Pre-Breakdown and Breakdown Behavior of Synthetic and Natural Ester Liquids under AC Stress
Abstract
:1. Introduction
2. Background
3. Experimental Setup and Preparation of Samples
3.1. Experimental Setup
3.2. Sample Preparation
3.3. Sample Characterization
4. Results and Discussion
4.1. Delay Time ()
4.2. Pre-Breakdown Voltage
4.3. Streamer Inception Voltage
4.4. Breakdown Voltage
4.5. Influence of Electric Field and Streamer Velocity
4.5.1. Electric Field
4.5.2. Streamer Velocity
5. Conclusions and Future Scope
- The duration of the delay time is high in mineral insulating oil and is generally more than 8 s for all the liquids regardless of the tip radius and age factor. The streamer’s pre-inception voltages for NE and SE are slightly higher than that of the MO in most of the cases;
- The streamer inception voltage and breakdown voltages are almost identical at different tip radii, which is probably due to the extremely small tip radius adopted;
- The electric field at the electrode tip related to the streamer inception decreases with an increase in the radius of curvature. The electrodes with a small radius of curvature are detrimental to dielectrics;
- The streamers in the studied dielectrics propagate in the second mode (slow mode), and the propagation velocity seems to decrease with an increase in the radius of curvature. In other words, the average propagation speed of the streamers decreases with a reduction in the electric field at the HV electrode tip, during the inception of the streamers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rozga, P.; Stanek, M. Characteristics of streamers developing at inception voltage in small gaps of natural ester, synthetic ester and mineral oil under lightning impulse. IET Sci. Meas. Technol. 2015, 10, 50–57. [Google Scholar] [CrossRef]
- Rao, U.M.; Fofana, I.; Jaya, T.; Rodriguez-Celis, E.M.; Jalbert, J.; Picher, P. Alternative dielectric fluids for transformer insulation system: Progress, challenges, and future prospects. IEEE Access 2019, 7, 184552–184571. [Google Scholar]
- Essam, A.A.-A. Optical observation of streamer propagation and breakdown in seed based insulating oil under impulse voltages. Int. J. Phys. Sci. 2014, 9, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Pompili, M.; Mazzetti, C.; Bartnikas, R. Comparative PD pulse burst characteristics of transformer type natural and synthetic ester fluids and mineral oils. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 1511–1518. [Google Scholar] [CrossRef]
- Dang, V.H.; Beroual, A.; Perrier, C. Comparative study of statistical breakdown in mineral, synthetic and natural ester oils under AC voltage. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1508–1513. [Google Scholar] [CrossRef]
- Reffas, A.; Moulai, H.; Beroual, A. Creeping discharges propagating on natural ester oils/pressboard interface under AC and lightning impulse voltages. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1814–1821. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Z.D. Streamer characteristic and breakdown in synthetic and natural ester transformer liquids with pressboard interface under lightning impulse voltage. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1908–1917. [Google Scholar] [CrossRef]
- Chandrasekar, S.; Montanari, G.C. Analysis of partial discharge characteristics of natural esters as dielectric fluid for electric power apparatus applications. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 1251–1259. [Google Scholar] [CrossRef]
- Rao, U.M.; Fofana, I.; Beroual, A.; Rozga, P.; Pompili, M.; Calcara, L.; Rapp, K.J. A review on pre-breakdown phenomena in ester fluids: Prepared by the international study group of IEEE DEIS liquid dielectrics technical committee. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1546–1560. [Google Scholar] [CrossRef]
- Dielectric Performance of Insulating Liquids for Transformers, CIGRE TB 856, WG D1.70, TF 3. 2021. Available online: https://e-cigre.org/publication/856-dielectric-performance-of-insulating-liquids-for-transformers (accessed on 21 December 2021).
