Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = biodegradable dielectric liquids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2059 KiB  
Review
A State-of-the-Art Review on the Potential of Waste Cooking Oil as a Sustainable Insulating Liquid for Green Transformers
by Samson Okikiola Oparanti, Esther Ogwa Obebe, Issouf Fofana and Reza Jafari
Appl. Sci. 2025, 15(14), 7631; https://doi.org/10.3390/app15147631 - 8 Jul 2025
Viewed by 496
Abstract
Petroleum-based insulating liquids have traditionally been used in the electrical industry for cooling and insulation. However, their environmental drawbacks, such as non-biodegradability and ecological risks, have led to increasing regulatory restrictions. As a sustainable alternative, vegetable-based insulating liquids have gained attention due to [...] Read more.
Petroleum-based insulating liquids have traditionally been used in the electrical industry for cooling and insulation. However, their environmental drawbacks, such as non-biodegradability and ecological risks, have led to increasing regulatory restrictions. As a sustainable alternative, vegetable-based insulating liquids have gained attention due to their biodegradability, non-toxicity to aquatic and terrestrial ecosystems, and lower carbon emissions. Adopting vegetable-based insulating liquids also aligns with United Nations Sustainable Development Goals (SDGs) 7 and 13, which focus on cleaner energy sources and reducing carbon emissions. Despite these benefits, most commercially available vegetable-based insulating liquids are derived from edible seed oils, raising concerns about food security and the environmental footprint of large-scale agricultural production, which contributes to greenhouse gas emissions. In recent years, waste cooking oils (WCOs) have emerged as a promising resource for industrial applications through waste-to-value conversion processes. However, their potential as transformer insulating liquids remains largely unexplored due to limited research and available data. This review explores the feasibility of utilizing waste cooking oils as green transformer insulating liquids. It examines the conversion and purification processes required to enhance their suitability for insulation applications, evaluates their dielectric and thermal performance, and assesses their potential implementation in transformers based on existing literature. The objective is to provide a comprehensive assessment of waste cooking oil as an alternative insulating liquid, highlight key challenges associated with its adoption, and outline future research directions to optimize its properties for high-voltage transformer applications. Full article
(This article belongs to the Special Issue Novel Advances in High Voltage Insulation)
Show Figures

Figure 1

21 pages, 6655 KiB  
Article
Improving Oxidation Stability and Insulation Performance of Plant-Based Oils for Sustainable Power Transformers
by Samson Okikiola Oparanti, Issouf Fofana and Reza Jafari
Physchem 2025, 5(2), 23; https://doi.org/10.3390/physchem5020023 - 18 Jun 2025
Viewed by 410
Abstract
In power transformers, insulating liquids are essential for cooling, insulation, and condition monitoring. However, the environmental impact and biodegradability issues of traditional hydrocarbon-based liquids have spurred interest in green alternatives like natural esters. Despite their benefits, natural esters are highly prone to oxidation, [...] Read more.
In power transformers, insulating liquids are essential for cooling, insulation, and condition monitoring. However, the environmental impact and biodegradability issues of traditional hydrocarbon-based liquids have spurred interest in green alternatives like natural esters. Despite their benefits, natural esters are highly prone to oxidation, limiting their broader use. This study explores a novel blend of two plant-based oils, canola oil and methyl ester derived from palm kernel oil, enhanced with two antioxidants, Tert-butylhydroquinone (TBHQ) and 2,6-Di-tert-butyl-4-methyl-phenol (BHT), to improve oxidation resistance. The performance of this antioxidant-infused oil was evaluated in terms of its interaction with Kraft paper insulation through accelerated thermal aging over periods of 10, 20, 30, and 40 days. Key properties, including the viscosity, breakdown voltage, conductivity, and FTIR spectra of oils, were analyzed before and after aging. Additionally, the degradation of the Kraft paper was investigated using scanning electron microscopy (SEM), optical microscopy, and dielectric strength tests. The results show that the antioxidant-treated oil exhibits significantly enhanced molecular stability, reduced viscosity, lower conductivity, and improved breakdown voltage (53.16 kV after 40 days). Notably, the oil mixture maintained the integrity of the Kraft paper insulation better than traditional natural esters, demonstrating superior dielectric properties and a promising potential for more sustainable and reliable power transformer applications. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

