fischeri inhibition assay is widely recognized as a toxicological method that can be used to detect the acute effects of different [...] Read more.
The quality of water supply systems is still a major problem in developing countries, especially in rural areas. The acute bioluminescence V. fischeri inhibition assay is widely recognized as a toxicological method that can be used to detect the acute effects of different contaminants. In this study, the physicochemical characteristics and toxicology of 72 water samples collected in 18 rural aqueducts located in Boyacá (Colombia) were evaluated. The primary economic activities identified as potential influencers of water quality in the water supply basins were agriculture (n = 3), livestock (n = 2), and domestic sewage discharge (n = 1). The average luminescence inhibition rate was 66%, with a minimum of 29%, and a maximum of 97%. A total of 85% of the tested samples (n = 61) had “moderate acute hazard”, while 15% (n = 15) had “acute hazard”. A total of 95% of the aqueducts distributed water with high risk. There was a weak positive correlation between the apparent color and the V. fischeri inhibition rate (p < 0.05). The water treatments, including disinfection, and the economic activities had no correlation with the inhibition rate of luminescent bacteria. The results of this investigation can be used by sanitary authorities to incorporate future toxicological monitoring of chemical contaminants, such as humic substances and metals, into water-quality monitoring in rural areas. Full article
(This article belongs to the Special Issue Drinking Water Quality and Health Risk Assessment)
Show Figures

Figure 1

20 pages, 5087 KB  
Article
Halloysite-Zinc Oxide Nanocomposites as Potential Photocatalysts
by Balázs Zsirka, Veronika Vágvölgyi, Erzsébet Horváth, Tatjána Juzsakova, Orsolya Fónagy, Erzsébet Szabó-Bárdos and János Kristóf
Minerals 2022, 12(4), 476; https://doi.org/10.3390/min12040476 - 13 Apr 2022
Cited by 16 | Viewed by 4069
Abstract
The synthesis and structural characterization of synthetic zinc oxide and halloysite-based zinc oxide nanocomposites (with 2–28 m/m% ZnO content) are presented. The chemical precipitation of zinc hydroxide precursors and its subsequent drying at 80 °C yielded dominantly zinc oxide (zincite). Thermal treatment at [...] Read more.
The synthesis and structural characterization of synthetic zinc oxide and halloysite-based zinc oxide nanocomposites (with 2–28 m/m% ZnO content) are presented. The chemical precipitation of zinc hydroxide precursors and its subsequent drying at 80 °C yielded dominantly zinc oxide (zincite). Thermal treatment at 350 °C completely transformed the remaining precursor to ZnO without causing structural dehydroxylation of the halloysite support. The procedure yielded zinc oxide nanoparticles with 10–22 nm average size having quasi-spherical scale-like morphology. The specific surface area of the synthetic zinc oxide was found to be low (13 m2/g), which was significantly enhanced after nanocomposite preparation (27–47 m2/g). The photocatalytic activity of the prepared nanocomposites was probed by the degradation of a phenolic compound (4-nitrophenol) upon UV irradiation in liquid phase. Compared to their individual constituents, an increased activity of the nanocomposites was observed, while the SSA-normalized photocatalytic activity revealed a synergic effect in nanocomposites above 9 m/m% ZnO content. The nanocomposites were found to be stable at pH = 5.6, with a minor and major mobilization of zinc ions at pH = 12.4 and pH = 1.9, respectively. The toxicity of leachates in different pH environments by Vibrio fischeri bioluminescence indicated low toxicity for ZnO nanoparticles and insignificant toxicity for the nanocomposites. The enhanced photocatalytic activity together with the lower toxicity of the halloysite-ZnO nanocomposites highlight their application potential in water treatment. Full article
(This article belongs to the Special Issue Nanotubular and Nanofibrous Clay Minerals)
Show Figures