- Jayasree, T.; Rao, U.M.; Fofana, I.; Brettschneider, S.; Celis, E.M.R.; Picher, P. Pre-breakdown Phenomena and Influence of Aging Byproducts in Thermally Aged Low Pour Point Ester Fluids Under AC Stress. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1563–1570. [Google Scholar] [CrossRef]
- Lesaint, O. Prebreakdown phenomena in liquids: Propagation ‘modes’ and basic physical properties. J. Phys. D Appl. Phys. 2016, 49, 144001. [Google Scholar] [CrossRef]
- Rozga, P. Using the light emission measurement in assessment of electrical discharge development in different liquid dielectrics under lightning impulse voltage. Electr. Power Syst. Res. 2016, 140, 321–328. [Google Scholar] [CrossRef]
- Dang, V.-H.; Beroual, A.; Perrier, C. Investigations on streamers phenomena in mineral, synthetic and natural ester oils under lightning impulse voltage. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1521–1527. [Google Scholar] [CrossRef]
- Haegele, S.; Vahidi, F.; Tenbohlen, S.; Rapp, K.J.; Sbravati, A. Lightning Impulse Withstand of Natural Ester Liquid. Energies 2018, 11, 1964. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Liu, Q.; Wang, Z.D. Pre-breakdown and breakdown mechanisms of an inhibited gas to liquid hydrocarbon transformer oil under negative lightning impulse voltage. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2809–2818. [Google Scholar] [CrossRef] [Green Version]
- Perrier, C.; Beroual, A. Experimental Investigations on Insulating Ester, and Silicone Oils. IEEE Electr. Insul. Mag. 2009, 25, 6–13. [Google Scholar] [CrossRef]
- Beroual, A.; Tobazeon, R. Prebreakdown Phenomena in Liquid Dielectrics. IEEE Trans. Electr. Insul. 1986, EI-21, 613–627. [Google Scholar] [CrossRef]
- Fofana, I.; Beroual, A. Predischarge Models in Dielectric Liquids. Jpn. J. Appl. Phys. 1998, 37, 2540–2547. [Google Scholar] [CrossRef]
- Loiselle, L.; Rao, U.M.; Fofana, I.; Jaya, T. Monitoring colloidal and dissolved decay particles in ester dielectric fluids. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1516–1524. [Google Scholar] [CrossRef]
- Lu, W.; Liu, Q. Effect of cellulose particles on impulse breakdown in ester transformer liquids in uniform electric fields. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2554–2564. [Google Scholar] [CrossRef]
- Dumitrescu, L.; Lesaint, O.; Bonifaci, N.; Denat, A.; Notingher, P. Study of streamer inception in cyclohexane with a sensitive charge measurement technique under impulse voltage. J. Electrost. 2001, 53, 135–146. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sékongo, B.; Brettschneider, S.; Rao, U.M.; Fofana, I.; Jabbari, M.; Picher, P.; Yeo, Z. Pre-Breakdown and Breakdown Behavior of Synthetic and Natural Ester Liquids under AC Stress. Energies 2022, 15, 167. https://doi.org/10.3390/en15010167
Sékongo B, Brettschneider S, Rao UM, Fofana I, Jabbari M, Picher P, Yeo Z. Pre-Breakdown and Breakdown Behavior of Synthetic and Natural Ester Liquids under AC Stress. Energies. 2022; 15(1):167. https://doi.org/10.3390/en15010167
Chicago/Turabian StyleSékongo, Beki, Stephan Brettschneider, U. Mohan Rao, Issouf Fofana, Marouane Jabbari, Patrick Picher, and Zie Yeo. 2022. "Pre-Breakdown and Breakdown Behavior of Synthetic and Natural Ester Liquids under AC Stress" Energies 15, no. 1: 167. https://doi.org/10.3390/en15010167
APA StyleSékongo, B., Brettschneider, S., Rao, U. M., Fofana, I., Jabbari, M., Picher, P., & Yeo, Z. (2022). Pre-Breakdown and Breakdown Behavior of Synthetic and Natural Ester Liquids under AC Stress. Energies, 15(1), 167. https://doi.org/10.3390/en15010167