Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = biocatalyzed process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 928 KiB  
Review
On the Re-Creation of Protoribosome Analogues in the Lab
by Ilana Agmon
Int. J. Mol. Sci. 2024, 25(9), 4960; https://doi.org/10.3390/ijms25094960 - 2 May 2024
Cited by 2 | Viewed by 1475
Abstract
The evolution of the translation system is a fundamental issue in the quest for the origin of life. A feasible evolutionary scenario necessitates the autonomous emergence of a protoribosome capable of catalyzing the synthesis of the initial peptides. The peptidyl transferase center (PTC) [...] Read more.
The evolution of the translation system is a fundamental issue in the quest for the origin of life. A feasible evolutionary scenario necessitates the autonomous emergence of a protoribosome capable of catalyzing the synthesis of the initial peptides. The peptidyl transferase center (PTC) region in the modern ribosomal large subunit is believed to retain a vestige of such a prebiotic non-coded protoribosome, which would have self-assembled from random RNA chains, catalyzed peptide bond formation between arbitrary amino acids, and produced short peptides. Recently, three research groups experimentally demonstrated that several distinct dimeric constructs of protoribosome analogues, derived predicated on the approximate 2-fold rotational symmetry inherent in the PTC region, possess the ability to spontaneously fold, dimerize, and catalyze the formation of peptide bonds and of short peptides. These dimers are examined, aiming at retrieving information concerned with the characteristics of a prebiotic protoribosome. The analysis suggests preconditions for the laboratory re-creation of credible protoribosome analogues, including the preference of a heterodimer protoribosome, contradicting the common belief in the precedence of homodimers. Additionally, it derives a dynamic process which possibly played a role in the spontaneous production of the first bio-catalyzed peptides in the prebiotic world. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 2813 KiB  
Article
Optimization of Enzymatic Synthesis of D-Glucose-Based Surfactants Using Supported Aspergillus niger Lipase as Biocatalyst
by Alexis Spalletta, Nicolas Joly and Patrick Martin
Chemistry 2023, 5(3), 1855-1869; https://doi.org/10.3390/chemistry5030127 - 23 Aug 2023
Cited by 3 | Viewed by 2480
Abstract
Surfactants are amphiphilic molecules with the ability to modify the surface tension between two surfaces. They can be obtained by various methods, the main one being synthetic, from petroleum-based substrates. Their universal use in a wide range of fields has created a global [...] Read more.
Surfactants are amphiphilic molecules with the ability to modify the surface tension between two surfaces. They can be obtained by various methods, the main one being synthetic, from petroleum-based substrates. Their universal use in a wide range of fields has created a global market and, consequently, ecological, and economic expectations for their production. Biocatalyzed processes, involving enzymes, can address this objective with processes complying with the principles of green chemistry: energy saving, product selectivity, monodispersity, and reduction in the use of solvents, with energy eco-efficiency. For example, fatty-acid carbohydrate esters are biobased surfactants that can be synthesized by lipases. In this work, we were interested in the synthesis of D-glucose lauric ester, which presents interesting properties described in the literature, with Aspergillus niger lipase, rarely described with sugar substrates. We optimized the synthesis for different parameters and reaction media. This lipase appeared to be highly selective for 6-O-lauroyl-D-glucopyranose. However, the addition of DMSO (dimethyl sulfoxide) as a co-solvent displays a duality, increasing yields but leading to a loss of selectivity. In addition, DMSO generates more complex and energy-intensive purification and processing steps. Consequently, a bio-sourced alternative as co-solvent with 2MeTHF3one (2-methyltetrahydrofuran-3-one) is proposed to replace DMSO widely described in the literature. Full article
(This article belongs to the Special Issue Green Chemistry—a Themed Issue in Honor of Professor James Clark)
Show Figures

