Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = bifunctional linkers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6112 KiB  
Article
Development and Validation of Molecularly Imprinted Polymers with Bio-Based Monomers to Adsorb Carbamazepine from Wastewater
by Elettra Savigni, Elisa Girometti, Laura Sisti, Frank Benstoem, Davide Pinelli and Dario Frascari
Molecules 2025, 30(12), 2533; https://doi.org/10.3390/molecules30122533 - 10 Jun 2025
Viewed by 465
Abstract
The removal of pharmaceutical contaminants like the anticonvulsant carbamazepine (CBZ) from water sources is a growing environmental challenge. This study explores the development of molecularly imprinted polymers (MIPs) tailored for CBZ adsorption using a bulk polymerization approach. Initially, this study focused on selecting [...] Read more.
The removal of pharmaceutical contaminants like the anticonvulsant carbamazepine (CBZ) from water sources is a growing environmental challenge. This study explores the development of molecularly imprinted polymers (MIPs) tailored for CBZ adsorption using a bulk polymerization approach. Initially, this study focused on selecting the optimal cross-linker, comparing a trifunctional (trimethylolpropane triacrylate, TRIM) and a bifunctional cross-linker (ethylene glycol dimethacrylate, EGDMA) in combination with two common monomers (2-vinylpyridine and methacrylic acid). TRIM-based MIPs demonstrated superior adsorption efficiency and stability due to their higher cross-linking density. To improve sustainability, six bio-based monomers were investigated; of these, eugenol (EUG) and coumaric acid (COU) showed the best CBZ affinity due to π-π interactions and hydrogen bonding. Adsorption tests conducted in pharmaceutical-spiked real wastewater demonstrated that MIPs exhibit a high selectivity for CBZ over other pharmaceuticals like the anti-inflammatory drugs diclofenac (DCF) and ibuprofen (IBU), even at high concentrations. Reaction conditions were further optimized by adjusting the reaction time and the ratio between reagents to enhance selectivity and adsorption performance. These results highlight the potential of bio-based MIPs as efficient and selective materials for the removal of pharmaceutical pollutants from wastewater. Full article
(This article belongs to the Special Issue Design and Synthesis of Novel Adsorbents for Pollutant Removal)
Show Figures

Graphical abstract

16 pages, 3231 KiB  
Article
Monovalent and Divalent Designs of Copper Radiotheranostics Targeting Fibroblast Activation Protein in Cancer
by Pawan Thapa, Sashi Debnath, Anjan Bedi, Madhuri Parashar, Paulina Gonzalez, Joshua Reus, Hans Hammers and Xiankai Sun
Cancers 2024, 16(24), 4180; https://doi.org/10.3390/cancers16244180 - 15 Dec 2024
Cited by 2 | Viewed by 4831
Abstract
Background: Fibroblast activation protein (FAP)-targeted theranostic radiopharmaceuticals have shown desired tumor-to-background organ selectivity due to the ubiquitous presence of FAP within the tumor microenvironment. However, suboptimal tumor retention and fast clearance have hindered their use to deliver effective cancer therapies. With well-documented [...] Read more.
Background: Fibroblast activation protein (FAP)-targeted theranostic radiopharmaceuticals have shown desired tumor-to-background organ selectivity due to the ubiquitous presence of FAP within the tumor microenvironment. However, suboptimal tumor retention and fast clearance have hindered their use to deliver effective cancer therapies. With well-documented FAP-targeting moieties and linkers appending them to optimal chelators, the development of copper radiopharmaceuticals has attracted considerable interest, given the fact that an ideal theranostic pair of copper radionuclides (64Cu: t1/2 = 12.7 h; 17.4% β+; Eβ+max = 653 keV and 67Cu: t1/2 = 2.58 d; 100% β; Eβmax = 562 keV) are available. Herein, we report our design, synthesis, and comparative evaluation of monovalent and divalent FAP-targeted theranostic conjugates constructed from our previously reported bifunctional chelator scaffold (BFS) based on 1,4,8,11-tetraaza-bicyclo [6.6.2]hexadecane-4,11-diacetic acid (CB-TE2A), which forms the most stable complex with Cu(II). Methods: After synthesis and characterization, the monovalent and divalent conjugates were radiolabeled with 64Cu for in vitro cell assays, followed by in vivo positron emission tomography (PET) imaging evaluation in relevant mouse models. Results: Both 64Cu-labeled conjugates showed high in vitro stability and anticipated FAP-mediated cell binding and internalization. The divalent one showed significantly higher FAP-specific tumor uptake than its monovalent counterpart. Conclusions: Our results demonstrate that the BFS-based multivalent approach can be practically used to generate FAP-targeted radiotheranostic agents for effective cancer diagnosis and treatment. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Figure 1