22 pages, 3572 KiB  
Article
Analysis of the Effect of the Degree of Mixing of Synthetic Ester with Mineral Oil as an Impregnating Liquid of NOMEX® 910 Cellulose–Aramid Insulation on the Time Characteristics of Polarization and Depolarization Currents Using the PDC Method
by Adam Krotowski and Stefan Wolny
Energies 2025, 18(12), 3080; https://doi.org/10.3390/en18123080 - 11 Jun 2025
Viewed by 456
Abstract
This article continues the authors’ research on NOMEX® 910 cellulose–aramid insulation saturated with modern electrical insulating liquids, which is increasingly used in the construction of high-power transformers The increase in technical requirements and environmental awareness influences, nowadays, shows that, during the overhaul [...] Read more.
This article continues the authors’ research on NOMEX® 910 cellulose–aramid insulation saturated with modern electrical insulating liquids, which is increasingly used in the construction of high-power transformers The increase in technical requirements and environmental awareness influences, nowadays, shows that, during the overhaul and modernization of power transformers, petroleum-based mineral oils are increasingly being replaced by biodegradable synthetic esters (oil retrofilling). As a result of this process, the solid insulation of the windings are saturated with an oil–ester liquid mixture with a percentage composition that is difficult to predict. The purpose of the research described in this paper was to test the effect of the degree of mixing of synthetic ester with mineral oil on the diagnostic measurements of NOMEX® 910 cellulose–aramid insulation realized via the polarization PDC method. Thus, the research conducted included determining the influence of such factors as the degree of mixing of synthetic ester with mineral oil and the measurement temperature on the value of the recorded time courses of the polarization and depolarization current. The final stage of the research involved analyzing the extent to which the aforementioned factors affect parameters characterizing polarization processes in the dielectric, i.e., the dominant dielectric relaxation time constants τ1 and τ2, and the activation energy EA. The test and analysis results described in the paper will allow better interpretation of the results of diagnostic tests of transformers with solid insulation built on NOMEX® 910 paper, in which mineral oil was replaced with synthetic ester as a result of the upgrade. Full article
Show Figures

Figure 1

34 pages, 2370 KiB  
Review
Enhancing the Performance of Natural Ester Insulating Liquids in Power Transformers: A Comprehensive Review on Antioxidant Additives for Improved Oxidation Stability
by Esther Ogwa Obebe, Yazid Hadjadj, Samson Okikiola Oparanti and Issouf Fofana
Energies 2025, 18(7), 1690; https://doi.org/10.3390/en18071690 - 28 Mar 2025
Cited by 2 | Viewed by 1139
Abstract
The reliability of the electrical grid is vital to economic prosperity and quality of life. Power transformers, key components of transmission and distribution systems, represent major capital investments. Traditionally, these machines have relied on petroleum-based mineral oil as an insulating liquid. However, with [...] Read more.
The reliability of the electrical grid is vital to economic prosperity and quality of life. Power transformers, key components of transmission and distribution systems, represent major capital investments. Traditionally, these machines have relied on petroleum-based mineral oil as an insulating liquid. However, with a global shift toward sustainability, renewable insulating materials like natural esters are gaining attention due to their environmental and fire safety benefits. These biodegradable liquids are poised to replace hydrocarbon-based oils in transformers, aligning with Sustainable Development Goals 7 and 13 by promoting clean energy and climate action. Despite their advantages, natural esters face challenges in high-voltage applications, particularly due to oxidation stability issues linked to their fatty acid composition. Various antioxidants have been explored to address this, with synthetic antioxidants proving more effective than natural ones, especially under high-temperature conditions. Their superior thermal stability ensures that natural esters retain their cooling and dielectric properties, essential for transformer performance. Furthermore, integrating machine learning and artificial intelligence in antioxidant development and monitoring presents a transformative opportunity. This review provides insights into the role of antioxidants in natural ester-filled power equipment, supporting their broader adoption and contributing to a more sustainable energy future. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Figure 1