Graphical abstract

3 pages, 216 KiB  
Editorial
Biotransformation of Natural Products and Phytochemicals: Metabolites, Their Preparation, and Properties
by Kateřina Valentová
Int. J. Mol. Sci. 2023, 24(9), 8030; https://doi.org/10.3390/ijms24098030 - 28 Apr 2023
Cited by 8 | Viewed by 2431
Abstract
The term “biotransformation” refers to the process by which various compounds are biocatalyzed and enzymatically modified, as well as the metabolic changes that occur in organisms as a result of exposure to xenobiotics [...] Full article
25 pages, 9999 KiB  
Review
Bio-Based Valorization of Lignin-Derived Phenolic Compounds: A Review
by Ludmila Martínková, Michal Grulich, Miroslav Pátek, Barbora Křístková and Margit Winkler
Biomolecules 2023, 13(5), 717; https://doi.org/10.3390/biom13050717 - 22 Apr 2023
Cited by 41 | Viewed by 6306
Abstract
Lignins are the most abundant biopolymers that consist of aromatic units. Lignins are obtained by fractionation of lignocellulose in the form of “technical lignins”. The depolymerization (conversion) of lignin and the treatment of depolymerized lignin are challenging processes due to the complexity and [...] Read more.
Lignins are the most abundant biopolymers that consist of aromatic units. Lignins are obtained by fractionation of lignocellulose in the form of “technical lignins”. The depolymerization (conversion) of lignin and the treatment of depolymerized lignin are challenging processes due to the complexity and resistance of lignins. Progress toward mild work-up of lignins has been discussed in numerous reviews. The next step in the valorization of lignin is the conversion of lignin-based monomers, which are limited in number, into a wider range of bulk and fine chemicals. These reactions may need chemicals, catalysts, solvents, or energy from fossil resources. This is counterintuitive to green, sustainable chemistry. Therefore, in this review, we focus on biocatalyzed reactions of lignin monomers, e.g., vanillin, vanillic acid, syringaldehyde, guaiacols, (iso)eugenol, ferulic acid, p-coumaric acid, and alkylphenols. For each monomer, its production from lignin or lignocellulose is summarized, and, mainly, its biotransformations that provide useful chemicals are discussed. The technological maturity of these processes is characterized based on, e.g., scale, volumetric productivities, or isolated yields. The biocatalyzed reactions are compared with their chemically catalyzed counterparts if the latter are available. Full article
Show Figures

Graphical abstract

36 pages, 13253 KiB  
Review
Combination of Enzymes and Deep Eutectic Solvents as Powerful Toolbox for Organic Synthesis
by Davide Arnodo, Elia Maffeis, Francesco Marra, Stefano Nejrotti and Cristina Prandi
Molecules 2023, 28(2), 516; https://doi.org/10.3390/molecules28020516 - 5 Jan 2023
Cited by 35 | Viewed by 5111
Abstract
During the last decade, a wide spectrum of applications and advantages in the use of deep eutectic solvents for promoting organic reactions has been well established among the scientific community. Among these synthetic methodologies, in recent years, various examples of biocatalyzed processes have [...] Read more.
During the last decade, a wide spectrum of applications and advantages in the use of deep eutectic solvents for promoting organic reactions has been well established among the scientific community. Among these synthetic methodologies, in recent years, various examples of biocatalyzed processes have been reported, making use of eutectic mixtures as reaction media, as an improvement in terms of selectivity and sustainability. This review aims to show the newly reported protocols in the field, subdivided by reaction class as a ‘toolbox’ guide for organic synthesis. Full article
(This article belongs to the Special Issue Exclusive Review Papers in Green Chemistry)
Show Figures

Graphical abstract

17 pages, 11147 KiB  
Article
Bio-Assisted Leaching of Non-Ferrous Metals from Waste Printed Circuit Boards—Importance of Process Parameters
by Arevik Vardanyan, Narine Vardanyan, Mohamed Aâtach, Pierre Malavasi and Stoyan Gaydardzhiev
Metals 2022, 12(12), 2092; https://doi.org/10.3390/met12122092 - 6 Dec 2022
Cited by 12 | Viewed by 2626
Abstract
The effect of varying process parameters during bio-catalyzed leaching of metals from end-of-life printed circuit boards (PCBs) was investigated. Fragmented PCBs (under 2 mm) were subjected to an indirect bioleaching in a stirred tank reactor while pulp density, pH and initial ferric iron [...] Read more.
The effect of varying process parameters during bio-catalyzed leaching of metals from end-of-life printed circuit boards (PCBs) was investigated. Fragmented PCBs (under 2 mm) were subjected to an indirect bioleaching in a stirred tank reactor while pulp density, pH and initial ferric iron content were varied. An iron oxidizing Acidithiobacillus ferrooxidans 61 microbial strain was used to generate the lixiviant through oxidizing Fe(II) to Fe(III). Chemically generated Fe(III) was tested as lixiviant under the same conditions as the biological one for comparative purposes. Cell enumeration during leaching and microscopic observations of the input and leached PCBs were conducted in parallel to shed light on the observed phenomena. The degree of bringing metals in solution was found to depend mainly on ferric iron concentration and pH. For the entire duration being always kept as 24 h, substantial portion of Cu (~87%) was extracted respectively at 1% pulp density (PD), 15.5 g/L Fe3+ and pH 1. For Zn and Ni, nearly 100% recovery was observed at 5% PD, 18 g/L Fe3+ and pH 1.1. The achieved results offer possibilities for further studies at higher pulp density, to ultimately render the bioleaching approach as enabling economical and environmentally friendly technology for urban mining of non-ferrous metals. Full article
Show Figures

