Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = bicelle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2216 KiB  
Article
Characterization of Gramicidin A in Triblock and Diblock Polymersomes and Hybrid Vesicles via Continuous Wave Electron Paramagnetic Resonance Spectroscopy
by Emma A. Gordon, Indra D. Sahu, Joel R. Fried and Gary A. Lorigan
Biomimetics 2025, 10(3), 154; https://doi.org/10.3390/biomimetics10030154 - 2 Mar 2025
Viewed by 958
Abstract
Studying membrane proteins in a native environment is crucial to understanding their structural and/or functional studies. Often, widely accepted mimetic systems have limitations that prevent the study of some membrane proteins. Micelles, bicelles, and liposomes are common biomimetic systems but have problems with [...] Read more.
Studying membrane proteins in a native environment is crucial to understanding their structural and/or functional studies. Often, widely accepted mimetic systems have limitations that prevent the study of some membrane proteins. Micelles, bicelles, and liposomes are common biomimetic systems but have problems with membrane compatibility, limited lipid composition, and heterogeneity. To overcome these limitations, polymersomes and hybrid vesicles have become popular alternatives. Polymersomes form from amphiphilic triblock or diblock copolymers and are considered more robust than liposomes. Hybrid vesicles are a combination of lipids and block copolymers that form vesicles composed of a mixture of the two. These hybrid vesicles are appealing because they have the native lipid environment of bilayers but also the stability and customizability of polymersomes. Gramicidin A was incorporated into these polymersomes and characterized using continuous wave electron paramagnetic resonance (CW-EPR) and transmission electron microscopy (TEM). EPR spectroscopy is a powerful biophysical technique used to study the structure and dynamic properties of membrane proteins in their native environment. Spectroscopic studies of gramicidin A have been limited to liposomes; in this study, the membrane peptide is studied in both polymersomes and hybrid vesicles using CW-EPR spectroscopy. Lineshape analysis of spin-labeled gramicidin A revealed linewidth broadening, suggesting that the thicker polymersome membranes restrict the motion of the spin label more when compared to liposome membranes. Statement of Significance: Understanding membrane proteins’ structures and functions is critical in the study of many diseases. In order to study them in a native environment, membrane mimetics must be developed that can be suitable for obtaining superior biophysical data quality to characterize structural dynamics while maintaining their native functions and structures. Many currently widely accepted methods have limitations, such as a loss of native structure and function, heterogeneous vesicle formation, restricted lipid types for the vesicle formation for many proteins, and experimental artifacts, which leaves rooms for the development of new biomembrane mimetics. The triblock and diblock polymersomes and hybrid versicles utilized in this study may overcome these limitations and provide the stability and customizability of polymersomes, keeping the biocompatibility and functionality of liposomes for EPR studies of membrane proteins. Full article
Show Figures

Figure 1

18 pages, 3477 KiB  
Article
Diverse Interactions of Sterols with Amyloid Precursor Protein Transmembrane Domain Can Shift Distribution Between Alternative Amyloid-β Production Cascades in Manner Dependent on Local Lipid Environment
by Pavel E. Volynsky, Anatoly S. Urban, Konstantin V. Pavlov, Yaroslav V. Bershatsky, Olga V. Bocharova, Anastasia K. Kryuchkova, Veronika V. Zlobina, Alina A. Gavrilenkova, Sofya M. Dolotova, Anna V. Kamynina, Olga T. Zangieva, Amir Taldaev, Oleg V. Batishchev, Ivan S. Okhrimenko, Tatiana V. Rakitina, Roman G. Efremov and Eduard V. Bocharov
Int. J. Mol. Sci. 2025, 26(2), 553; https://doi.org/10.3390/ijms26020553 - 10 Jan 2025
Cited by 1 | Viewed by 1343
Abstract
Alzheimer’s disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the [...] Read more.
Alzheimer’s disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles). In bicelles, spin-labeled sterol interacted with the peptide near the amphiphilic juxtamembrane region and N-terminal part of APP transmembrane helix, as described earlier for cholesterol. Upon transition into micellar environment, another interaction site appeared where sterol polar head was buried in the hydrophobic core near the hinge region. In MD simulations, sterol moved between three interaction sites, sliding along the polar groove formed by glycine residues composing the dimerization interfaces and flexible hinge of the APP transmembrane domain. Because the lipid environment modulates interactions, the role of lipids in the AD pathogenesis is defined by the state of the entire lipid subsystem rather than the effects of individual lipid species. Cholesterol can interplay with other lipids (polyunsaturated, gangliosides, etc.), determining the outcome of amyloid-β production cascades. Full article
(This article belongs to the Special Issue Molecular Insight into Alzheimer’s Disease)
Show Figures