15 pages, 5167 KiB  
Article
Internal Arc Performance of Instrument Transformers Filled with Different Dielectric Liquids
by Ivan Mihoković, Anton Rački, Igor Žiger and Eduard Plavec
Energies 2024, 17(2), 493; https://doi.org/10.3390/en17020493 - 19 Jan 2024
Viewed by 2037
Abstract
Internal arc testing is still a controversial topic in the instrument transformer world. The main reason for that is the fact that even a fully successful test guarantees only a certain degree of transformer safety. Furthermore, the test does not cover a plethora [...] Read more.
Internal arc testing is still a controversial topic in the instrument transformer world. The main reason for that is the fact that even a fully successful test guarantees only a certain degree of transformer safety. Furthermore, the test does not cover a plethora of operational fault scenarios and has requirements which are not defined clearly enough. In addition, there are very few data available in the literature on the internal arc performance of alternative, biodegradable dielectric liquids. Some liquids (such as natural and synthetic esters) do inherently come with higher flash and fire points compared to conventional mineral oil, but there is insufficient test experience to corroborate the influence this high fire point has on the actual operation. Specifically, to the authors’ knowledge, internal arc tests on instrument transformers were never performed with biodegradable dielectric liquids, making the contributions of this paper a true world premiere. In short, this paper is intended to augment the existing standards, thus providing additional insight into how to test internal arc performance, what to look out for and what level of performance to expect, which is of broad interest to researchers, utility engineers and public alike. Full article
Show Figures

Figure 1

24 pages, 13727 KiB  
Review
A Brief Review of the Impregnation Process with Dielectric Fluids of Cellulosic Materials Used in Electric Power Transformers
by J. Sanz, C. J. Renedo, A. Ortiz, P. J. Quintanilla, F. Ortiz and D. F. García
Energies 2023, 16(9), 3673; https://doi.org/10.3390/en16093673 - 25 Apr 2023
Cited by 10 | Viewed by 3479
Abstract
In the manufacturing of power transformers, the impregnation of the solid electric insulation systems (cellulosic materials) with a dielectric liquid is a key issue for increasing the breakdown voltage of the insulation, and this prevents the apparition of partial discharges that deteriorate the [...] Read more.
In the manufacturing of power transformers, the impregnation of the solid electric insulation systems (cellulosic materials) with a dielectric liquid is a key issue for increasing the breakdown voltage of the insulation, and this prevents the apparition of partial discharges that deteriorate the insulation system. After introducing the problem, this article presents the theory of impregnation and later carries out a bibliographical review. Traditionally, mineral oils have been used as the dielectric liquid in electrical transformers, but for environmental (low biodegradability) and safety (low ignition temperature) reasons, since the mid-1980s, their substitution with other ester-type fluids has been studied. However, these liquids have some drawbacks, including their higher viscosity (especially at low temperatures). This property, among other aspects, makes the impregnation of cellulosic materials, which is part of the transformer manufacturing process, difficult, and therefore this tends to lengthen the manufacturing times of these machines. Full article
Show Figures

Figure 1

21 pages, 9429 KiB  
Review
Electroactive Polymer-Based Composites for Artificial Muscle-like Actuators: A Review
by Aleksey V. Maksimkin, Tarek Dayyoub, Dmitry V. Telyshev and Alexander Yu. Gerasimenko
Nanomaterials 2022, 12(13), 2272; https://doi.org/10.3390/nano12132272 - 1 Jul 2022
Cited by 68 | Viewed by 9986
Abstract
Unlike traditional actuators, such as piezoelectric ceramic or metallic actuators, polymer actuators are currently attracting more interest in biomedicine due to their unique properties, such as light weight, easy processing, biodegradability, fast response, large active strains, and good mechanical properties. They can be [...] Read more.
Unlike traditional actuators, such as piezoelectric ceramic or metallic actuators, polymer actuators are currently attracting more interest in biomedicine due to their unique properties, such as light weight, easy processing, biodegradability, fast response, large active strains, and good mechanical properties. They can be actuated under external stimuli, such as chemical (pH changes), electric, humidity, light, temperature, and magnetic field. Electroactive polymers (EAPs), called ‘artificial muscles’, can be activated by an electric stimulus, and fixed into a temporary shape. Restoring their permanent shape after the release of an electrical field, electroactive polymer is considered the most attractive actuator type because of its high suitability for prosthetics and soft robotics applications. However, robust control, modeling non-linear behavior, and scalable fabrication are considered the most critical challenges for applying the soft robotic systems in real conditions. Researchers from around the world investigate the scientific and engineering foundations of polymer actuators, especially the principles of their work, for the purpose of a better control of their capability and durability. The activation method of actuators and the realization of required mechanical properties are the main restrictions on using actuators in real applications. The latest highlights, operating principles, perspectives, and challenges of electroactive materials (EAPs) such as dielectric EAPs, ferroelectric polymers, electrostrictive graft elastomers, liquid crystal elastomers, ionic gels, and ionic polymer–metal composites are reviewed in this article. Full article
Show Figures