Figure 1

13 pages, 1266 KiB  
Article
Exploiting the Complementary Potential of Rice Bran Oil as a Low-Cost Raw Material for Bioenergy Production
by Emanuel Costa, Manuel Fonseca Almeida, Maria Conceição Alvim-Ferraz and Joana Maia Dias
Processes 2022, 10(11), 2460; https://doi.org/10.3390/pr10112460 - 21 Nov 2022
Cited by 2 | Viewed by 2415
Abstract
Rice is one of the most consumed cereals in the world. From rice processing, rice bran is obtained, and only a part of this by-product is effectively used. Rice bran oil can be obtained and used as an alternative feedstock for biodiesel production, [...] Read more.
Rice is one of the most consumed cereals in the world. From rice processing, rice bran is obtained, and only a part of this by-product is effectively used. Rice bran oil can be obtained and used as an alternative feedstock for biodiesel production, although few studies exist to support its exploitation. In addition, pretreatment is required to reduce its acidity and allow for its integration in the conventional industrial process. This work evaluated two pretreatment processes aiming to reduce the free fatty acids (FFAs) content of rice bran oil by employing an acid-catalyzed process and a biocatalyzed process. The results allowed us to assess the efficiency and effectiveness of both pretreatments. For that purpose, acid (45, 55 and 65 °C, using H2SO4 concentrations of 2 wt.% or 4 wt.% and a methanol:oil molar ratio of 9:1) and enzymatic FFAs conversion (35 °C using a 6:1 methanol:oil molar ratio and 5 wt.% of Thermomyces lanuginosus) were evaluated using rice bran oil with an acid value around 47 mg KOH.g−1, and the reaction kinetics were assessed. Acid esterification enabled a 92% acidity reduction (65 °C, 4 wt.% of catalyst) after 8 h, with the final product presenting an acid value of 3.7 mg KOH.g−1 and a biodiesel purity of 42 wt.%. The enzymatic process allowed an acidity reduction of 82%, resulting in a product with an acid value of 7.0 mg KOH.g−1; however, after 24 h, the biodiesel purity was 87 wt.% (almost a two-fold increase compared to that obtained in the homogeneous process), revealing the conversion of both free fatty acids and glycerides. The study of the reaction kinetics of the homogeneous (acid) esterification showed that, for temperatures > 45 °C, the constant rate increased with temperature. A higher constant rate was obtained for the temperature of 55 °C using 4 wt.% of catalyst (k′ = 0.13 min−1). For the heterogeneous (enzymatic) esterification, the constant rate obtained was lower (k′ = 0.028 min−1), as expected. The study revealed the technical viability of the esterification pretreatment of rice bran oil and the important parameters concerning the performance of the pretreatment solutions. Finally, the enzymatic process should be further explored, aiming to develop more ecofriendly processes (water and energy savings) to produce biodiesel from oils with a high acidity (low-cost raw materials). Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

13 pages, 1894 KiB  
Review
Microbiologically Influenced Corrosion Mechanism of Ferrous Alloys in Marine Environment
by M. Saleem Khan, Tao Liang, Yuzhi Liu, Yunzhu Shi, Huanhuan Zhang, Hongyu Li, Shifeng Guo, Haobo Pan, Ke Yang and Ying Zhao
Metals 2022, 12(9), 1458; https://doi.org/10.3390/met12091458 - 30 Aug 2022
Cited by 18 | Viewed by 6046
Abstract
In marine environments, microbial attacks on metallic materials result in microbiologically influenced corrosion (MIC), which could cause severe safety accidents and high economic losses. To date, MIC of a number of metallic materials ranging from common steels to corrosion-resistant ferrous alloys has been [...] Read more.
In marine environments, microbial attacks on metallic materials result in microbiologically influenced corrosion (MIC), which could cause severe safety accidents and high economic losses. To date, MIC of a number of metallic materials ranging from common steels to corrosion-resistant ferrous alloys has been reported. The MIC process has been explained based on (1) bio-catalyzed oxygen reduction; (2) kinetics alternation of the corrosion process by increasing the mass transport of the reactants and products; (3) production of corrosive substances; and (4) generation of auxiliary cathodic reactants. However, it is difficult to have a clear understanding of the MIC mechanism of ferrous alloys due to the interdisciplinary nature of MIC and lack of deep knowledge about the interfacial reaction between the biofilm and ferrous alloys. In order to better understand the effect of the MIC process on ferrous alloys, here we comprehensively summarized the process of biofilm formation and MIC mechanisms of ferrous alloys. Full article
Show Figures