Figure 1

23 pages, 9180 KiB  
Article
Studying Conformational Properties of Transmembrane Domain of KCNE3 in a Lipid Bilayer Membrane Using Molecular Dynamics Simulations
by Anna Clara Miranda Moura, Isaac K. Asare, Mateo Fernandez Cruz, Antonio Javier Franco Aguado, Kaeleigh Dyan Tuck, Conner C. Campbell, Matthew W. Scheyer, Ikponwmosa Obaseki, Steve Alston, Andrea N. Kravats, Charles R. Sanders, Gary A. Lorigan and Indra D. Sahu
Membranes 2024, 14(2), 45; https://doi.org/10.3390/membranes14020045 - 4 Feb 2024
Cited by 2 | Viewed by 2999
Abstract
KCNE3 is a single-pass integral membrane protein that regulates numerous voltage-gated potassium channel functions such as KCNQ1. Previous solution NMR studies suggested a moderate degree of curved α-helical structure in the transmembrane domain (TMD) of KCNE3 in lyso-myristoylphosphatidylcholine (LMPC) micelles and isotropic bicelles [...] Read more.
KCNE3 is a single-pass integral membrane protein that regulates numerous voltage-gated potassium channel functions such as KCNQ1. Previous solution NMR studies suggested a moderate degree of curved α-helical structure in the transmembrane domain (TMD) of KCNE3 in lyso-myristoylphosphatidylcholine (LMPC) micelles and isotropic bicelles with the residues T71, S74 and G78 situated along the concave face of the curved helix. During the interaction of KCNE3 and KCNQ1, KCNE3 pushes its transmembrane domain against KCNQ1 to lock the voltage sensor in its depolarized conformation. A cryo-EM study of KCNE3 complexed with KCNQ1 in nanodiscs suggested a deviation of the KCNE3 structure from its independent structure in isotropic bicelles. Despite the biological significance of KCNE3 TMD, the conformational properties of KCNE3 are poorly understood. Here, all atom molecular dynamics (MD) simulations were utilized to investigate the conformational dynamics of the transmembrane domain of KCNE3 in a lipid bilayer containing a mixture of POPC and POPG lipids (3:1). Further, the effect of the interaction impairing mutations (V72A, I76A and F68A) on the conformational properties of the KCNE3 TMD in lipid bilayers was investigated. Our MD simulation results suggest that the KCNE3 TMD adopts a nearly linear α helical structural conformation in POPC-POPG lipid bilayers. Additionally, the results showed no significant change in the nearly linear α-helical conformation of KCNE3 TMD in the presence of interaction impairing mutations within the sampled time frame. The KCNE3 TMD is more stable with lower flexibility in comparison to the N-terminal and C-terminal of KCNE3 in lipid bilayers. The overall conformational flexibility of KCNE3 also varies in the presence of the interaction-impairing mutations. The MD simulation data further suggest that the membrane bilayer width is similar for wild-type KCNE3 and KCNE3 containing mutations. The Z-distance measurement data revealed that the TMD residue site A69 is close to the lipid bilayer center, and residue sites S57 and S82 are close to the surfaces of the lipid bilayer membrane for wild-type KCNE3 and KCNE3 containing interaction-impairing mutations. These results agree with earlier KCNE3 biophysical studies. The results of these MD simulations will provide complementary data to the experimental outcomes of KCNE3 to help understand its conformational dynamic properties in a more native lipid bilayer environment. Full article
(This article belongs to the Special Issue Analytical Sciences of/with Bio(mimetic) Membranes (Volume II))
Show Figures

