error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (248)

Search Parameters:
Keywords = bike sharing system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4660 KB  
Article
Effects of Multidimensional Factors on the Distance Decay of Bike-Sharing Access to Metro Stations
by Tingzhao Chen, Yuting Wang, Yanyan Chen, Haodong Sun and Xiqi Wang
Appl. Sci. 2025, 15(24), 13228; https://doi.org/10.3390/app152413228 - 17 Dec 2025
Viewed by 170
Abstract
The last kilometer connection problem of metro transit stations is the core factor to measure the connection efficiency and service quality. Establishing the spatiotemporal distribution pattern of the connection distance is conducive to clarifying the interaction mechanism between bike-sharing connections and urban space. [...] Read more.
The last kilometer connection problem of metro transit stations is the core factor to measure the connection efficiency and service quality. Establishing the spatiotemporal distribution pattern of the connection distance is conducive to clarifying the interaction mechanism between bike-sharing connections and urban space. This study focuses on the travel behavior of shared bicycle users accessing metro stations, aiming to reveal the access distance decay patterns and their relationship with influence factors. Finally, the random forest algorithm was used to explore the nonlinear relationship between the influencing factors and the connection decay distance, and to clarify the importance of the factors. Multiple linear regression was applied to examine the linear correlation between the distance decay coefficient and the factors influence. The geographically weighted regression was further employed to explore spatial variations in their effects. Finally, the random forest algorithm was used to rank the importance of the impact factors. The results indicate that proximity distance to metro stations, proximity distance to bus stops, and the number of bus routes serving the station area have significant negative correlations with the distance decay coefficient. Significant spatial heterogeneity was observed in the influence of each factor on the distance decay coefficient, based on the geographically weighted regression analysis. With a high goodness-of-fit (R2 = 0.8032), the Random Forest regression model furthermore quantified the relative importance of each factor influencing the distance decay coefficient. The findings can be directly applied to optimize the layout of shared bicycle parking, metro access facilities planning, and multi-modal transportation system design. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

32 pages, 19779 KB  
Article
Electric Bikes and Scooters Versus Muscular Bikes in Free-Floating Shared Services: Reconstructing Trips with GPS Data from Florence and Bologna, Italy
by Giacomo Bernieri, Joerg Schweizer and Federico Rupi
Sustainability 2025, 17(24), 11153; https://doi.org/10.3390/su172411153 - 12 Dec 2025
Viewed by 387
Abstract
Bike-sharing services contribute to reducing emissions and conserving natural resources within urban transportation systems. They also promote public health by encouraging physical activity and generate economic benefits through shorter travel times, lower transportation costs, and decreased demand for parking infrastructure. This paper examines [...] Read more.
Bike-sharing services contribute to reducing emissions and conserving natural resources within urban transportation systems. They also promote public health by encouraging physical activity and generate economic benefits through shorter travel times, lower transportation costs, and decreased demand for parking infrastructure. This paper examines the use of shared micro-mobility services in the Italian cities of Florence and Bologna, based on an analysis of GPS origin–destination data and associated temporal coordinates provided by the RideMovi company. Given the still-limited number of studies on free-floating and electric-scooter-sharing systems, the objective of this work is to quantify the performance of electric bikes and e-scooters in bike-sharing schemes and compare it to traditional, muscular bikes. Trips were reconstructed starting from GPS data of origin and destination of the trip with a shortest path criteria that considers the availability of bike lanes. Results show that e-bikes are from 22 to 26% faster on average with respect to muscular bikes, extending trip range in Bologna but not in Florence. Electric modes attract more users than traditional bikes, e-bikes have from 40 to 128% higher daily turnover in Bologna and Florence and e-scooters from 33 to 62% higher in Florence with respect to traditional bikes. Overall, turnover is fairly low, with less than two trips per vehicle per day. The performance is measured in terms of trip duration, speed, and distance. Further characteristics such as daily turnover by transport mode are investigated and compared. Finally, spatial analysis was conducted to observe demand asymmetries in the two case studies. The results aim to support planners and operators in designing and managing more efficient and user-oriented services. Full article
(This article belongs to the Collection Sustainable Maritime Policy and Management)
Show Figures