Figure 1

14 pages, 2773 KiB  
Article
Selective Supercritical CO2 Extraction and Biocatalytic Valorization of Cucurbita pepo L. Industrial Residuals
by Alessio Massironi, Alessandro Di Fonzo, Ivan Bassanini, Erica Elisa Ferrandi, Stefania Marzorati, Daniela Monti and Luisella Verotta
Molecules 2022, 27(15), 4783; https://doi.org/10.3390/molecules27154783 - 26 Jul 2022
Cited by 4 | Viewed by 2627
Abstract
The valorization of biomass residuals constitutes a key aspect of circular economy and thus a major challenge for the scientific community. Among industrial wastes, plant residuals could represent an attractive source of bioactive compounds. In this context, a residue from the industrial extraction [...] Read more.
The valorization of biomass residuals constitutes a key aspect of circular economy and thus a major challenge for the scientific community. Among industrial wastes, plant residuals could represent an attractive source of bioactive compounds. In this context, a residue from the industrial extraction of Cucurbita pepo L. seeds, whose oil is commercialized for the treatment of genito-urinary tract pathologies, has been selected. Supercritical CO2 technology has been employed as a highly selective “green” methodology allowing the recovery of compounds without chemical degradation and limited operational costs. Free fatty acids have been collected in mild conditions while an enrichment in sterols has been selectively obtained from sc-CO2 extracts by appropriate modulation of process parameters (supercritical fluid pressure and temperature), hence demonstrating the feasibility of the technique to target added-value compounds in a selective way. Obtained fatty acids were thus converted into the corresponding ethanol carboxamide derivatives by lipase-mediated biocatalyzed reactions, while the hydroxylated derivatives of unsaturated fatty acids were obtained by stereoselective hydration reaction under reductive conditions in the presence of a selected FADH2-dependent oleate hydratase. Full article
(This article belongs to the Special Issue Chemical Applications of Supercritical Fluids)
Show Figures

Figure 1

15 pages, 1687 KiB  
Article
Xylitol as a Hydrophilization Moiety for a Biocatalytically Synthesized Ibuprofen Prodrug
by Federico Zappaterra, Chiara Tupini, Daniela Summa, Virginia Cristofori, Stefania Costa, Claudio Trapella, Ilaria Lampronti and Elena Tamburini
Int. J. Mol. Sci. 2022, 23(4), 2026; https://doi.org/10.3390/ijms23042026 - 11 Feb 2022
Cited by 13 | Viewed by 2877
Abstract
Biocatalyzed synthesis can be exploited to produce high-value products, such as prodrugs. The replacement of chemical approaches with biocatalytic processes is advantageous in terms of environmental prevention, embracing the principles of green chemistry. In this work, we propose the covalent attachment of xylitol [...] Read more.
Biocatalyzed synthesis can be exploited to produce high-value products, such as prodrugs. The replacement of chemical approaches with biocatalytic processes is advantageous in terms of environmental prevention, embracing the principles of green chemistry. In this work, we propose the covalent attachment of xylitol to ibuprofen to produce an IBU-xylitol ester prodrug. Xylitol was chosen as a hydrophilizer for the final prodrug, enhancing the water solubility of ibuprofen. Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) extensively used as an analgesic, anti-inflammatory, and antipyretic. Despite being the third-most-prescribed medicine in the world, the aqueous solubility of ibuprofen is just 21 mg/L. This poor water solubility greatly limits the bioavailability of ibuprofen. We aimed to functionalize ibuprofen with xylitol using the reusable immobilized N435 biocatalyst. Instead of a biphasic media, we proposed a monophasic reaction environment. The characterization of the IBU-xylitol ester was performed by 1H, 13C-NMR, DEPT, COSY, HMQC, HMBC, FTIR, and MS spectroscopy. Preliminary in vitro tests showed that this enzymatically synthesized prodrug of ibuprofen reduced the expression of the interleukin 8 genes in human bronchial epithelial cells (IB3-1) from cystic fibrosis (CF) patients. Full article
Show Figures