Figure 1

15 pages, 7893 KiB  
Article
Facade-Based Bicelles as a New Tool for Production of Active Membrane Proteins in a Cell-Free System
by Marina V. Goncharuk, Ekaterina V. Vasileva, Egor A. Ananiev, Andrey Y. Gorokhovatsky, Eduard V. Bocharov, Konstantin S. Mineev and Sergey A. Goncharuk
Int. J. Mol. Sci. 2023, 24(19), 14864; https://doi.org/10.3390/ijms241914864 - 3 Oct 2023
Cited by 1 | Viewed by 2305
Abstract
Integral membrane proteins are important components of a cell. Their structural and functional studies require production of milligram amounts of proteins, which nowadays is not a routine process. Cell-free protein synthesis is a prospective approach to resolve this task. However, there are few [...] Read more.
Integral membrane proteins are important components of a cell. Their structural and functional studies require production of milligram amounts of proteins, which nowadays is not a routine process. Cell-free protein synthesis is a prospective approach to resolve this task. However, there are few known membrane mimetics that can be used to synthesize active membrane proteins in high amounts. Here, we present the application of commercially available “Facade” detergents for the production of active rhodopsin. We show that the yield of active protein in lipid bicelles containing Facade-EM, Facade-TEM, and Facade-EPC is several times higher than in the case of conventional bicelles with CHAPS and DHPC and is comparable to the yield in the presence of lipid-protein nanodiscs. Moreover, the effects of the lipid-to-detergent ratio, concentration of detergent in the feeding mixture, and lipid composition of the bicelles on the total, soluble, and active protein yields are discussed. We show that Facade-based bicelles represent a prospective membrane mimetic, available for the production of membrane proteins in a cell-free system. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 7662 KiB  
Article
Delivery of RNA to the Blood-Brain Barrier Endothelium Using Cationic Bicelles
by Joan Cheng, Lushan Wang, Vineetha Guttha, Greg Haugstad and Karunya K. Kandimalla
Pharmaceutics 2023, 15(8), 2086; https://doi.org/10.3390/pharmaceutics15082086 - 4 Aug 2023
Cited by 6 | Viewed by 3107
Abstract
Blood-brain barrier (BBB) dysfunction is prevalent in Alzheimer’s disease and other neurological disorders. Restoring normal BBB function through RNA therapy is a potential avenue for addressing cerebrovascular changes in these disorders that may lead to cognitive decline. Although lipid nanoparticles have been traditionally [...] Read more.
Blood-brain barrier (BBB) dysfunction is prevalent in Alzheimer’s disease and other neurological disorders. Restoring normal BBB function through RNA therapy is a potential avenue for addressing cerebrovascular changes in these disorders that may lead to cognitive decline. Although lipid nanoparticles have been traditionally used as drug carriers for RNA, bicelles have been emerging as a better alternative because of their higher cellular uptake and superior transfection capabilities. Cationic bicelles composed of DPPC/DC7PC/DOTAP at molar ratios of 63.8/25.0/11.2 were evaluated for the delivery of RNA in polarized hCMEC/D3 monolayers, a widely used BBB cell culture model. RNA-bicelle complexes were formed at five N/P ratios (1:1 to 5:1) by a thin-film hydration method. The RNA-bicelle complexes at N/P ratios of 3:1 and 4:1 exhibited optimal particle characteristics for cellular delivery. The cellular uptake of cationic bicelles laced with 1 mol% DiI-C18 was confirmed by flow cytometry and confocal microscopy. The ability of cationic bicelles (N/P ratio 4:1) to transfect polarized hCMEC/D3 with FITC-labeled control siRNA was tested vis-a-vis commercially available Lipofectamine RNAiMAX. These studies demonstrated the higher transfection efficiency and greater potential of cationic bicelles for RNA delivery to the BBB endothelium. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