Figure 1

20 pages, 6042 KB  
Article
GeoSpatial Analysis of Health-Oriented Justice in Tartu, Estonia
by Najmeh Mozaffaree Pour
ISPRS Int. J. Geo-Inf. 2025, 14(12), 467; https://doi.org/10.3390/ijgi14120467 - 28 Nov 2025
Viewed by 481
Abstract
This study investigates the role of modern small-scale cities in addressing public health challenges through the lens of spatial justice, using the city of Tartu, Estonia, as a case study. Tartu has been recognized for its progressive public health initiatives, including the Tartu [...] Read more.
This study investigates the role of modern small-scale cities in addressing public health challenges through the lens of spatial justice, using the city of Tartu, Estonia, as a case study. Tartu has been recognized for its progressive public health initiatives, including the Tartu Health Care College, Mental Health Centre, Smoke-Free Tartu campaign, Health Trail network, Healthy School Program, and an expanding smart bike-sharing system. By employing Geographic Information Systems (GIS), we map and analyze the spatial distribution and accessibility of health-promoting infrastructure, such as healthcare facilities, green and blue spaces, health trails, and mobility services, across the urban landscape. A population-weighted accessibility assessment indicates that, although Tartu’s central districts (e.g., Kesklinn (HRI: 0.972)) are well-served, peripheral and densely populated districts such as Annelinn (HRI: 0.351) and Ropka (HRI: 0.377) exhibit notable deficits in health-related infrastructure. However, access to green infrastructure and mobility services is more evenly distributed citywide, reflecting a relatively equitable provision of non-clinical health assets. These findings highlight both the strengths and spatial gaps in Tartu’s health-oriented urban design, emphasizing the need for targeted investment in underserved areas. The study contributes to emerging studies on health-justice planning in small-scale urban contexts and demonstrates how spatial analytics can be guided to advance distributional justice in the provision of public health infrastructure. Ultimately, this research indicates the essential role of spatial analysis in guiding inclusive and data-informed health planning in urban environments. Full article
Show Figures

Figure 1

18 pages, 3065 KB  
Article
A Multidimensional Approach to Bike Usage in Barcelona: Influence of Infrastructure Design, Safety, and Climatic Conditions
by Margarita Martínez-Díaz and Raúl José Verenzuela Gómez
Sustainability 2025, 17(22), 10336; https://doi.org/10.3390/su172210336 - 19 Nov 2025
Viewed by 514
Abstract
Promoting cycling as a sustainable mode of transport is a pressing priority in contemporary urban mobility planning. This study examines the infrastructure characteristics that most strongly influence bicycle use in dense metropolitan contexts. A mixed-methods approach was adopted, combining a systematic review of [...] Read more.
Promoting cycling as a sustainable mode of transport is a pressing priority in contemporary urban mobility planning. This study examines the infrastructure characteristics that most strongly influence bicycle use in dense metropolitan contexts. A mixed-methods approach was adopted, combining a systematic review of current design guidelines with a large-scale empirical analysis of Barcelona’s Bicing bike-sharing system. The dataset comprised more than 54 million recorded trips, enabling the identification of the most and least frequented routes and the subsequent assessment of their infrastructural attributes. The results indicate that network configuration, continuity, and adaptation to topographic conditions have the greatest influence on cycling uptake. By contrast, factors frequently emphasized in design recommendations, such as lane width, were not decisive, as several of the city’s most intensively used corridors did not conform to these standards. These findings suggest that the expansion of network coverage and the improvement of route connectivity are more effective strategies for increasing cycling adoption than isolated design optimizations. This study contributes evidence-based guidance for urban planners and policy-makers seeking to advance cycling as a principal component of sustainable urban mobility in Barcelona and other comparable urban environments. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