Graphical abstract

14 pages, 2500 KB  
Review
Nocturnal Acidification: A Coordinating Cue in the Euprymna scolopesVibrio fischeri Symbiosis
by Brian L. Pipes and Michele K. Nishiguchi
Int. J. Mol. Sci. 2022, 23(7), 3743; https://doi.org/10.3390/ijms23073743 - 29 Mar 2022
Cited by 7 | Viewed by 4844
Abstract
The Vibrio fischeriEuprymna scolopes symbiosis has become a powerful model for the study of specificity, initiation, and maintenance between beneficial bacteria and their eukaryotic partner. In this invertebrate model system, the bacterial symbionts are acquired every generation from the surrounding seawater [...] Read more.
The Vibrio fischeriEuprymna scolopes symbiosis has become a powerful model for the study of specificity, initiation, and maintenance between beneficial bacteria and their eukaryotic partner. In this invertebrate model system, the bacterial symbionts are acquired every generation from the surrounding seawater by newly hatched squid. These symbionts colonize a specialized internal structure called the light organ, which they inhabit for the remainder of the host’s lifetime. The V. fischeri population grows and ebbs following a diel cycle, with high cell densities at night producing bioluminescence that helps the host avoid predation during its nocturnal activities. Rhythmic timing of the growth of the symbionts and their production of bioluminescence only at night is critical for maintaining the symbiosis. V. fischeri symbionts detect their population densities through a behavior termed quorum-sensing, where they secrete and detect concentrations of autoinducer molecules at high cell density when nocturnal production of bioluminescence begins. In this review, we discuss events that lead up to the nocturnal acidification of the light organ and the cues used for pre-adaptive behaviors that both host and symbiont have evolved. This host–bacterium cross talk is used to coordinate networks of regulatory signals (such as quorum-sensing and bioluminescence) that eventually provide a unique yet stable environment for V. fischeri to thrive and be maintained throughout its life history as a successful partner in this dynamic symbiosis. Full article
(This article belongs to the Special Issue Molecular Bacteria-Invertebrate Interactions)
Show Figures

Graphical abstract

14 pages, 3598 KB  
Article
pH-Induced Modulation of Vibrio fischeri Population Life Cycle
by Ana Rita Silva, Cláudia Sousa, Daniela Exner, Ruth Schwaiger, Maria Madalena Alves, Dmitri Y. Petrovykh and Luciana Pereira
Chemosensors 2021, 9(10), 283; https://doi.org/10.3390/chemosensors9100283 - 5 Oct 2021
Cited by 13 | Viewed by 6551
Abstract
Commonly used as biological chemosensors in toxicity assays, Vibrio fischeri bacteria were systematically characterized using complementary physicochemical and biological techniques to elucidate the evolution of their properties under varying environmental conditions. Changing the pH above or below the optimal pH 7 was used [...] Read more.
Commonly used as biological chemosensors in toxicity assays, Vibrio fischeri bacteria were systematically characterized using complementary physicochemical and biological techniques to elucidate the evolution of their properties under varying environmental conditions. Changing the pH above or below the optimal pH 7 was used to model the long-term stress that would be experienced by V. fischeri in environmental toxicology assays. The spectral shape of bioluminescence and cell-surface charge during the exponential growth phase were largely unaffected by pH changes. The pH-induced modulation of V. fischeri growth, monitored via the optical density (OD), was moderate. In contrast, the concomitant changes in the time-profiles of their bioluminescence, which is used as the readout in assays, were more significant. Imaging at discrete timepoints by scanning electron microscopy (SEM) and helium-ion microscopy (HIM) revealed that mature V. fischeri cells maintained a rod-shaped morphology with the average length of 2.2 ± 1 µm and diameter of 0.6 ± 0.1 µm. Detailed morphological analysis revealed subpopulations of rods having aspect ratios significantly larger than those of average individuals, suggesting the use of such elongated rods as an indicator of the multigenerational environmental stress. The observed modulation of bioluminescence and morphology supports the suitability of V. fischeri as biological chemosensors for both rapid and long-term assays, including under environmental conditions that can modify the physicochemical properties of novel anthropogenic pollutants, such as nanomaterials and especially stimulus-responsive nanomaterials. Full article
(This article belongs to the Special Issue Nanotechnology for Sensing, Medical and Environmental Application)
Show Figures