19 pages, 3173 KiB  
Article
Co-Encapsulation of Curcumin and α-Tocopherol in Bicosome Systems: Physicochemical Properties and Biological Activity
by Daniela Vergara, Olga López, Claudia Sanhueza, Catalina Chávez-Aravena, José Villagra, Mariela Bustamante and Francisca Acevedo
Pharmaceutics 2023, 15(7), 1912; https://doi.org/10.3390/pharmaceutics15071912 - 9 Jul 2023
Cited by 8 | Viewed by 2172
Abstract
A novel co-encapsulation system called bicosomes (bicelles within liposomes) has been developed to overcome the limitations associated with the topical application of curcumin (cur) and α-tocopherol (α-toc). The physicochemical properties and biological activity in vitro of bicosome systems were evaluated. Bicelles were prepared [...] Read more.
A novel co-encapsulation system called bicosomes (bicelles within liposomes) has been developed to overcome the limitations associated with the topical application of curcumin (cur) and α-tocopherol (α-toc). The physicochemical properties and biological activity in vitro of bicosome systems were evaluated. Bicelles were prepared with DPPC, DHPC, cur, and α-toc (cur/α-toc-bicelles). Liposomal vesicles loading cur/α-toc-bicelles were prepared with Lipoid P-100 and cholesterol-forming cur/α-toc-bicosomes. Three cur/α-toc-bicosomes were evaluated using different total lipid percentages (12, 16, and 20% w/v). The results indicated that formulations manage to solubilize cur and α-toc in homogeneous bicelles < 20 nm, while the bicosomes reaches 303–420 nm depending on the total lipid percentage in the systems. Bicosomes demonstrated high-encapsulation efficiency (EE) for cur (56–77%) and α-toc (51–65%). The loading capacity (LC) for both antioxidant compounds was 52–67%. In addition, cur/α-toc-bicosomes decreased the lipid oxidation by 52% and increased the antioxidant activity by 60% compared to unloaded bicosomes. The cell viability of these cur/α-toc-bicosomes was >85% in fibroblasts (3T3L1/CL-173™) and ≥65% in keratinocytes (Ha-CaT) and proved to be hematologically compatible. The cur/α-toc-bicelles and cur/α-toc-bicosomes inhibited the growth of C. albicans in a range between 33 and 76%. Our results propose bicosome systems as a novel carrier able to co-encapsulate, solubilize, protect, and improve the delivery performance of antioxidant molecules. The relevance of these findings is based on the synergistic antioxidant effect of its components, its biocompatibility, and its efficacy for dermal tissue treatment damaged by oxidative stress or by the presence of C. albicans. However, further studies are needed to assess the efficacy and safety of cur/α-toc bicosomes in vitro and in vivo. Full article
(This article belongs to the Special Issue Advanced Liposomes for Drug Delivery)
Show Figures

Graphical abstract

22 pages, 3777 KiB  
Review
Insights into Diversity, Distribution, and Systematics of Rust Genus Puccinia
by Shubhi Avasthi, Ajay Kumar Gautam, Mekala Niranjan, Rajnish Kumar Verma, Samantha C. Karunarathna, Ashwani Kumar and Nakarin Suwannarach
J. Fungi 2023, 9(6), 639; https://doi.org/10.3390/jof9060639 - 31 May 2023
Cited by 10 | Viewed by 5139
Abstract
Puccinia, which comprises 4000 species, is the largest genus of rust fungi and one of the destructive plant pathogenic rust genera that are reported to infect both agricultural and nonagricultural plants with severe illnesses. The presence of bi-celled teliospores is one of [...] Read more.
Puccinia, which comprises 4000 species, is the largest genus of rust fungi and one of the destructive plant pathogenic rust genera that are reported to infect both agricultural and nonagricultural plants with severe illnesses. The presence of bi-celled teliospores is one of the major features of these rust fungi that differentiated them from Uromyces, which is another largest genus of rust fungi. In the present study, an overview of the current knowledge on the general taxonomy and ecology of the rust genus Puccinia is presented. The status of the molecular identification of this genus along with updated species numbers and their current statuses in the 21st century are also presented, in addition to their threats to both agricultural and nonagricultural plants. Furthermore, a phylogenetic analysis based on ITS and LSU DNA sequence data available in GenBank and the published literature was performed to examine the intergeneric relationships of Puccinia. The obtained results revealed the worldwide distribution of Puccinia. Compared with other nations, a reasonable increase in research publications over the current century was demonstrated in Asian countries. The plant families Asteraceae and Poaceae were observed as the most infected in the 21st century. The phylogenetic studies of the LSU and ITS sequence data revealed the polyphyletic nature of Puccinia. In addition, the presences of too short, too lengthy, and incomplete sequences in the NCBI database demonstrate the need for extensive DNA-based analyses for a better understanding of the taxonomic placement of Puccinia. Full article
(This article belongs to the Special Issue Fungal Pathogens and Host Plants)
Show Figures