15 pages, 2683 KiB  
Article
Cross-Linked Thiolated Hydroxypropil-β-Cyclodextrin for Pulmonary Drug Delivery
by Luca Cerri, Chiara Migone, Lucia Vizzoni, Brunella Grassiri, Angela Fabiano, Anna Maria Piras and Ylenia Zambito
Int. J. Mol. Sci. 2024, 25(17), 9394; https://doi.org/10.3390/ijms25179394 - 29 Aug 2024
Cited by 4 | Viewed by 1419
Abstract
Inhalable formulations with cyclodextrins (CDs) as solubility and absorption enhancers show promise for pulmonary delivery. Thiolated hydroxypropyl-β-cyclodextrin (HP-β-CD-SH) has mucoadhesive properties, enhancing drug absorption. Moreover, it has self-aggregation capability, which could further improve absorption and drug stability, as well as reduce irritation. This [...] Read more.
Inhalable formulations with cyclodextrins (CDs) as solubility and absorption enhancers show promise for pulmonary delivery. Thiolated hydroxypropyl-β-cyclodextrin (HP-β-CD-SH) has mucoadhesive properties, enhancing drug absorption. Moreover, it has self-aggregation capability, which could further improve absorption and drug stability, as well as reduce irritation. This study aims to stabilize CD nanoaggregates using bifunctional cross-linkers and evaluate their benefits for lung drug delivery compared to pristine HP-β-CD-SH. Methods: The effectiveness of cross-linked HP-β-CD-SH nanoparticles (HP-β-CD-SH-NP) was compared to transient nanoaggregates in enhancing the activity of dexamethasone (DMS) and olive leaf extracts (OLE). DMS, a poorly soluble drug commonly used in lung treatments, and OLE, known for its antioxidant properties, were chosen. Drug-loaded HP-β-CD-SH-NP were prepared and nebulized onto a lung epithelial Air–Liquid Interface (ALI) model, assessing drug permeation and activity. Results: HP-β-CD-SH with 25% thiolation was synthesized via microwave reaction, forming 150 nm nanoaggregates and stabilized 400 nm HP-β-CD-SH-NP. All carriers showed good complexing ability with DMS and OLE and were biocompatible in the lung ALI model. HP-β-CD-SH promoted DMS absorption, while stabilized HP-β-CD-SH-NP protected against oxidative stress. Conclusion: HP-β-CD-SH is promising for lung delivery, especially as stabilized nanoaggregates, offering versatile administration for labile molecules like natural extracts. Full article
Show Figures