22 pages, 2301 KB  
Article
Multi-Modal Dynamic Transit Assignment for Transit Networks Incorporating Bike-Sharing
by Yindong Shen and Zhuang Qian
Future Transp. 2025, 5(4), 148; https://doi.org/10.3390/futuretransp5040148 - 17 Oct 2025
Viewed by 583
Abstract
Traditional multi-modal dynamic transit assignment (DTA) models predominantly focus on bus and rail systems, overlooking the role of bike-sharing in passenger flow distribution. To bridge this gap, a multi-modal dynamic transit assignment model incorporating bike-sharing (MMDTA-BS) is proposed. This model integrates bike-sharing, buses, [...] Read more.
Traditional multi-modal dynamic transit assignment (DTA) models predominantly focus on bus and rail systems, overlooking the role of bike-sharing in passenger flow distribution. To bridge this gap, a multi-modal dynamic transit assignment model incorporating bike-sharing (MMDTA-BS) is proposed. This model integrates bike-sharing, buses, rail services, and walking into a unified framework. Represented by the variational inequality (VI), the MMDTA-BS model is proven to satisfy the multi-modal dynamic transit user equilibrium conditions. To solve the VI formulation, a projection-based approach with dynamic path costing (PA-DPC) is developed. This approach dynamically updates path costs to accelerate convergence. Experiments conducted on real-world networks demonstrate that the PA-DPC approach achieves rapid convergence and outperforms all compared algorithms. The results also reveal that bike-sharing can serve as an effective means for transferring passengers to rail modes and attracting short-haul passengers. Moreover, the model can quantify bike-sharing demand imbalances and offer actionable insights for optimizing bike deployment and urban transit planning. Full article
Show Figures

Figure 1

15 pages, 645 KB  
Article
Drivers’ Risk and Emotional Intelligence in Safe Interactions with Vulnerable Road Users: Toward Sustainable Mobility
by Shiva Pourfalatoun, Erika E. Gallegos and Jubaer Ahmed
Sustainability 2025, 17(20), 9185; https://doi.org/10.3390/su17209185 - 16 Oct 2025
Viewed by 792
Abstract
Sustainable urban transportation relies on safe interactions between motor vehicles and vulnerable road users (VRUs) such as bicyclists and pedestrians. This study evaluates how drivers’ risk-taking and emotional intelligence (EI) influence their interactions with VRUs in urban environments. A driving simulator study with [...] Read more.
Sustainable urban transportation relies on safe interactions between motor vehicles and vulnerable road users (VRUs) such as bicyclists and pedestrians. This study evaluates how drivers’ risk-taking and emotional intelligence (EI) influence their interactions with VRUs in urban environments. A driving simulator study with 40 participants examined nine bicycle-passing events and one pedestrian-crossing scenario. The results show that higher risk-taking is significantly associated with more hazardous behaviors: each unit increase in risk-taking predicted a 4.02 mph higher passing speed and a 60% lower likelihood of braking for pedestrians. Event context also shaped behavior: drivers reduced their speed by 2.52 mph when passing cyclists on the road and by 2.33 mph for groups of cyclists, compared to single cyclists in bike lanes. Across all risk categories, the participants expressed discomfort when sharing the road, preferring to pass bicyclists on sidewalks, although the ‘risk-avoidant’ group reported significant discomfort even in these scenarios. EI did not significantly predict driving outcomes, likely reflecting limited score variability rather than an absence of influence. These insights support sustainable urban mobility by informing risk-based driver training and safer infrastructure design. Improving driver–VRU interactions helps create safer streets for walking and cycling, an essential condition for reducing car dependence and advancing sustainable transportation systems. Full article
Show Figures

Figure 1

20 pages, 24177 KB  
Article
Network-Wide GIS Mapping of Cycling Vibration Comfort: From Methodology to Real-World Implementation
by Jie Gao, Xixian Wu, Zijie Xie, Liang Song and Shandong Fang
Sensors 2025, 25(19), 6185; https://doi.org/10.3390/s25196185 - 6 Oct 2025
Viewed by 723
Abstract
Cycling-induced vibration significantly affects riding comfort, with road surface conditions and vehicle type identified as primary contributing factors. This study developed a vibration measurement system based on ISO 2631-1, and proposed a method for generating cycling comfort maps grounded in vibration severity levels. [...] Read more.
Cycling-induced vibration significantly affects riding comfort, with road surface conditions and vehicle type identified as primary contributing factors. This study developed a vibration measurement system based on ISO 2631-1, and proposed a method for generating cycling comfort maps grounded in vibration severity levels. Field measurements on 30 campus roads in Nanchang, China, used a Mountain Bike, Shared E-bike, and Shared Bicycle. Triaxial acceleration data were collected to evaluate vibration exposure, and comfort levels were classified to produce spatially resolved maps. Results show the proposed system has strong stability and adaptability across urban environments. The maps effectively captured vibration intensity variations along road segments. Among the three vehicle types, Mountain Bikes showed the lowest vibration exposure, with approximately 90% of segments rated as comfortable. Shared E-bike exhibited moderate vibration levels, with 42% of segments deemed uncomfortable, while Shared Bicycles experienced the highest vibration, with 80% of routes potentially inducing discomfort and only 1% meeting comfort standards. This study offers a framework for objective acquisition and visualization of cycling vibration data. The developed system and mapping method provide tools for assessing vehicle vibration, guiding route selection, and offer potential value for road quality monitoring. Full article
Show Figures