Graphical abstract

16 pages, 2413 KB  
Article
Impacts of Plastic-Made Packaging on Marine Key Species: Effects Following Water Acidification and Ecological Implications
by Manuela Piccardo, Francesca Provenza, Eleonora Grazioli, Serena Anselmi, Antonio Terlizzi and Monia Renzi
J. Mar. Sci. Eng. 2021, 9(4), 432; https://doi.org/10.3390/jmse9040432 - 17 Apr 2021
Cited by 23 | Viewed by 4880
Abstract
This study evaluates the impacts of 16 different leachates of plastic-made packaging on marine species of different trophic levels (bacteria, algae, echinoderms). Standard ecotoxicological endpoints (inhibition of bioluminescence, inhibition of growth, embryo-toxicity) and alterations of ecologically significant parameters (i.e., echinoderms’ body-size) were measured [...] Read more.
This study evaluates the impacts of 16 different leachates of plastic-made packaging on marine species of different trophic levels (bacteria, algae, echinoderms). Standard ecotoxicological endpoints (inhibition of bioluminescence, inhibition of growth, embryo-toxicity) and alterations of ecologically significant parameters (i.e., echinoderms’ body-size) were measured following exposure under different pH water conditions: marine standard (pH 8.1) and two increasingly acidic conditions (pH 7.8 and 7.5) in order to evaluate possible variations induced by ocean acidification. The results obtained in this study evidence that the tested doses are not able to significantly affect bacteria (Vibrio fischeri) and algae (Phaeodactylum tricornutum). On the contrary, Paracentrotus lividus larvae were significantly affected by several packaging types (13 out of 16) with meaningless differences between pH conditions. Full article
(This article belongs to the Special Issue Marine Litter)
Show Figures

Figure 1

26 pages, 7414 KB  
Article
Antibacterial Activity of Positively and Negatively Charged Hematite (α-Fe2O3) Nanoparticles to Escherichia coli, Staphylococcus aureus and Vibrio fischeri
by Svetlana Vihodceva, Andris Šutka, Mariliis Sihtmäe, Merilin Rosenberg, Maarja Otsus, Imbi Kurvet, Krisjanis Smits, Liga Bikse, Anne Kahru and Kaja Kasemets
Nanomaterials 2021, 11(3), 652; https://doi.org/10.3390/nano11030652 - 8 Mar 2021
Cited by 66 | Viewed by 5897
Abstract
In the current study, the antibacterial activity of positively and negatively charged spherical hematite (α-Fe2O3) nanoparticles (NPs) with primary size of 45 and 70 nm was evaluated against clinically relevant bacteria Escherichia coli (gram-negative) and Staphylococcus aureus [...] Read more.
In the current study, the antibacterial activity of positively and negatively charged spherical hematite (α-Fe2O3) nanoparticles (NPs) with primary size of 45 and 70 nm was evaluated against clinically relevant bacteria Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) as well as against naturally bioluminescent bacteria Vibrio fischeri (an ecotoxicological model organism). α-Fe2O3 NPs were synthesized using a simple green hydrothermal method and the surface charge was altered via citrate coating. To minimize the interference of testing environment with NP’s physic-chemical properties, E. coli and S. aureus were exposed to NPs in deionized water for 30 min and 24 h, covering concentrations from 1 to 1000 mg/L. The growth inhibition was evaluated following the postexposure colony-forming ability of bacteria on toxicant-free agar plates. The positively charged α-Fe2O3 at concentrations from 100 mg/L upwards showed inhibitory activity towards E. coli already after 30 min of contact. Extending the exposure to 24 h caused total inhibition of growth at 100 mg/L. Bactericidal activity of positively charged hematite NPs against S. aureus was not observed up to 1000 mg/L. Differently from positively charged hematite NPs, negatively charged citrate-coated α-Fe2O3 NPs did not exhibit any antibacterial activity against E. coli and S. aureus even at 1000 mg/L. Confocal laser scanning microscopy and flow cytometer analysis showed that bacteria were more tightly associated with positively charged α-Fe2O3 NPs than with negatively charged citrate-coated α-Fe2O3 NPs. Moreover, the observed associations were more evident in the case of E. coli than S. aureus, being coherent with the toxicity results. Vibrio fischeri bioluminescence inhibition assays (exposure medium 2% NaCl) and colony forming ability on agar plates showed no (eco)toxicity of α-Fe2O3 (EC50 and MBC > 1000 mg/L). Full article
(This article belongs to the Special Issue Nanomaterials and Microorganisms)
Show Figures