Figure 1

20 pages, 3297 KiB  
Article
Combination of Betulinic Acid Fragments and Carbonic Anhydrase Inhibitors—A New Drug Targeting Approach
by Matthias Bache, Niels V. Heise, Andreas Thiel, Anne Funtan, Franziska Seifert, Marina Petrenko, Antje Güttler, Sarah Brandt, Thomas Mueller, Dirk Vordermark, Iris Thondorf, René Csuk and Reinhard Paschke
Pharmaceutics 2024, 16(3), 401; https://doi.org/10.3390/pharmaceutics16030401 - 14 Mar 2024
Cited by 1 | Viewed by 1929
Abstract
Human carbonic anhydrase IX (hCA IX) is a zinc(II)-dependent metalloenzyme that plays a critical role in the conversion of carbon dioxide and water to protons and bicarbonate. It is a membrane-bound protein with an extracellular catalytic center that is predominantly overexpressed in solid [...] Read more.
Human carbonic anhydrase IX (hCA IX) is a zinc(II)-dependent metalloenzyme that plays a critical role in the conversion of carbon dioxide and water to protons and bicarbonate. It is a membrane-bound protein with an extracellular catalytic center that is predominantly overexpressed in solid hypoxic tumors. Sulfamates and sulfonamides, for example acetazolamide (AZA), have been used to inhibit hCA IX in order to improve the response to solid hypoxic tumors. In the present study, we propose a new drug targeting approach by attaching the natural cytotoxic substances betulin and betulinic acid (BA) via a linker to sulfonamides. The conjugate was designed with different spacer lengths to accumulate at the target site of hCA IX. Computational and cell biological studies suggest that the length of the linker may influence hCA IX inhibition. Cytotoxicity tests of the newly synthesized bifunctional conjugates 3, 5, and 9 show effective cytotoxicity in the range of 6.4 and 30.1 µM in 2D and 3D tumor models. The hCA IX inhibition constants of this conjugates, measured using an in vitro enzyme assay with p-nitrophenyl acetate, were determined in a low µM-range, and all compounds reveal a significant inhibition of hypoxia-induced CA activity in a cell-based assay using the Wilbur–Anderson method. In addition, the cells respond with G1 increase and apoptosis induction. Overall, the dual strategy to produce cytotoxic tumor therapeutics that inhibit tumor-associated hCA IX was successfully implemented. Full article
(This article belongs to the Special Issue Recent Advances in Drug Targeting for Cancer Treatment)
Show Figures

Graphical abstract

14 pages, 2816 KiB  
Article
Multiplex Microarrays in 96-Well Plates Photoactivated with 4-Azidotetrafluorobenzaldehyde for the Identification and Quantification of β-Lactamase Genes and Their RNA Transcripts
by Mariya M. Ulyashova, Galina V. Presnova, Anna A. Filippova, Vitaly G. Grigorenko, Alexey M. Egorov and Maya Yu. Rubtsova
Curr. Issues Mol. Biol. 2024, 46(1), 53-66; https://doi.org/10.3390/cimb46010005 - 20 Dec 2023
Cited by 2 | Viewed by 1529
Abstract
Antibiotic-resistant bacteria represent a global issue that calls for novel approaches to diagnosis and treatment. Given the variety of genetic factors that determine resistance, multiplex methods hold promise in this area. We developed a novel method to covalently attach oligonucleotide probes to the [...] Read more.
Antibiotic-resistant bacteria represent a global issue that calls for novel approaches to diagnosis and treatment. Given the variety of genetic factors that determine resistance, multiplex methods hold promise in this area. We developed a novel method to covalently attach oligonucleotide probes to the wells of polystyrene plates using photoactivation with 4-azidotetrafluorobenzaldehyde. Then, it was used to develop the technique of microarrays in the wells. It consists of the following steps: activating polystyrene, hybridizing the probes with biotinylated target DNA, and developing the result using a streptavidin–peroxidase conjugate with colorimetric detection. The first microarray was designed to identify 11 different gene types and 16 single-nucleotide polymorphisms (SNPs) of clinically relevant ESBLs and carbapenemases, which confer Gram-negative bacteria resistance to β-lactam antibiotics. The detection of bla genes in 65 clinical isolates of Enterobacteriaceae demonstrated the high sensitivity and reproducibility of the technique. The highly reproducible spot staining of colorimetric microarrays allowed us to design a second microarray that was intended to quantify four different types of bla mRNAs in order to ascertain their expressions. The combination of reliable performance, high throughput in standard 96-well plates, and inexpensive colorimetric detection makes the microarrays suitable for routine clinical application and for the study of multi-drug resistant bacteria. Full article
Show Figures