Figure 1

12 pages, 5349 KiB  
Article
The Interaction of the Transmembrane Domain of SARS-CoV-2 E-Protein with Glycyrrhizic Acid in Lipid Bilayer
by Polina A. Kononova, Olga Yu. Selyutina and Nikolay E. Polyakov
Membranes 2023, 13(5), 505; https://doi.org/10.3390/membranes13050505 - 10 May 2023
Cited by 3 | Viewed by 3681
Abstract
The interaction of the transmembrane domain of SARS-CoV-2 E-protein with glycyrrhizic acid in a model lipid bilayer (small isotropic bicelles) is demonstrated using various NMR techniques. Glycyrrhizic acid (GA) is the main active component of licorice root, and it shows antiviral activity against [...] Read more.
The interaction of the transmembrane domain of SARS-CoV-2 E-protein with glycyrrhizic acid in a model lipid bilayer (small isotropic bicelles) is demonstrated using various NMR techniques. Glycyrrhizic acid (GA) is the main active component of licorice root, and it shows antiviral activity against various enveloped viruses, including coronavirus. It is suggested that GA can influence the stage of fusion between the viral particle and the host cell by incorporating into the membrane. Using NMR spectroscopy, it was shown that the GA molecule penetrates into the lipid bilayer in a protonated state, but localizes on the bilayer surface in a deprotonated state. The transmembrane domain of SARS-CoV-2 E-protein facilitates deeper GA penetration into the hydrophobic region of bicelles at both acidic and neutral pH and promotes the self-association of GA at neutral pH. Phenylalanine residues of the E-protein interact with GA molecules inside the lipid bilayer at neutral pH. Furthermore, GA influences the mobility of the transmembrane domain of SARS-CoV-2 E-protein in the bilayer. These data provide deeper insight into the molecular mechanism of antiviral activity of glycyrrhizic acid. Full article
(This article belongs to the Special Issue Modern Studies on Drug-Membrane Interactions 2.0)
Show Figures

Figure 1

13 pages, 2011 KiB  
Article
Expanding the Toolbox for Bicelle-Forming Surfactant–Lipid Mixtures
by Rita Del Giudice, Nicolò Paracini, Tomas Laursen, Clement Blanchet, Felix Roosen-Runge and Marité Cárdenas
Molecules 2022, 27(21), 7628; https://doi.org/10.3390/molecules27217628 - 7 Nov 2022
Cited by 6 | Viewed by 2911
Abstract
Bicelles are disk-shaped models of cellular membranes used to study lipid–protein interactions, as well as for structural and functional studies on transmembrane proteins. One challenge for the incorporation of transmembrane proteins in bicelles is the limited range of detergent and lipid combinations available [...] Read more.
Bicelles are disk-shaped models of cellular membranes used to study lipid–protein interactions, as well as for structural and functional studies on transmembrane proteins. One challenge for the incorporation of transmembrane proteins in bicelles is the limited range of detergent and lipid combinations available for the successful reconstitution of proteins in model membranes. This is important, as the function and stability of transmembrane proteins are very closely linked to the detergents used for their purification and to the lipids that the proteins are embedded in. Here, we expand the toolkit of lipid and detergent combinations that allow the formation of stable bicelles. We use a combination of dynamic light scattering, small-angle X-ray scattering and cryogenic electron microscopy to perform a systematic sample characterization, thus providing a set of conditions under which bicelles can be successfully formed. Full article
(This article belongs to the Special Issue Colloids and Polymers: An Issue in Honor of Professor Björn Lindman)
Show Figures