Figure 1

1 pages, 160 KiB  
Abstract
Enhanced Biodegradation of Polyethylene Terephthalate (PET) via Microwave-Assisted Green Bio-Based Deep Eutectic Solvent Pre-Treatment Technique
by Muhammad Azeem, Olivia Adly Attallah and Margaret Brennan Fournet
Chem. Proc. 2022, 6(1), 9; https://doi.org/10.3390/ECCS2021-11181 - 15 Oct 2021
Viewed by 1452
Abstract
Most plastic degradation methods are currently inefficient and are limited by processing difficulties, quality loss, and diminished value. This research focuses on the development of novel mechano-chemical disintegration processes for the breakdown of waste plastics. The outputs will be biocatalyzed and used as [...] Read more.
Most plastic degradation methods are currently inefficient and are limited by processing difficulties, quality loss, and diminished value. This research focuses on the development of novel mechano-chemical disintegration processes for the breakdown of waste plastics. The outputs will be biocatalyzed and used as building blocks for new polymers or other bioproducts. For the purpose of this research, microwave pre-treatment technology was used. Microwave technology is an ideal pre-treatment process for the degradation of plastics due to its lower treatment times under lower energy inputs. In the previous work, extensive research has been carried out utilizing different solvents and catalysts to develop efficient degradation mechanisms under microwave irradiations. A new class of ionic liquids (deep eutectic solvents) were used as catalysts to make a suspension with poly(ethylene terephthalate) (PET) and develop an alcoholysis reaction. Certain degradation parameters like crystallinity index, weight loss, and carbonyl index were depicted using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR) characterization techniques. Furthermore, enhanced enzymatic degradation using LCC variant ICCG proved that microwave technology is an efficient process for the alcoholysis reaction and degradation of PET under mild conditions into its monomers. Full article
8 pages, 729 KiB  
Article
Biocatalyzed Flow Oxidation of Tyrosol to Hydroxytyrosol and Efficient Production of Their Acetate Esters
by Francesca Annunziata, Martina L. Contente, Cecilia Pinna, Lucia Tamborini and Andrea Pinto
Antioxidants 2021, 10(7), 1142; https://doi.org/10.3390/antiox10071142 - 19 Jul 2021
Cited by 23 | Viewed by 4638
Abstract
Tyrosol (Ty) and hydroxytyrosol (HTy) are valuable dietary phenolic compounds present in olive oil and wine, widely used for food, nutraceutical and cosmetic applications. Ty and HTy are endowed with a number of health-related biological activities, including antioxidant, antimicrobial and anti-inflammatory properties. In [...] Read more.
Tyrosol (Ty) and hydroxytyrosol (HTy) are valuable dietary phenolic compounds present in olive oil and wine, widely used for food, nutraceutical and cosmetic applications. Ty and HTy are endowed with a number of health-related biological activities, including antioxidant, antimicrobial and anti-inflammatory properties. In this work, we developed a sustainable, biocatalyzed flow protocol for the chemo- and regio-selective oxidation of Ty into HTy catalyzed by free tyrosinase from Agaricus bisporus in a gas/liquid biphasic system. The aqueous flow stream was then in-line extracted to recirculate the water medium containing the biocatalyst and the excess ascorbic acid, thus improving the cost-efficiency of the process and creating a self-sufficient closed-loop system. The organic layer was purified in-line through a catch-and-release procedure using supported boronic acid that was able to trap HTy and leave the unreacted Ty in solution. Moreover, the acetate derivatives (TyAc and HTyAc) were produced by exploiting a bioreactor packed with an immobilized acyltransferase from Mycobacterium smegmatis (MsAcT), able to selectively act on the primary alcohol. Under optimized conditions, high-value HTy was obtained in 75% yield, whereas TyAc and HTyAc were isolated in yields of up to 80% in only 10 min of residence time. Full article
Show Figures