Figure 1

19 pages, 4429 KiB  
Article
Influence of Surface Ligand Density and Particle Size on the Penetration of the Blood–Brain Barrier by Porous Silicon Nanoparticles
by Weisen Zhang, Douer Zhu, Ziqiu Tong, Bo Peng, Xuan Cheng, Lars Esser and Nicolas H. Voelcker
Pharmaceutics 2023, 15(9), 2271; https://doi.org/10.3390/pharmaceutics15092271 - 3 Sep 2023
Cited by 15 | Viewed by 2694
Abstract
Overcoming the blood–brain barrier (BBB) remains a significant challenge with regard to drug delivery to the brain. By incorporating targeting ligands, and by carefully adjusting particle sizes, nanocarriers can be customized to improve drug delivery. Among these targeting ligands, transferrin stands out due [...] Read more.
Overcoming the blood–brain barrier (BBB) remains a significant challenge with regard to drug delivery to the brain. By incorporating targeting ligands, and by carefully adjusting particle sizes, nanocarriers can be customized to improve drug delivery. Among these targeting ligands, transferrin stands out due to the high expression level of its receptor (i.e., transferrin receptor) on the BBB. Porous silicon nanoparticles (pSiNPs) are a promising drug nanocarrier to the brain due to their biodegradability, biocompatibility, and exceptional drug-loading capacity. However, an in-depth understanding of the optimal nanoparticle size and transferrin surface density, in order to maximize BBB penetration, is still lacking. To address this gap, a diverse library of pSiNPs was synthesized using bifunctional poly(ethylene glycol) linkers with methoxy or/and carboxyl terminal groups. These variations allowed us to explore different transferrin surface densities in addition to particle sizes. The effects of these parameters on the cellular association, uptake, and transcytosis in immortalized human brain microvascular endothelial cells (hCMEC/D3) were investigated using multiple in vitro systems of increasing degrees of complexity. These systems included the following: a 2D cell culture, a static Transwell model, and a dynamic BBB-on-a-chip model. Our results revealed the significant impact of both the ligand surface density and size of pSiNPs on their ability to penetrate the BBB, wherein intermediate-level transferrin densities and smaller pSiNPs exhibited the highest BBB transportation efficiency in vitro. Moreover, notable discrepancies emerged between the tested in vitro assays, further emphasizing the necessity of using more physiologically relevant assays, such as a microfluidic BBB-on-a-chip model, for nanocarrier testing and evaluation. Full article
Show Figures

Graphical abstract

11 pages, 4216 KiB  
Article
Controlled Carboxylic Acid-Functionalized Silicon Nitride Surfaces through Supersonic Molecular Beam Deposition
by Marco V. Nardi, Melanie Timpel, Laura Pasquardini, Tullio Toccoli, Marina Scarpa and Roberto Verucchi
Materials 2023, 16(15), 5390; https://doi.org/10.3390/ma16155390 - 31 Jul 2023
Cited by 2 | Viewed by 1157
Abstract
The functionalization of inorganic surfaces by organic functional molecules is a viable and promising method towards the realization of novel classes of biosensing devices. The proper comprehension of the chemical properties of the interface, as well as of the number of active binding [...] Read more.
The functionalization of inorganic surfaces by organic functional molecules is a viable and promising method towards the realization of novel classes of biosensing devices. The proper comprehension of the chemical properties of the interface, as well as of the number of active binding sites for bioreceptor molecules are characteristics that will determine the interaction of the sensor with the analyte, and thus its final efficiency. We present a new and reliable surface functionalization route based on supersonic molecular beam deposition (SuMBD) using 2,6-naphthalene dicarboxylic acid as a bi-functional molecular linker on the chemically inert silicon nitride surface to further allow for stable and homogeneous attachment of biomolecules. The kinetically activated binding of the molecular layer to silicon nitride and the growth as a function of deposition time was studied by X-ray photoelectron spectroscopy, and the properties of films with different thicknesses were investigated by optical and vibrational spectroscopies. After subsequent attachment of a biological probe, fluorescence analysis was used to estimate the molecular layer’s surface density. The successful functionalization of silicon nitride surface via SuMBD and the detailed growth and interface analysis paves the way for reliably attaching bioreceptor molecules onto the silicon nitride surface. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