Figure 1

21 pages, 15699 KB  
Article
Advancing Shared Cargo Bike Systems: A Mixed-Methods Approach to Identifying Key Success Factors and Spatial Allocation in Urban Contexts
by Joel Otterloo Kuronen and Erik Elldér
Sustainability 2025, 17(17), 8022; https://doi.org/10.3390/su17178022 - 5 Sep 2025
Viewed by 1571
Abstract
Shared cargo bike services hold significant potential for promoting sustainable urban mobility, yet their adoption remains limited—especially for private, everyday use. This study investigates how such systems can be more effectively integrated into urban transport by identifying key enablers and operationalizing them through [...] Read more.
Shared cargo bike services hold significant potential for promoting sustainable urban mobility, yet their adoption remains limited—especially for private, everyday use. This study investigates how such systems can be more effectively integrated into urban transport by identifying key enablers and operationalizing them through a GIS-based multi-criteria analysis (MCA). Using a mixed-methods approach, expert interviews were conducted to explore success factors and barriers. Results highlight the dual function of shared cargo bikes: enabling occasional use while increasing long-term uptake by fostering trial and visibility. The study identifies both spatial and non-spatial enablers. Key spatial factors include high visibility, pedestrian flows, access to public transport and cycling networks, and placement in mixed-use areas. Non-spatial enablers include technical reliability, ease of use, strong visual identity, subsidies, and trial opportunities. The spatial enablers were operationalized into seven criteria in the MCA. Based on qualitative expert interviews and thematic analysis, the highest weights were assigned to visibility and pedestrian flows, followed by proximity to public transport and local centers, while lower weights were given to proximity to residences, population density, and access to cycle paths. The results offer guidance for station placement and demonstrate the role of shared cargo bikes in sustainable urban transport. Full article
Show Figures

Figure 1

21 pages, 3079 KB  
Article
A Spatial Approach to Balancing Demand and Supply in Combined Public Transit and Bike-Sharing Networks: A Case Application in Tehran
by Fereshteh Faghihinejad and Randy Machemehl
Future Transp. 2025, 5(3), 117; https://doi.org/10.3390/futuretransp5030117 - 3 Sep 2025
Cited by 1 | Viewed by 1219
Abstract
Combining public transportation (PT) with Bike-Sharing Systems (BSSs) offers a pathway toward the sustainable development of urban mobility. These systems can reduce fuel consumption, air pollution, and street congestion, especially during peak hours. Moreover, PT and BSS are frequently used by individuals without [...] Read more.
Combining public transportation (PT) with Bike-Sharing Systems (BSSs) offers a pathway toward the sustainable development of urban mobility. These systems can reduce fuel consumption, air pollution, and street congestion, especially during peak hours. Moreover, PT and BSS are frequently used by individuals without access to private vehicles, including low-income groups and students. Whereas increasing PT network infrastructure is constrained by issues such as high capital costs and limited street space (which inhibits mass transit options like BRT or trams), BSS can be used as an adaptable and affordable solution to fill these gaps. In particular, BSS can facilitate the “first-mile–last-mile” legs of PT journeys. However, many transit agencies still rely on traditional joint service planning and overlook BSS as a critical mode in integrated travel chains. This paper proposes that PT and BSS be considered as a unified network and introduces a framework to assess whether access to this integrated system is equitably distributed across urban areas. The framework estimates demand for travel using public mobility options and supply at the level of Traffic Analysis Zones (TAZs), treating PT and BSS as complementary modes. Spatial accessibility analysis is employed to examine connectivity using factors that affect access to both PT and BSS. The proposed approach is tested by taking Tehran as the focus of the case analysis. The results identify the most accessible areas and highlight those that require improved PT-BSS integration. These findings provide policy-relevant suggestions to promote equity and efficiency in urban transport planning. The outcomes reveal that central TAZs in Tehran receive the highest level of PT-BSS integration, while the western and southern TAZs are in urgent need of adjustment to ensure better distribution of integrated public transportation and bike-sharing services. Full article
Show Figures