Figure 1

16 pages, 2791 KB  
Article
Prediction of Terpenoid Toxicity Based on a Quantitative Structure–Activity Relationship Model
by Rosa Perestrelo, Catarina Silva, Miguel X. Fernandes and José S. Câmara
Foods 2019, 8(12), 628; https://doi.org/10.3390/foods8120628 - 1 Dec 2019
Cited by 26 | Viewed by 4448
Abstract
Terpenoids, including monoterpenoids (C10), norisoprenoids (C13), and sesquiterpenoids (C15), constitute a large group of plant-derived naturally occurring secondary metabolites with highly diverse chemical structures. A quantitative structure–activity relationship (QSAR) model to predict terpenoid toxicity and to evaluate [...] Read more.
Terpenoids, including monoterpenoids (C10), norisoprenoids (C13), and sesquiterpenoids (C15), constitute a large group of plant-derived naturally occurring secondary metabolites with highly diverse chemical structures. A quantitative structure–activity relationship (QSAR) model to predict terpenoid toxicity and to evaluate the influence of their chemical structures was developed in this study by assessing in real time the toxicity of 27 terpenoid standards using the Gram-negative bioluminescent Vibrio fischeri. Under the test conditions, at a concentration of 1 µM, the terpenoids showed a toxicity level lower than 5%, with the exception of geraniol, citral, (S)-citronellal, geranic acid, (±)-α-terpinyl acetate, and geranyl acetone. Moreover, the standards tested displayed a toxicity level higher than 30% at concentrations of 50–100 µM, with the exception of (+)-valencene, eucalyptol, (+)-borneol, guaiazulene, β-caryophellene, and linalool oxide. Regarding the functional group, terpenoid toxicity was observed in the following order: alcohol > aldehyde ~ ketone > ester > hydrocarbons. The CODESSA software was employed to develop QSAR models based on the correlation of terpenoid toxicity and a pool of descriptors related to each chemical structure. The QSAR models, based on t-test values, showed that terpenoid toxicity was mainly attributed to geometric (e.g., asphericity) and electronic (e.g., maximum partial charge for a carbon (C) atom (Zefirov’s partial charge (PC)) descriptors. Statistically, the most significant overall correlation was the four-parameter equation with a training coefficient and test coefficient correlation higher than 0.810 and 0.535, respectively, and a square coefficient of cross-validation (Q2) higher than 0.689. According to the obtained data, the QSAR models are suitable and rapid tools to predict terpenoid toxicity in a diversity of food products. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Graphical abstract