19 pages, 2367 KiB  
Article
Synthesis and Evaluation of ePSMA-DM1: A New Theranostic Small-Molecule Drug Conjugate (T-SMDC) for Prostate Cancer
by Erika Murce, Evelien Spaan, Savanne Beekman, Lilian van den Brink, Maryana Handula, Debra Stuurman, Corrina de Ridder, Simone U. Dalm and Yann Seimbille
Pharmaceuticals 2023, 16(8), 1072; https://doi.org/10.3390/ph16081072 - 28 Jul 2023
Cited by 6 | Viewed by 3849
Abstract
Small-molecule drug conjugates (SMDCs) are compounds in which a therapeutic payload is conjugated to a targeting vector, for specific delivery to the tumor site. This promising approach can be translated to the treatment of prostate cancer by selecting a targeting vector which binds [...] Read more.
Small-molecule drug conjugates (SMDCs) are compounds in which a therapeutic payload is conjugated to a targeting vector, for specific delivery to the tumor site. This promising approach can be translated to the treatment of prostate cancer by selecting a targeting vector which binds to the prostate-specific membrane antigen (PSMA). Moreover, the addition of a bifunctional chelator to the molecule allows for the use of both diagnostic and therapeutic radionuclides. In this way, the distribution of the SMDC in the body can be monitored, and combination therapy regimes can be implemented. We combined a glutamate-urea-lysine vector to the cytotoxic agent DM1 and a DOTA chelator via an optimized linker to obtain the theranostic SMDC (T-SMDC) ePSMA-DM1. ePSMA-DM1 retained a high binding affinity to PSMA and demonstrated PSMA-specific uptake in cells. Glutathione stability assays showed that the half-life of the T-SMDC in a reducing environment was 2 h, and full drug release was obtained after 6 h. Moreover, 100 nM of ePSMA-DM1 reduced the cell viability of the human PSMA-positive LS174T cells by >85% after 72 h of incubation, which was comparable to a 10-fold higher dose of free DM1. [111In]In-ePSMA-DM1 and [177Lu]Lu-ePSMA-DM1 were both obtained in high radiochemical yields and purities (>95%), with >90% stability in PBS and >80% stability in mouse serum for up to 24 h post incubation at 37 °C. SPECT/CT imaging studies allowed for a faint tumor visualization of [111In]In-ePSMA-DM1 at 1 h p.i., and the ex vivo biodistribution showed tumor uptake (2.39 ± 0.29% ID/g) at 1 h p.i., with the compound retained in the tumor for up to 24 h. Therefore, ePSMA-DM1 is a promising T-SMDC candidate for prostate cancer, and the data obtained so far warrant further investigations, such as therapeutic experiments, after further optimization. Full article
Show Figures