Figure 1

17 pages, 3886 KiB  
Article
The Magnetosome Protein, Mms6 from Magnetospirillum magneticum Strain AMB-1, Is a Lipid-Activated Ferric Reductase
by Dilini Singappuli-Arachchige, Shuren Feng, Lijun Wang, Pierre E. Palo, Samuel O. Shobade, Michelle Thomas and Marit Nilsen-Hamilton
Int. J. Mol. Sci. 2022, 23(18), 10305; https://doi.org/10.3390/ijms231810305 - 7 Sep 2022
Cited by 6 | Viewed by 3231
Abstract
Magnetosomes of magnetotactic bacteria consist of magnetic nanocrystals with defined morphologies enclosed in vesicles originated from cytoplasmic membrane invaginations. Although many proteins are involved in creating magnetosomes, a single magnetosome protein, Mms6 from Magnetospirillum magneticum strain AMB-1, can direct the crystallization of magnetite [...] Read more.
Magnetosomes of magnetotactic bacteria consist of magnetic nanocrystals with defined morphologies enclosed in vesicles originated from cytoplasmic membrane invaginations. Although many proteins are involved in creating magnetosomes, a single magnetosome protein, Mms6 from Magnetospirillum magneticum strain AMB-1, can direct the crystallization of magnetite nanoparticles in vitro. The in vivo role of Mms6 in magnetosome formation is debated, and the observation that Mms6 binds Fe3+ more tightly than Fe2+ raises the question of how, in a magnetosome environment dominated by Fe3+, Mms6 promotes the crystallization of magnetite, which contains both Fe3+ and Fe2+. Here we show that Mms6 is a ferric reductase that reduces Fe3+ to Fe2+ using NADH and FAD as electron donor and cofactor, respectively. Reductase activity is elevated when Mms6 is integrated into either liposomes or bicelles. Analysis of Mms6 mutants suggests that the C-terminal domain binds iron and the N-terminal domain contains the catalytic site. Although Mms6 forms multimers that involve C-terminal and N-terminal domain interactions, a fusion protein with ubiquitin remains a monomer and displays reductase activity, which suggests that the catalytic site is fully in the monomer. However, the quaternary structure of Mms6 appears to alter the iron binding characteristics of the C-terminal domain. These results are consistent with a hypothesis that Mms6, a membrane protein, promotes the formation of magnetite in vivo by a mechanism that involves reducing iron. Full article
(This article belongs to the Special Issue Structure and Function of Membrane Proteins 2.0)
Show Figures

Graphical abstract

19 pages, 6486 KiB  
Article
The Formation of Hollow Trait in Cucumber (Cucumis sativus L.) Fruit Is Controlled by CsALMT2
by Geng Zhou, Chen Chen, Xiaohong Liu, Kankan Yang, Chong Wang, Xiangyang Lu, Yun Tian and Huiming Chen
Int. J. Mol. Sci. 2022, 23(11), 6173; https://doi.org/10.3390/ijms23116173 - 31 May 2022
Cited by 11 | Viewed by 3238
Abstract
The hollow trait is crucial for commercial quality of cucumber (Cucumis sativus L.) fruit, and its molecular regulatory mechanism is poorly understood due to its environmental sensitivity. In the previous research, we obtained the hollow and the non-hollow materials of ecotype cucumbers [...] Read more.
The hollow trait is crucial for commercial quality of cucumber (Cucumis sativus L.) fruit, and its molecular regulatory mechanism is poorly understood due to its environmental sensitivity. In the previous research, we obtained the hollow and the non-hollow materials of ecotype cucumbers of South China, which were not easily affected by the external environment through a systematic breeding method. In this study, first, we proposed to use the percentage of the hollow area as the criterion to compare the hollow characteristics between two materials, and to analyze the formation mechanism of early hollow trait from the perspective of cytology. The results showed that the hollow trait occurred in the early stage of fruit development, and formed with the opening of carpel ventral zipped bi-cell layer, which formed rapidly from 2 to 4 days, and then slowed to a constant rate from 14 to 16 days. Meanwhile, the different genetic populations were constructed using these materials, and fine mapping was performed by bulked segregant analysis (BSA) and kompetitive allele specific PCR (KASP) method. The Csa1G630860 (CsALMT2), encoding protein ALMT2, was determined as a candidate gene for regulating the hollow trait in fruit. Furthermore, the expression profile of CsALMT2 was analyzed by qRT-PCR and fluorescence in situ hybridization. The expression of CsALMT2 had obvious tissue specificity, and it was abundantly expressed in the ovule development zone inside the fruit. In the hollow material of cucumber fruit, the expression of CsALMT2 was significantly downregulated. The subcellular localization in tobacco leaves indicated that CsALMT2 was distributed on the plasma membrane. In conclusion, in this study, for the first time, we found the regulatory gene of hollow trait in cucumber fruit, which laid the foundation for subsequent research on the molecular mechanism of hollow trait formation in cucumber fruit, and made it possible to apply this gene in cucumber breeding. Full article
(This article belongs to the Topic Plant Functional Genomics and Crop Genetic Improvement)
Show Figures