Figure 1

41 pages, 3940 KB  
Article
Economic Optimization of Bike-Sharing Systems via Nonlinear Threshold Effects: An Interpretable Machine Learning Approach in Xi’an, China
by Haolong Yang, Chen Feng and Chao Gao
ISPRS Int. J. Geo-Inf. 2025, 14(9), 333; https://doi.org/10.3390/ijgi14090333 - 27 Aug 2025
Cited by 2 | Viewed by 1423
Abstract
As bike-sharing systems become increasingly integral to sustainable urban mobility, understanding their economic viability requires moving beyond conventional linear models to capture complex operational dynamics. This study develops an interpretable analytical framework to uncover non-linear relationships governing bike-sharing economic performance in Xi’an, China, [...] Read more.
As bike-sharing systems become increasingly integral to sustainable urban mobility, understanding their economic viability requires moving beyond conventional linear models to capture complex operational dynamics. This study develops an interpretable analytical framework to uncover non-linear relationships governing bike-sharing economic performance in Xi’an, China, utilizing one-month operational data across 202 Transportation Analysis Zones (TAZs). Combining spatial analysis with explainable machine learning (XGBoost–SHAP), we systematically examine how operational factors and built environment characteristics interact to influence economic outcomes, achieving superior predictive performance (R2 = 0.847) compared to baseline linear regression models (R2 = 0.652). The SHAP-based interpretation reveals three key findings: (1) bike-sharing performance exhibits pronounced spatial heterogeneity that correlates strongly with urban functional patterns), with commercial districts and transit-adjacent areas demonstrating consistently higher economic returns. (2) Gradual positive relationships emerge across multiple factors—including bike supply density (maximum SHAP contribution +1.0), commercial POI distribution, and transit accessibility—with performance showing consistent but moderate improvements rather than dramatic threshold effects. (3) Significant interaction effects are quantified between key factors, with bike supply density and commercial POI density exhibiting strong synergistic relationships (interaction values 1.5–2.0), particularly in areas combining high commercial activity with good transit connectivity. The findings challenge simplistic linear assumptions in bike-sharing management while providing quantitative evidence for spatially differentiated strategies that account for moderate threshold behaviors and factor synergies. Cross-validation results (5-fold, R2 = 0.89 ± 0.018) confirm model robustness, while comprehensive performance metrics demonstrate substantial improvements over traditional approaches (35.1% RMSE reduction, 36.6% MAE improvement). The proposed framework offers urban planners a data-driven tool for evidence-based decision-making in sustainable mobility systems, with broader methodological applicability for similar urban contexts. Full article
(This article belongs to the Special Issue Spatial Data Science and Knowledge Discovery)
Show Figures

Figure 1

21 pages, 6738 KB  
Article
Dynamic Demand Forecasting for Bike-Sharing E-Fences Using a Hybrid Deep Learning Framework with Spatio-Temporal Attention
by Chen Deng and Yunxuan Li
Sustainability 2025, 17(17), 7586; https://doi.org/10.3390/su17177586 - 22 Aug 2025
Viewed by 1351
Abstract
The rapid expansion of bike-sharing systems has introduced significant management challenges related to spatial-temporal demand fluctuations and inefficient e-fence capacity allocation. This study proposes a Spatio-Temporal Graph Attention Transformer Network (STGATN), a novel hybrid deep learning framework for dynamic demand forecasting in bike-sharing [...] Read more.
The rapid expansion of bike-sharing systems has introduced significant management challenges related to spatial-temporal demand fluctuations and inefficient e-fence capacity allocation. This study proposes a Spatio-Temporal Graph Attention Transformer Network (STGATN), a novel hybrid deep learning framework for dynamic demand forecasting in bike-sharing e-fence systems. The model integrates Graph Convolutional Networks to capture complex spatial dependencies among urban functional zones, Bi-LSTM networks to model temporal patterns with periodic variations, and attention mechanisms to dynamically incorporate weather impacts. By constructing a city-level graph based on POI-derived e-fences and implementing multi-source feature fusion through Transformer architecture, the STGATN effectively addresses the limitations of static capacity allocation strategies. The experimental results from Shenzhen’s Nanshan District demonstrate the performance, with the STGATN model achieving an overall Mean Absolute Error (MAE) of 0.0992 and a Coefficient of Determination (R2) of 0.8426. This significantly outperforms baseline models such as LSTM (R2: 0.6215) and a GCN (R2: 0.5488). Ablation studies confirm the model’s key components are critical; removing the GCN module decreased R2 by 12 percentage points to 0.7411, while removing the weather attention mechanism reduced R2 by nearly 5 percentage points to 0.8034. The framework provides a scientific basis for dynamic e-fence capacity management, advancing spatio-temporal prediction methodologies for sustainable transportation. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