Figure 1

25 pages, 5766 KiB  
Article
Synthesis, Cytotoxicity and Molecular Docking of New Hybrid Compounds by Combination of Curcumin with Oleanolic Acid
by Katarzyna Sowa-Kasprzak, Ewa Totoń, Jacek Kujawski, Dorota Olender, Natalia Lisiak, Lucjusz Zaprutko, Błażej Rubiś, Mariusz Kaczmarek and Anna Pawełczyk
Biomedicines 2023, 11(6), 1506; https://doi.org/10.3390/biomedicines11061506 - 23 May 2023
Cited by 2 | Viewed by 2225
Abstract
Curcumin and oleanolic acid are natural compounds with high potential in medicinal chemistry. These products have been widely studied for their pharmacological properties and have been structurally modified to improve their bioavailability and therapeutic value. In the present study, we discuss how these [...] Read more.
Curcumin and oleanolic acid are natural compounds with high potential in medicinal chemistry. These products have been widely studied for their pharmacological properties and have been structurally modified to improve their bioavailability and therapeutic value. In the present study, we discuss how these compounds are utilized to develop bioactive hybrid compounds that are intended to target cancer cells. Using a bifunctional linker, succinic acid, to combine curcumin and triterpenoic oleanolic acid, several hybrid compounds were prepared. Their cytotoxicity against different cancer cell lines was evaluated and compared with the activity of curcumin (the IC50 value (24 h), for MCF7, HeLaWT and HT-29 cancer cells for KS5, KS6 and KS8 compounds was in the range of 20.6–94.4 µM, in comparison to curcumin 15.6–57.2 µM). Additionally, in silico studies were also performed. The computations determined the activity of the tested compounds towards proteins selected due to their similar binding modes and the nature of hydrogen bonds formed within the cavity of ligand−protein complexes. Overall, the curcumin-triterpene hybrids represent an important class of compounds for the development of effective anticancer agents also without the diketone moiety in the curcumin molecule. Moreover, some structural modifications in keto-enol moiety have led to obtaining more information about different chemical and biological activities. Results obtained may be of interest for further research into combinations of curcumin and oleanolic acid derivatives. Full article
(This article belongs to the Special Issue State-of-the-Art Drug Discovery and Development in Poland)
Show Figures

Figure 1

17 pages, 4165 KiB  
Article
Metallacarborane Synthons for Molecular Construction—Oligofunctionalization of Cobalt Bis(1,2-dicarbollide) on Boron and Carbon Atoms with Extendable Ligands
by Krzysztof Śmiałkowski, Carla Sardo and Zbigniew J. Leśnikowski
Molecules 2023, 28(10), 4118; https://doi.org/10.3390/molecules28104118 - 16 May 2023
Cited by 2 | Viewed by 2122
Abstract
The exploitation of metallacarboranes’ potential in various fields of research and practical applications requires the availability of convenient and versatile methods for their functionalization with various functional moieties and/or linkers of different types and lengths. Herein, we report a study on cobalt bis(1,2-dicarbollide) [...] Read more.
The exploitation of metallacarboranes’ potential in various fields of research and practical applications requires the availability of convenient and versatile methods for their functionalization with various functional moieties and/or linkers of different types and lengths. Herein, we report a study on cobalt bis(1,2-dicarbollide) functionalization at 8,8′-boron atoms with different hetero-bifunctional moieties possessing a protected hydroxyl function allowing further modification after deprotection. Moreover, an approach to the synthesis of three and four functionalized metallacarboranes, at boron and carbon atoms simultaneously via additional functionalization at carbon to obtain derivatives carrying three or four rationally oriented and distinct reactive surfaces, is described. Full article
Show Figures

Figure 1

11 pages, 6214 KiB  
Article
Two-Dimensional Mixed-Ligand Metal–Organic Framework Constructed from Bridging Bidentate V-Shaped Ligands
by Wen-Wu Zhong, Fahimeh Dehghani Firuzabadi, Younes Hanifehpour, Xue Zeng, Yuan-Jiao Feng, Kuan-Guan Liu, Sang Woo Joo, Ali Morsali and Pascal Retailleau
Inorganics 2023, 11(5), 184; https://doi.org/10.3390/inorganics11050184 - 25 Apr 2023
Cited by 5 | Viewed by 2490
Abstract
A two-dimensional and bifunctional pillar-layered metal–organic framework (MOF)—with the molecular formula [Zn(cba)(bpdb)]·DMF (2DTMU-1), H2cba = 4,4′-methylenedibenzoic acid, bpdb = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene—was obtained via the reaction of zinc(II) nitrate with H2cba as the carboxylate linker [...] Read more.
A two-dimensional and bifunctional pillar-layered metal–organic framework (MOF)—with the molecular formula [Zn(cba)(bpdb)]·DMF (2DTMU-1), H2cba = 4,4′-methylenedibenzoic acid, bpdb = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene—was obtained via the reaction of zinc(II) nitrate with H2cba as the carboxylate linker and bpdb as the N-donor pillar. 2DTMU-1 is based on a binuclear paddlewheel Zn(II) unit complexed by four bridging bidentate (dicarboxylate) V-shaped ligands, which combine to from H2cba; this tetragonal array, which is connected by bpdb with a bridging azine group, presents a pore size of 18 × 12 Å2. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Figure 1