19 pages, 2834 KB  
Article
Heterogeneous Oxidation of Phenolic Compounds with Photosensitizing Catalysts Incorporated into Chitosan
by Magdalena Foszpańczyk, Lucyna Bilińska, Marta Gmurek and Stanisław Ledakowicz
Catalysts 2019, 9(11), 891; https://doi.org/10.3390/catal9110891 - 25 Oct 2019
Cited by 10 | Viewed by 3258
Abstract
The increasing amount of hazardous micropollutants in the aqueous environment has recently become a concern, especially because they are not usually included in environmental monitoring programs. There is also limited knowledge regarding their behavior in the environment and their toxicity. This paper presents [...] Read more.
The increasing amount of hazardous micropollutants in the aqueous environment has recently become a concern, especially because they are not usually included in environmental monitoring programs. There is also limited knowledge regarding their behavior in the environment and their toxicity. This paper presents results regarding the heterogeneous photosensitized oxidation of 10 phenolic compounds under visible light. All of the selected compounds are classified as pollutants of emerging concern. For the first time, the application of photosensitizing catalysts incorporated into a chitosan carrier was investigated from several points of view, namely, structure characterization, singlet oxygen generation potential, photodegradation ability, biodegradability, and toxicity assessment. It was found that compounds of different origins were degraded with high effectivity. Photoactive chitosan was stable and could be reused for at least 12 cycles without losing its photocatalytic activity. The Hammett constants for all of the degraded compounds were determined. Improved biodegradability after the treatment was achieved for almost all compounds, apart from 4-hydroxybenzoic acid, and only slightly for 2-phenylphenol. The acute toxicity was assessed using bioluminescent Vibrio fischeri bacteria, indicating lower toxicity than the parent compounds. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

13 pages, 2083 KB  
Article
Chemometric Assessment and Best-Fit Function Modelling of the Toxic Potential of Selected Food Packaging Extracts
by Błażej Kudłak, Natalia Szczepańska, Miroslava Nedyalkova, Vasil Simeonov and Jacek Namieśnik
Molecules 2018, 23(11), 3028; https://doi.org/10.3390/molecules23113028 - 20 Nov 2018
Cited by 3 | Viewed by 3365
Abstract
Food packaging materials constitute an ever more threatening environmental pollutant. This study examined options to specifically assess the ecotoxicity of packaged wastes, such as cans, subjected to various experimental treatments (in terms of extraction media, time of exposure, and temperature) that imitate several [...] Read more.
Food packaging materials constitute an ever more threatening environmental pollutant. This study examined options to specifically assess the ecotoxicity of packaged wastes, such as cans, subjected to various experimental treatments (in terms of extraction media, time of exposure, and temperature) that imitate several basic conditions of the process of food production. The extracts were studied for their ecotoxicity with bioluminescent Vibrio fischeri bacteria. The first objective of this study was to find patterns of similarity between different experimental conditions; we used multivariate statistical methods, such as hierarchical cluster analysis, to interpret the impact of experimental conditions on the ecotoxicity signals of the package extracts. Our second objective was to apply best-fit function modelling for additional data interpretation, taking into account, that ecotoxicity for various temperature conditions is time- and temperature dependent. We mathematically confirmed that chemometric data treatment allows for better understanding how different experimental conditions imitating the real use of food packaging. We also demonstrate that the level of ecotoxicity depends on different extraction media, time of exposure, and temperature regime. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