24 pages, 1150 KB  
Article
Toward a Holistic Bikeability Framework: Expert-Based Prioritization of Urban Cycling Criteria via AHP
by Ugo N. Castañon, Paulo J. G. Ribeiro and José F. G. Mendes
Appl. Syst. Innov. 2025, 8(5), 119; https://doi.org/10.3390/asi8050119 - 22 Aug 2025
Viewed by 1241
Abstract
This study applies a multicriteria decision analysis to explore how experts from different backgrounds assess traditional and emerging criteria for urban cycling. A hierarchical model with 7 main criteria and 31 subcriteria was evaluated by 30 specialists from academic, technical, and user-focused groups. [...] Read more.
This study applies a multicriteria decision analysis to explore how experts from different backgrounds assess traditional and emerging criteria for urban cycling. A hierarchical model with 7 main criteria and 31 subcriteria was evaluated by 30 specialists from academic, technical, and user-focused groups. Using pairwise comparisons and aggregated judgments, this study reveals points of agreement and divergence among expert priorities. Safety and infrastructure were rated as the most important factors. In contrast, contextual and technological aspects, such as Multimodality, Environmental Quality, Shared Systems, and Digital Solutions, received moderate to lower weights, with differences linked to expert profiles. These results highlight how different disciplinary perspectives influence the understanding of bikeability-related factors. Conceptually, the findings support a broader view of cycling conditions that incorporates both established and emerging criteria. Methodologically, this study demonstrates the value of the Analytic Hierarchy Process (AHP) as a participatory and transparent tool to integrate diverse stakeholder opinions into a structured evaluation model. This approach can support cycling mobility planning and policymaking. Future applications may include case studies in specific cities, combining expert-based priorities with local spatial data, as well as longitudinal research to track changes in cycling conditions over time. Full article
(This article belongs to the Topic Social Sciences and Intelligence Management, 2nd Volume)
Show Figures

Figure 1

22 pages, 9411 KB  
Article
A Spatiotemporal Multi-Model Ensemble Framework for Urban Multimodal Traffic Flow Prediction
by Zhenkai Wang and Lujin Hu
ISPRS Int. J. Geo-Inf. 2025, 14(8), 308; https://doi.org/10.3390/ijgi14080308 - 10 Aug 2025
Cited by 1 | Viewed by 1666
Abstract
Urban multimodal travel trajectory prediction is a core challenge in Intelligent Transportation Systems (ITSs). It requires modeling both spatiotemporal dependencies and dynamic interactions among different travel modes such as taxi, bike-sharing, and buses. To address the limitations of existing methods in capturing these [...] Read more.
Urban multimodal travel trajectory prediction is a core challenge in Intelligent Transportation Systems (ITSs). It requires modeling both spatiotemporal dependencies and dynamic interactions among different travel modes such as taxi, bike-sharing, and buses. To address the limitations of existing methods in capturing these diverse trajectory characteristics, we propose a spatiotemporal multi-model ensemble framework, which is an ensemble model called GLEN (GCN and LSTM Ensemble Network). Firstly, the trajectory feature adaptive driven model selection mechanism classifies trajectories into dynamic travel and fixed-route scenarios. Secondly, we use a Graph Convolutional Network (GCN) to capture dynamic travel patterns and Long Short-Term Memory (LSTM) network to model fixed-route patterns. Subsequently the outputs of these models are dynamically weighted, integrated, and fused over a spatiotemporal grid to produce accurate forecasts of urban total traffic flow at multiple future time steps. Finally, experimental validation using Beijing’s Chaoyang district datasets demonstrates that our framework effectively captures spatiotemporal and interactive characteristics between multimodal travel trajectories and outperforms mainstream baselines, thereby offering robust support for urban traffic management and planning. Full article
Show Figures