13 pages, 3443 KiB  
Article
Toward Long-Term-Dispersible, Metal-Free Single-Chain Nanoparticles
by Agustín Blázquez-Martín, Ainara Ruiz-Bardillo, Ester Verde-Sesto, Amaia Iturrospe, Arantxa Arbe and José A. Pomposo
Nanomaterials 2023, 13(8), 1394; https://doi.org/10.3390/nano13081394 - 18 Apr 2023
Viewed by 1806
Abstract
We report herein on a new platform for synthesizing stable, inert, and dispersible metal-free single-chain nanoparticles (SCNPs) via intramolecular metal-traceless azide–alkyne click chemistry. It is well known that SCNPs synthesized via Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) often experience metal-induced aggregation issues during storage. Moreover, [...] Read more.
We report herein on a new platform for synthesizing stable, inert, and dispersible metal-free single-chain nanoparticles (SCNPs) via intramolecular metal-traceless azide–alkyne click chemistry. It is well known that SCNPs synthesized via Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) often experience metal-induced aggregation issues during storage. Moreover, the presence of metal traces limits its use in a number of potential applications. To address these problems, we selected a bifunctional cross-linker molecule, sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DIBOD). DIBOD has two highly strained alkyne bonds that allow for the synthesis of metal-free SCNPs. We demonstrate the utility of this new approach by synthesizing metal-free polystyrene (PS)-SCNPs without significant aggregation issues during storage, as demonstrated by small-angle X-ray scattering (SAXS) experiments. Notably, this method paves the way for the synthesis of long-term-dispersible, metal-free SCNPs from potentially any polymer precursor decorated with azide functional groups. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

16 pages, 4274 KiB  
Article
Microporous Implants Modified by Bifunctional Hydrogel with Antibacterial and Osteogenic Properties Promote Bone Integration in Infected Bone Defects
by Yiping Pu, Xuecai Lin, Qiang Zhi, Shichong Qiao and Chuangqi Yu
J. Funct. Biomater. 2023, 14(4), 226; https://doi.org/10.3390/jfb14040226 - 16 Apr 2023
Cited by 5 | Viewed by 2511
Abstract
Prosthesis implantation and bone integration under bacterial infection are arduous challenges in clinical practice. It is well known that the reactive oxygen species (ROS) produced by bacterial infection around the bone defects will further hinder bone healing. To solve this problem, we prepared [...] Read more.
Prosthesis implantation and bone integration under bacterial infection are arduous challenges in clinical practice. It is well known that the reactive oxygen species (ROS) produced by bacterial infection around the bone defects will further hinder bone healing. To solve this problem, we prepared a ROS-scavenging hydrogel by cross-linking polyvinyl alcohol and a ROS-responsive linker, N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1, N1, N3, N3-tetramethylpropane-1, 3-diaminium, to modify the microporous titanium alloy implant. The prepared hydrogel was used as an advanced ROS-scavenging tool to promote bone healing by inhibiting the ROS levels around the implant. Bifunctional hydrogel serving as a drug delivery system can release therapeutic molecules, including vancomycin, to kill bacteria and bone morphogenetic protein-2 to induce bone regeneration and integration. This multifunctional implant system that combines mechanical support and disease microenvironment targeting provides a novel strategy for bone regeneration and integration of implants in infected bone defects. Full article
(This article belongs to the Special Issue Bioactive Elements for Tissue Regeneration)
Show Figures