4 pages, 293 KB  
Proceeding Paper
Ecotoxicity of EAN and Doped EAN Ionic Liquids
by Juan José Parajó, María Villanueva, Luis Miguel Varela and Josefa Salgado
Proceedings 2019, 9(1), 56; https://doi.org/10.3390/ecsoc-22-05793 - 14 Nov 2018
Viewed by 1086
Abstract
The ecotoxicity of a nitrate-based ionic liquid (IL) and saturated mixtures with four nitrate salts towards the bioluminescent bacteria Vibrio fischeri, were tested in this work, using the Microtox® standard toxicity test. The selected IL was Ethylammonium Nitrate (EAN) and the [...] Read more.
The ecotoxicity of a nitrate-based ionic liquid (IL) and saturated mixtures with four nitrate salts towards the bioluminescent bacteria Vibrio fischeri, were tested in this work, using the Microtox® standard toxicity test. The selected IL was Ethylammonium Nitrate (EAN) and the nitrate salts were Lithium Nitrate (LiNO3), Calcium Nitrate (Ca(NO3)2), Magnesium Nitrate (Mg(NO3)2), and Aluminum Nitrate (Al(NO3)3). The effective concentration (EC50) of these mixtures was determined over three standard periods of time, namely 5, 15, and 30 min. Results of EC50 for pure EAN at 15 min are in relatively good concordance with the literature. To the best of our knowledge, no ecotoxicity studies have been performed for doped EAN. Similar results have been found for pure EAN and for EAN doped with LiNO3 and Mg(NO3)2, whose values indicated low toxicity. Nevertheless, the addition of Ca(NO3)2 and Al(NO3)3 cause an increase in the ecotoxicity of EAN, especially for the IL doped with Al(NO3)3, which present values associated to highly toxic compounds, comparable even with benzene or atrazine. Full article
18 pages, 2789 KB  
Article
Toxicity of Nine (Doped) Rare Earth Metal Oxides and Respective Individual Metals to Aquatic Microorganisms Vibrio fischeri and Tetrahymena thermophila
by Imbi Kurvet, Katre Juganson, Heiki Vija, Mariliis Sihtmäe, Irina Blinova, Guttorm Syvertsen-Wiig and Anne Kahru
Materials 2017, 10(7), 754; https://doi.org/10.3390/ma10070754 - 5 Jul 2017
Cited by 65 | Viewed by 7353
Abstract
Despite the increasing use of rare earth elements (REEs) and oxides (REOs) in various technologies, the information on their ecotoxicological hazard is scarce. Here, the effects of La3+, Ce3+, Pr3+, Nd3+, Gd3+, CeO [...] Read more.
Despite the increasing use of rare earth elements (REEs) and oxides (REOs) in various technologies, the information on their ecotoxicological hazard is scarce. Here, the effects of La3+, Ce3+, Pr3+, Nd3+, Gd3+, CeO2, and eight doped REOs to marine bacteria Vibrio fischeri and freshwater protozoa Tetrahymena thermophila were studied in parallel with REO dopant metals (Co2+, Fe3+, Mn2+, Ni2+, Sr2+). The highest concentrations of REOs tested were 100 mg/L with protozoa in deionized water and 500 mg/L with bacteria in 2% NaCl. Although (i) most REOs produced reactive oxygen species; (ii) all studied soluble REEs were toxic to bacteria (half-effective concentration, EC50 3.5–21 mg metal/L; minimal bactericidal concentration, MBC 6.3–63 mg/L) and to protozoa (EC50 28–42 mg/L); and (iii) also some dopant metals (Ni2+, Fe3+) proved toxic (EC50 ≤ 3 mg/L), no toxicity of REOs to protozoa (EC50 > 100 mg/L) and bacteria (EC50 > 500 mg/L; MBC > 500 mg/L) was observed except for La2NiO4 (MBC 25 mg/L). According to kinetics of V. fischeri bioluminescence, the toxicity of REEs was triggered by disturbing cellular membrane integrity. Fortunately, as REEs and REOs are currently produced in moderate amounts and form in the environment insoluble salts and/or oxides, they apparently present no harm to aquatic bacteria and protozoa. Full article
Show Figures

Figure 1

16 pages, 1615 KB  
Article
A Microfluidic Device for Continuous Sensing of Systemic Acute Toxicants in Drinking Water
by Xinyan Zhao and Tao Dong
Int. J. Environ. Res. Public Health 2013, 10(12), 6748-6763; https://doi.org/10.3390/ijerph10126748 - 3 Dec 2013
Cited by 36 | Viewed by 8757
Abstract
A bioluminescent-cell-based microfluidic device for sensing toxicants in drinking water was designed and fabricated. The system employed Vibrio fischeri cells as broad-spectrum sensors to monitor potential systemic cell toxicants in water, such as heavy metal ions and phenol. Specifically, the chip was designed [...] Read more.
A bioluminescent-cell-based microfluidic device for sensing toxicants in drinking water was designed and fabricated. The system employed Vibrio fischeri cells as broad-spectrum sensors to monitor potential systemic cell toxicants in water, such as heavy metal ions and phenol. Specifically, the chip was designed for continuous detection. The chip design included two counter-flow micromixers, a T-junction droplet generator and six spiral microchannels. The cell suspension and water sample were introduced into the micromixers and dispersed into droplets in the air flow. This guaranteed sufficient oxygen supply for the cell sensors. Copper (Cu2+), zinc (Zn2+), potassium dichromate and 3,5-dichlorophenol were selected as typical toxicants to validate the sensing system. Preliminary tests verified that the system was an effective screening tool for acute toxicants although it could not recognize or quantify specific toxicants. A distinct non-linear relationship was observed between the zinc ion concentration and the Relative Luminescence Units (RLU) obtained during testing. Thus, the concentration of simple toxic chemicals in water can be roughly estimated by this system. The proposed device shows great promise for an early warning system for water safety. Full article
(This article belongs to the Special Issue Recent Advances on Environmental and Toxicologic Pathology)
Show Figures