Figure 1

10 pages, 1798 KiB  
Article
Pre-Breakdown and Breakdown Behavior of Synthetic and Natural Ester Liquids under AC Stress
by Beki Sékongo, Stephan Brettschneider, U. Mohan Rao, Issouf Fofana, Marouane Jabbari, Patrick Picher and Zie Yeo
Energies 2022, 15(1), 167; https://doi.org/10.3390/en15010167 - 27 Dec 2021
Cited by 5 | Viewed by 2890
Abstract
In the last decades, a large focus is being placed on the sustainability and safety of the power transformer spectrum. Ester liquids, which have interesting properties such as high fire point and biodegradability, are gaining needed attraction. Since in-service condition, thermal aging deteriorates [...] Read more.
In the last decades, a large focus is being placed on the sustainability and safety of the power transformer spectrum. Ester liquids, which have interesting properties such as high fire point and biodegradability, are gaining needed attraction. Since in-service condition, thermal aging deteriorates the physicochemical and electrical properties of liquid dielectrics, it is important to study their long-term behavior. In this contribution, the pre-breakdown and breakdown behavior of ester fluids (synthetic and natural) under AC stress are investigated. Important characteristics, such as partial discharge pre-inception voltage, partial discharge inception voltage, breakdown voltage, average streamer velocity, and inception electric field, were assessed. The influence of the radius of curvature (of high voltage needle electrode) as well as the thermal degradation of typical ester liquids are also discussed. Mineral oil was also included in the tests loop as a benchmark for comparative purposes. It is found that the pre-inception voltage of ester liquids was, in most cases, higher than that of mineral oil. For a given radius of curvature, the streamer inception and breakdown voltages decreased with thermal aging. During the streamer initiation, the electric field at the electrode tip decreased with the increase in the radius of curvature. The velocity of the streamers seems to increase with the decrease in the radius of curvature. The period of vulnerability, the so-called “delay time”, seems to be independent of the aging or the radius of curvature for a given condition of the liquid. Full article
Show Figures

Figure 1

17 pages, 6466 KiB  
Article
Comparison of the Dielectric Properties of Ecoflex® with L,D-Poly(Lactic Acid) or Polycaprolactone in the Presence of SWCN or 5CB
by Patryk Fryń, Sebastian Lalik, Natalia Górska, Agnieszka Iwan and Monika Marzec
Materials 2021, 14(7), 1719; https://doi.org/10.3390/ma14071719 - 31 Mar 2021
Cited by 18 | Viewed by 3198
Abstract
The main goal of this paper was to study the dielectric properties of hybrid binary and ternary composites based on biodegradable polymer Ecoflex®, single walled carbon nanotubes (SWCN), and liquid crystalline 4′-pentyl-4-biphenylcarbonitrile (5CB) compound. The obtained results were compared with other [...] Read more.
The main goal of this paper was to study the dielectric properties of hybrid binary and ternary composites based on biodegradable polymer Ecoflex®, single walled carbon nanotubes (SWCN), and liquid crystalline 4′-pentyl-4-biphenylcarbonitrile (5CB) compound. The obtained results were compared with other created analogically to Ecoflex®, hybrid layers based on biodegradable polymers such as L,D-polylactide (L,D-PLA) and polycaprolactone (PCL). Frequency domain dielectric spectroscopy (FDDS) results were analyzed taking into consideration the amount of SWCN, frequency, and temperature. For pure Ecoflex®, two relaxation processes (α and β) were identified. It was shown that the SWCN admixture (in the weight ratio 10:0.01) did not change the properties of the Ecoflex® layer, while in the case of PCL and L,D-PLA, the layers became conductive. The dielectric constant increased with an increase in the content of SWCN in the Ecoflex® matrix and the conductive behavior was not visible, even for the greatest concentration (10:0.06 weight ratio). In the case of the Ecoflex® polymer matrix, the conduction relaxation process at a frequency ca. several kilohertz appeared and became stronger with an increase in the SWCN admixture in the matrix. Addition of oleic acid to the polymer matrix had a smaller effect on the increase in the dielectric response than the addition of liquid crystal 5CB. Fourier transform infrared (FTIR) results revealed that the molecular structure and chemical character of the Ecoflex® and PCL matrixes remained unchanged upon the addition of SWCN or 5CB in a weight ratio of 10:0.01 and 10:1, respectively, while molecular interactions appeared between L,D-PLA and 5CB. Moreover, adding oleic acid to pure Ecoflex® as well as the binary and ternary hybrid layers with SWCN and/or 5CB in a weight ratio of Ecoflex®:oleic acid equal to 10:0.3 did not have an influence on the chemical bonding of these materials. Full article
Show Figures