Figure 1

22 pages, 4189 KiB  
Article
The Influence of Short Motifs on the Anticancer Activity of HB43 Peptide
by Claudia Herrera-León, Francisco Ramos-Martín, Hassan El Btaouri, Viviane Antonietti, Pascal Sonnet, Laurent Martiny, Fabrizia Zevolini, Chiara Falciani, Catherine Sarazin and Nicola D’Amelio
Pharmaceutics 2022, 14(5), 1089; https://doi.org/10.3390/pharmaceutics14051089 - 19 May 2022
Cited by 5 | Viewed by 3323
Abstract
Despite the remarkable similarity in amino acid composition, many anticancer peptides (ACPs) display significant differences in terms of activity. This strongly suggests that particular relative dispositions of amino acids (motifs) play a role in the interaction with their biological target, which is often [...] Read more.
Despite the remarkable similarity in amino acid composition, many anticancer peptides (ACPs) display significant differences in terms of activity. This strongly suggests that particular relative dispositions of amino acids (motifs) play a role in the interaction with their biological target, which is often the cell membrane. To better verify this hypothesis, we intentionally modify HB43, an ACP active against a wide variety of cancers. Sequence alignment of related ACPs by ADAPTABLE web server highlighted the conserved motifs that could be at the origin of the activity. In this study, we show that changing the order of amino acids in such motifs results in a significant loss of activity against colon and breast cancer cell lines. On the contrary, amino acid substitution in key motifs may reinforce or weaken the activity, even when the alteration does not perturb the amphipathicity of the helix formed by HB43 on liposomes mimicking their surface. NMR and MD simulations with different membrane models (micelles, bicelles, and vesicles) indicate that the activity reflects the insertion capability in cancer-mimicking serine-exposing membranes, supported by the insertion of N-terminal phenylalanine in the FAK motif and the anchoring to the carboxylate of phosphatidylserine by means of arginine side chains. Full article
(This article belongs to the Special Issue Peptide-Based Drugs for Cancer Therapies)
Show Figures

Figure 1

16 pages, 1703 KiB  
Review
Deciphering the Assembly of Enveloped Viruses Using Model Lipid Membranes
by Erwan Brémaud, Cyril Favard and Delphine Muriaux
Membranes 2022, 12(5), 441; https://doi.org/10.3390/membranes12050441 - 19 Apr 2022
Cited by 14 | Viewed by 6775
Abstract
The cell plasma membrane is mainly composed of phospholipids, cholesterol and embedded proteins, presenting a complex interface with the environment. It maintains a barrier to control matter fluxes between the cell cytosol and its outer environment. Enveloped viruses are also surrounded by a [...] Read more.
The cell plasma membrane is mainly composed of phospholipids, cholesterol and embedded proteins, presenting a complex interface with the environment. It maintains a barrier to control matter fluxes between the cell cytosol and its outer environment. Enveloped viruses are also surrounded by a lipidic membrane derived from the host-cell membrane and acquired while exiting the host cell during the assembly and budding steps of their viral cycle. Thus, model membranes composed of selected lipid mixtures mimicking plasma membrane properties are the tools of choice and were used to decipher the first step in the assembly of enveloped viruses. Amongst these viruses, we choose to report the three most frequently studied viruses responsible for lethal human diseases, i.e., Human Immunodeficiency Type 1 (HIV-1), Influenza A Virus (IAV) and Ebola Virus (EBOV), which assemble at the host-cell plasma membrane. Here, we review how model membranes such as Langmuir monolayers, bicelles, large and small unilamellar vesicles (LUVs and SUVs), supported lipid bilayers (SLBs), tethered-bilayer lipid membranes (tBLM) and giant unilamellar vesicles (GUVs) contribute to the understanding of viral assembly mechanisms and dynamics using biophysical approaches. Full article
(This article belongs to the Special Issue Model Lipid Membrane)
Show Figures