Graphical abstract

14 pages, 166 KB  
Article
LuxCDABE—Transformed Constitutively Bioluminescent Escherichia coli for Toxicity Screening: Comparison with Naturally Luminous Vibrio fischeri
by Imbi Kurvet, Angela Ivask, Olesja Bondarenko, Mariliis Sihtmäe and Anne Kahru
Sensors 2011, 11(8), 7865-7878; https://doi.org/10.3390/s110807865 - 11 Aug 2011
Cited by 62 | Viewed by 15228
Abstract
We show that in vitro toxicity assay based on inhibition of the bioluminescence of recombinant Escherichia coli encoding thermostable luciferase from Photorhabdus luminescens is a versatile alternative to Vibrio fischeri MicrotoxTM test. Performance of two luxCDABE-transformed E. coli MC1061 constructs (pDNlux) [...] Read more.
We show that in vitro toxicity assay based on inhibition of the bioluminescence of recombinant Escherichia coli encoding thermostable luciferase from Photorhabdus luminescens is a versatile alternative to Vibrio fischeri MicrotoxTM test. Performance of two luxCDABE-transformed E. coli MC1061 constructs (pDNlux) and (pSLlux) otherwise identical, but having 100-fold different background luminescence was compared with the performance of V. fischeri. The microplate luminometer and a kinetic Flash-Assay test format was used that differently from Microtox test is also applicable for high throughput analysis. Toxic effects (30-s till 30-min EC50) of four heavy metals (Zn, Cd, Hg, Cu) and three organic chemicals (aniline, 3,5-dichloroaniline and 3,5-dichlorophenol) were studied. Both E. coli strains had comparable sensitivity and the respective 30-min EC50 values highly correlated (log-log R2 = 0.99; p < 0.01) showing that the sensitivity of the recombinant bacteria towards chemicals analyzed did not depend on the bioluminescence level of the recombinant cells. The most toxic chemical for all used bacterial strains (E. coli, V. fischeri) was mercury whereas the lowest EC50 values for Hg (0.04–0.05 mg/L) and highest EC50 values for aniline (1,300–1,700 mg/L) were observed for E. coli strains. Despite of that, toxicity results obtained with both E. coli strains (pSLlux and pDNlux) significantly correlated with V. fischeri results (log-log R2 = 0.70/0.75; p < 0.05/0.01). The use of amino acids (0.25%) and glucose (0.05%)-supplemented M9 medium instead of leucine-supplemented saline significantly (p < 0.05) reduced the apparent toxicity of heavy metals to both E. coli strains up to three orders of magnitude, but had little or no complexing effect on organic compounds. Thus, P. luminescens luxCDABE-transformed E. coli strains can be successfully used for the acute toxicity screening of various types of organic chemicals and heavy metals and can replace V. fischeri in certain cases where the thermostability of luciferase >30 °C is crucial. The kinetic Flash Assay test format of the bioluminescence inhibition assay facilitates high throughput analysis. The assay medium, especially in case of testing heavy metals should be a compromise: optimal for the viability/luminescence of the recombinant test strain and of minimum complexing potential. Full article
(This article belongs to the Special Issue Sensing of Toxic and Hazardous Metals in Various Environmental Media)
Show Figures

Graphical abstract

Back to TopTop