Figure 1

13 pages, 3550 KiB  
Article
Lightning Impulse Withstand of Natural Ester Liquid
by Stephanie Haegele, Farzaneh Vahidi, Stefan Tenbohlen, Kevin J. Rapp and Alan Sbravati
Energies 2018, 11(8), 1964; https://doi.org/10.3390/en11081964 - 28 Jul 2018
Cited by 27 | Viewed by 3901
Abstract
Due to the low biodegradability of mineral oil, intense research is conducted to define alternative liquids with comparable dielectric properties. Natural ester liquids are an alternative in focus; they are used increasingly as insulating liquid in distribution and power transformers. The main advantages [...] Read more.
Due to the low biodegradability of mineral oil, intense research is conducted to define alternative liquids with comparable dielectric properties. Natural ester liquids are an alternative in focus; they are used increasingly as insulating liquid in distribution and power transformers. The main advantages of natural ester liquids compared to mineral oil are their good biodegradability and mainly high flash and fire points providing better fire safety. The dielectric strength of natural ester liquids is comparable to conventional mineral oil for homogeneous field arrangements. However, many studies showed a reduced dielectric strength for highly inhomogeneous field arrangements. This study investigates at which degree of inhomogeneity differences in breakdown voltage between the two insulating liquids occur. Investigations use lightning impulses with different electrode arrangements representing different field inhomogeneity factors and different gap distances. To ensure comparisons with existing transformer geometries, investigations are application-oriented using a transformer conductor model, which is compared to other studies. Results show significant differences in breakdown voltage from an inhomogeneity factor of 0.1 (highly inhomogeneous field) depending on the gap distance. Larger electrode gaps provide a larger inhomogeneity at which differences in breakdown voltages occur. Full article
(This article belongs to the Special Issue Engineering Dielectric Liquid Applications)
Show Figures

Figure 1

13 pages, 2562 KiB  
Article
Characteristics of Negative Streamer Development in Ester Liquids and Mineral Oil in a Point-To-Sphere Electrode System with a Pressboard Barrier
by Pawel Rozga, Marcin Stanek and Bartlomiej Pasternak
Energies 2018, 11(5), 1088; https://doi.org/10.3390/en11051088 - 28 Apr 2018
Cited by 30 | Viewed by 4168
Abstract
This article presents the results of the studies on negative streamer propagation in a point-to-sphere electrode system with a pressboard barrier placed between them. The proposed electrode system gave the opportunity to assess the influence of the insulating barrier on streamer development in [...] Read more.
This article presents the results of the studies on negative streamer propagation in a point-to-sphere electrode system with a pressboard barrier placed between them. The proposed electrode system gave the opportunity to assess the influence of the insulating barrier on streamer development in the conditions close to the actual transformer insulating system where the liquid gap is typically divided in parts by using pressboard barriers. The studies were performed for five commercial dielectric liquids. Among them two were biodegradable synthetic esters and two were biodegradable natural esters. Mineral oil, as the fifth liquid, was used for comparison. The measurements were based on electrical and optical experimental techniques. From the results obtained it may be concluded that, independently of the liquids tested, the electrical strength of the insulating system considered was increased by about 50%. In the case of streamer development assessed using photomultiplier-based light registration it is not possible to indicate clearly which of the liquids tested is better under the conditions of the experiment. In all cases streamers always developed slowly (2nd mode) at all voltage levels applied during the studies. In turn, the intensity of the discharge processes, comparing the same voltage levels, was mostly higher when streamers developed in ester liquids, however, the differences noticed were minimal. Full article
(This article belongs to the Special Issue Engineering Dielectric Liquid Applications)
Show Figures

Figure 1

Back to TopTop