Graphical abstract

18 pages, 1810 KiB  
Review
Enzymatic Methods for the Manipulation and Valorization of Soapstock from Vegetable Oil Refining Processes
by Beatrice Casali, Elisabetta Brenna, Fabio Parmeggiani, Davide Tessaro and Francesca Tentori
Sustain. Chem. 2021, 2(1), 74-91; https://doi.org/10.3390/suschem2010006 - 7 Feb 2021
Cited by 26 | Viewed by 9525
Abstract
The review will discuss the methods that have been optimized so far for the enzymatic hydrolysis of soapstock into enriched mixtures of free fatty acids, in order to offer a sustainable alternative to the procedure which is currently employed at the industrial level [...] Read more.
The review will discuss the methods that have been optimized so far for the enzymatic hydrolysis of soapstock into enriched mixtures of free fatty acids, in order to offer a sustainable alternative to the procedure which is currently employed at the industrial level for converting soapstock into the by-product known as acid oil (or olein, i.e., free fatty acids removed from raw vegetable oil, dissolved in residual triglycerides). The further biocatalyzed manipulation of soapstock or of the corresponding acid oil for the production of biodiesel and fine chemicals (surfactants, plasticizers, and additives) will be described, with specific attention given to processes performed in continuous flow mode. The valorization of soapstock as carbon source in industrial lipase production will be also considered. Full article
Show Figures

Figure 1

30 pages, 11068 KiB  
Review
Biocatalysis with Laccases: An Updated Overview
by Ivan Bassanini, Erica Elisa Ferrandi, Sergio Riva and Daniela Monti
Catalysts 2021, 11(1), 26; https://doi.org/10.3390/catal11010026 - 28 Dec 2020
Cited by 104 | Viewed by 11670
Abstract
Laccases are multicopper oxidases, which have been widely investigated in recent decades thanks to their ability to oxidize organic substrates to the corresponding radicals while producing water at the expense of molecular oxygen. Besides their successful (bio)technological applications, for example, in textile, petrochemical, [...] Read more.
Laccases are multicopper oxidases, which have been widely investigated in recent decades thanks to their ability to oxidize organic substrates to the corresponding radicals while producing water at the expense of molecular oxygen. Besides their successful (bio)technological applications, for example, in textile, petrochemical, and detoxifications/bioremediations industrial processes, their synthetic potentialities for the mild and green preparation or selective modification of fine chemicals are of outstanding value in biocatalyzed organic synthesis. Accordingly, this review is focused on reporting and rationalizing some of the most recent and interesting synthetic exploitations of laccases. Applications of the so-called laccase-mediator system (LMS) for alcohol oxidation are discussed with a focus on carbohydrate chemistry and natural products modification as well as on bio- and chemo-integrated processes. The laccase-catalyzed Csp2-H bonds activation via monoelectronic oxidation is also discussed by reporting examples of enzymatic C-C and C-O radical homo- and hetero-couplings, as well as of aromatic nucleophilic substitutions of hydroquinones or quinoids. Finally, the laccase-initiated domino/cascade synthesis of valuable aromatic (hetero)cycles, elegant strategies widely documented in the literature across more than three decades, is also presented. Full article
(This article belongs to the Special Issue Industrial Biocatalysis: Challenges and Opportunities)
Show Figures

Figure 1

19 pages, 3159 KiB  
Review
The Importance of Ionic Liquids in the Modification of Starch and Processing of Starch-Based Materials
by Sylwia Ptak, Arkadiusz Zarski and Janusz Kapusniak
Materials 2020, 13(20), 4479; https://doi.org/10.3390/ma13204479 - 9 Oct 2020
Cited by 25 | Viewed by 4010
Abstract
The main applications of ionic liquids in chemistry and material research on one of the most important natural polymers—starch—are presented in this review. A brief characterization of ionic liquids and the advantages and disadvantages of using them in the modification and processing of [...] Read more.
The main applications of ionic liquids in chemistry and material research on one of the most important natural polymers—starch—are presented in this review. A brief characterization of ionic liquids and the advantages and disadvantages of using them in the modification and processing of polysaccharides is presented. The latest reports on the use of various ionic liquids as solvents or co-solvents; as media for synthesizing starch derivatives in oxidation, etherification, esterification, and transesterification, with particular emphasis on biocatalyzed reactions; and as plasticizers or compatibilizers in the processing of starch-based polymers have been investigated. The current trends, possibilities, and limitations of using this type of compound for the production of functional starch-based materials are presented. Full article
(This article belongs to the Special Issue Properties and Applications of Ionic Liquids)
Show Figures

Figure 1

Back to TopTop