Figure 1

81 pages, 19455 KiB  
Review
Lipid Vesicles and Other Polymolecular Aggregates—From Basic Studies of Polar Lipids to Innovative Applications
by Peter Walde and Sosaku Ichikawa
Appl. Sci. 2021, 11(21), 10345; https://doi.org/10.3390/app112110345 - 3 Nov 2021
Cited by 22 | Viewed by 9199
Abstract
Lipid vesicles (liposomes) are a unique and fascinating type of polymolecular aggregates, obtained from bilayer-forming amphiphiles—or mixtures of amphiphiles—in an aqueous medium. Unilamellar vesicles consist of one single self-closed bilayer membrane, constituted by the amphiphiles and an internal volume which is trapped by [...] Read more.
Lipid vesicles (liposomes) are a unique and fascinating type of polymolecular aggregates, obtained from bilayer-forming amphiphiles—or mixtures of amphiphiles—in an aqueous medium. Unilamellar vesicles consist of one single self-closed bilayer membrane, constituted by the amphiphiles and an internal volume which is trapped by this bilayer, whereby the vesicle often is spherical with a typical desired average diameter of either about 100 nm or tens of micrometers. Functionalization of the external vesicle surface, basically achievable at will, and the possibilities of entrapping hydrophilic molecules inside the vesicles or/and embedding hydrophobic compounds within the membrane, resulted in various applications in different fields. This review highlights a few of the basic studies on the phase behavior of polar lipids, on some of the concepts for the controlled formation of lipid vesicles as dispersed lamellar phase, on some of the properties of vesicles, and on the challenges of efficiently loading them with hydrophilic or hydrophobic compounds for use as delivery systems, as nutraceuticals, for bioassays, or as cell-like compartments. Many of the large number of basic studies have laid a solid ground for various applications of polymolecular aggregates of amphiphilic lipids, including, for example, cubosomes, bicelles or—recently most successfully—nucleic acids-containing lipid nanoparticles. All this highlights the continued importance of fundamental studies. The life-saving application of mRNA lipid nanoparticle COVID-19 vaccines is in part based on year-long fundamental studies on the formation and properties of lipid vesicles. It is a fascinating example, which illustrates the importance of considering (i) details of the chemical structure of the different molecules involved, as well as (ii) physical, (iii) engineering, (iv) biological, (v) pharmacological, and (vii) economic aspects. Moreover, the strong demand for interdisciplinary collaboration in the field of lipid vesicles and related aggregates is also an excellent and convincing example for teaching students in the field of complex molecular systems. Full article
(This article belongs to the Special Issue Innovation in Biomolecular Sciences and Engineering)
Show Figures

Figure 1

12 pages, 2738 KiB  
Article
NMR Studies of the Ion Channel-Forming Human Amyloid-β with Zinc Ion Concentrations
by Minseon Kim, Jinyoung Son and Yongae Kim
Membranes 2021, 11(11), 799; https://doi.org/10.3390/membranes11110799 - 20 Oct 2021
Cited by 3 | Viewed by 2467
Abstract
Alzheimer’s disease (AD) is classified as an amyloid-related disease. Amyloid beta (Aβ) is a transmembrane protein known to play a major role in the pathogenesis of AD. These Aβ proteins can form ion channels or pores in the cell membrane. Studies have elucidated [...] Read more.
Alzheimer’s disease (AD) is classified as an amyloid-related disease. Amyloid beta (Aβ) is a transmembrane protein known to play a major role in the pathogenesis of AD. These Aβ proteins can form ion channels or pores in the cell membrane. Studies have elucidated the structure of the transmembrane domain of Aβ ion channels. In addition, various studies have investigated substances that block or inhibit the formation of Aβ ion channels. Zinc ions are considered as potential inhibitors of AD. In this study, we focused on the transmembrane domain and some external domains of the Aβ protein (hAPP-TM), and solution-state NMR was used to confirm the effect on residues of the protein in the presence of zinc ions. In addition, we sought to confirm the structure and orientation of the protein in the presence of the bicelle using solid-state NMR. Full article
Show Figures

Figure 1

Back to TopTop