Figure 1

19 pages, 1788 KiB  
Article
Expanding Glycomic Investigations through Thiol-Derivatized Glycans
by Robert D. Hurst, Angel Nieves and Matthew Brichacek
Molecules 2023, 28(4), 1956; https://doi.org/10.3390/molecules28041956 - 18 Feb 2023
Cited by 1 | Viewed by 2852
Abstract
N-(2-thioethyl)-2-aminobenzamide (TEAB), a novel glycan auxiliary, was synthesized and its utility was evaluated. The auxiliary was conjugated to glycans by reductive amination with the water-stable reagent 2-picoline borane complex. Glycan products, which ranged from 1 to 7 linked hexoses, were all isolated in [...] Read more.
N-(2-thioethyl)-2-aminobenzamide (TEAB), a novel glycan auxiliary, was synthesized and its utility was evaluated. The auxiliary was conjugated to glycans by reductive amination with the water-stable reagent 2-picoline borane complex. Glycan products, which ranged from 1 to 7 linked hexoses, were all isolated in yields ranging from 60% to 90% after purification by reverse-phase chromatography. The novel conjugate introduces a convenient, shelf-stable thiol directly onto the desired free glycans with purification advantages and direct modification with efficient reactions through alkenes, halides, epoxides, disulfides, and carboxylates in yields of 49% to 93%. Subsequently, a thiol-selective modification of the BSA protein was used to generate a neoglycoprotein with a bifunctional PEG–maleimide linker. To further illustrate the utility of a thiol motif, 2-thiopyridine activation of a thiol-containing support facilitated the covalent chromatographic purification of labeled glycans in yields up to 63%. Finally, initial proof of concept of implementation in a light printed microarray was explored and validated through FITC-labeled concanavalin A binding. In conclusion, the thiol-functionalized glycans produced greatly expand the diversity of bioconjugation tools that can be developed with glycans and enable a variety of biological investigations. Full article
Show Figures

Graphical abstract

19 pages, 3092 KiB  
Article
HIV-1 Gag Binds the Multi-Aminoacyl-tRNA Synthetase Complex via the EPRS Subunit
by Danni Jin, Yiping Zhu, Heidi L. Schubert, Stephen P. Goff and Karin Musier-Forsyth
Viruses 2023, 15(2), 474; https://doi.org/10.3390/v15020474 - 8 Feb 2023
Cited by 4 | Viewed by 2848
Abstract
Host factor tRNAs facilitate the replication of retroviruses such as human immunodeficiency virus type 1 (HIV-1). HIV-1 uses human tRNALys3 as the primer for reverse transcription, and the assembly of HIV-1 structural protein Gag at the plasma membrane (PM) is regulated by [...] Read more.
Host factor tRNAs facilitate the replication of retroviruses such as human immunodeficiency virus type 1 (HIV-1). HIV-1 uses human tRNALys3 as the primer for reverse transcription, and the assembly of HIV-1 structural protein Gag at the plasma membrane (PM) is regulated by matrix (MA) domain–tRNA interactions. A large, dynamic multi-aminoacyl-tRNA synthetase complex (MSC) exists in the cytosol and consists of eight aminoacyl-tRNA synthetases (ARSs) and three other cellular proteins. Proteomic studies to identify HIV–host interactions have identified the MSC as part of the HIV-1 Gag and MA interactomes. Here, we confirmed that the MA domain of HIV-1 Gag forms a stable complex with the MSC, mapped the primary interaction site to the linker domain of bi-functional human glutamyl-prolyl-tRNA synthetase (EPRS), and showed that the MA–EPRS interaction was RNA dependent. MA mutations that significantly reduced the EPRS interaction reduced viral infectivity and mapped to MA residues that also interact with phosphatidylinositol-(4,5)-bisphosphate. Overexpression of EPRS or EPRS fragments did not affect susceptibility to HIV-1 infection, and knockdown of EPRS reduced both a control reporter gene and HIV-1 protein translation. EPRS knockdown resulted in decreased progeny virion production, but the decrease could not be attributed to selective effects on virus gene expression, and the specific infectivity of the virions remained unchanged. While the precise function of the Gag–EPRS interaction remains uncertain, we discuss possible effects of the interaction on either virus or host activities. Full article
(This article belongs to the Special Issue Host Cell–Virus Interaction 2.0)
Show Figures

Figure 1

Back to TopTop