Figure 1

29 pages, 1895 KB  
Article
How Does Sharing Economy Advance Sustainable Production and Consumption? Evidence from the Policies and Business Practices of Dockless Bike Sharing
by Shouheng Sun, Yiran Wang, Dafei Yang and Qi Wu
Sustainability 2025, 17(15), 7053; https://doi.org/10.3390/su17157053 - 4 Aug 2025
Viewed by 1756
Abstract
The sharing economy is considered to be a potentially efficacious approach for promoting sustainable production and consumption (SPC). This study utilizes dockless bike sharing (DBS) in Beijing as a case study to examine how sharing economy policies and business practices advance SPC. It [...] Read more.
The sharing economy is considered to be a potentially efficacious approach for promoting sustainable production and consumption (SPC). This study utilizes dockless bike sharing (DBS) in Beijing as a case study to examine how sharing economy policies and business practices advance SPC. It also dynamically quantifies the environmental and economic performance of DBS practices from a life cycle perspective. The findings indicate that effective SPC practices can be achieved through the collaborative efforts of multiple stakeholders, including the government, operators, manufacturers, consumers, recycling agencies, and other business partners, supported by regulatory systems and advanced technologies. The SPC practices markedly improved the sustainability of DBS promotion in Beijing. This is evidenced by the increase in greenhouse gas (GHG) emission reduction benefits, which have risen from approximately 35.81 g CO2-eq to 124.40 g CO2-eq per kilometer of DBS travel. Considering changes in private bicycle ownership, this value could reach approximately 150.60 g CO2-eq. Although the economic performance of DBS operators has also improved, it remains challenging to achieve profitability, even when considering the economic value of the emission reduction benefits. In certain scenarios, DBS can maximize profits by optimizing fleet size and efficiency, without compromising the benefits of emission reductions. The framework of stakeholder interaction proposed in this study and the results of empirical analysis not only assist regulators, businesses, and the public in better understanding and promoting sustainable production and consumption practices in the sharing economy but also provide valuable insights for achieving a win-win situation of platform profitability and environmental benefits in the SPC practice process. Full article
Show Figures

Figure 1

36 pages, 1201 KB  
Article
Between Smart Cities Infrastructure and Intention: Mapping the Relationship Between Urban Barriers and Bike-Sharing Usage
by Radosław Wolniak and Katarzyna Turoń
Smart Cities 2025, 8(4), 124; https://doi.org/10.3390/smartcities8040124 - 29 Jul 2025
Cited by 4 | Viewed by 1685
Abstract
Society’s adaptation to shared mobility services is a growing topic that requires detailed understanding of the local circumstances of potential and current users. This paper focuses on analyzing barriers to the adoption of urban bike-sharing systems in post-industrial cities, using a case study [...] Read more.
Society’s adaptation to shared mobility services is a growing topic that requires detailed understanding of the local circumstances of potential and current users. This paper focuses on analyzing barriers to the adoption of urban bike-sharing systems in post-industrial cities, using a case study of the Silesian agglomeration in Poland. Methodologically, the article integrates quantitative survey methods with multivariate statistical analysis to analyze the demographic, socioeconomic, and motivational factors that underline the adoption of shared micromobility. The study highlights a detailed segmentation of users by income, age, professional status, and gender, as well as the observation of profound disparities in access and perceived usefulness. Of note is the study’s identification of a highly concentrated segment of young, low-income users (mostly students), which largely accounts for the general perception of economic and infrastructural barriers. These include the use of factor analysis and regression to plot the interaction patterns between individual user characteristics and certain system-level constraints, such as cost, infrastructure coverage, weather, and health. The study’s findings prioritize problem-specific interventions in urban mobility planning: bridging equity gaps between user groups. This research contributes to the current literature by providing detailed insights into the heterogeneity of user mobility behavior, offering evidence-based recommendations for inclusive and adaptive options for shared transportation infrastructure in a changing urban context. Full article
Show Figures

Figure 1

Back to TopTop