Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = bent-core mesogens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2796 KiB  
Article
Macroscopic Biaxial Order in Multilayer Films of Bent-Core Liquid Crystals Deposited by Combined Langmuir–Blodgett/Langmuir–Schaefer Technique
by Francesco Vita, Fabrizio Corrado Adamo, Mario Campana, Blake Bordokas, Federica Ciuchi, Maria Penelope De Santo, Daniel Hermida-Merino, Angela Lisovsky, Michela Pisani, Diego Pontoni, Eric Scharrer and Oriano Francescangeli
Nanomaterials 2024, 14(4), 357; https://doi.org/10.3390/nano14040357 - 14 Feb 2024
Cited by 1 | Viewed by 1609
Abstract
Bent-core liquid crystals, a class of mesogenic compounds with non-linear molecular structures, are well known for their unconventional mesophases, characterized by complex molecular (and supramolecular) ordering and often featuring biaxial and polar properties. In the nematic phase, their unique behavior is manifested in [...] Read more.
Bent-core liquid crystals, a class of mesogenic compounds with non-linear molecular structures, are well known for their unconventional mesophases, characterized by complex molecular (and supramolecular) ordering and often featuring biaxial and polar properties. In the nematic phase, their unique behavior is manifested in the formation of nano-sized biaxial clusters of layered molecules (cybotactic groups). While this prompted their consideration in the quest for nematic biaxiality, experimental evidence indicates that the cybotactic order is only short-ranged and that the nematic phase is macroscopically uniaxial. By combining atomic force microscopy, neutron reflectivity and wide-angle grazing-incidence X-ray scattering, here, we demonstrate that multilayer films of a bent-core nematic, deposited on silicon by a combined Langmuir–Blodgett and Langmuir–Schaefer approach, exhibit macroscopic in-plane ordering, with the long molecular axis tilted with respect to the sample surface and the short molecular axis (i.e., the apex bisector) aligned along the film compression direction. We thus propose the use of Langmuir films as an effective way to study and control the complex anchoring properties of bent-core liquid crystals. Full article
(This article belongs to the Topic Recent Advances in Liquid Crystals)
Show Figures

Figure 1

13 pages, 1423 KiB  
Article
Neuro-Evolutive Modeling of Transition Temperatures for Five-Ring Bent-Core Molecules Derived from Resorcinol
by Elena Niculina Drăgoi, Irina Cârlescu, Răzvan Puf, Tudor Vasiliu and Elena-Luiza Epure
Crystals 2023, 13(4), 583; https://doi.org/10.3390/cryst13040583 - 29 Mar 2023
Cited by 1 | Viewed by 1947
Abstract
Determining the phase transition temperature of different types of liquid crystals based on their structural parameters is a complex problem. The experimental work might be eliminated or reduced if prediction strategies could effectively anticipate the behavior of liquid crystalline systems. Neuro-evolutive modeling based [...] Read more.
Determining the phase transition temperature of different types of liquid crystals based on their structural parameters is a complex problem. The experimental work might be eliminated or reduced if prediction strategies could effectively anticipate the behavior of liquid crystalline systems. Neuro-evolutive modeling based on artificial neural networks (ANN) and a differential evolution (DE) algorithm was applied to predict the phase transition temperatures of bent-core molecules based on their resorcinol core. By these means, structural parameters such as the nature of the linking groups, the position, size and number of lateral substituents on the central core or calamitic wings and the length of the terminal chains were taken into account as factors that influence the liquid crystalline properties. A number of 172 bent-core compounds with symmetrical calamitic wings were selected from the literature. All corresponding structures were fully optimized using the DFT, and the molecular descriptors were calculated afterward. In the first step, the ANN-DE approach predicted the mesophase presence for the analyzed compounds. Next, ANN models were determined to predict the transition temperatures and whether or not the bent-core compounds were mesogenic. Simple structural, thermophysical and electronic structure descriptors were considered as inputs in the dataset. As a result, the models determined for each individual temperature have an R2 that varied from 0.89 to 0.98, indicating their capability to estimate the transition temperatures for the selected compounds. Moreover, the impact analysis of the inputs on the predicted temperatures showed that, in most cases, the presence or not of liquid crystalline properties represents the most influential feature. Full article
Show Figures

Figure 1

10 pages, 1688 KiB  
Article
Nanoscale Structure of Langmuir–Blodgett Film of Bent-Core Molecules
by Fabrizio Corrado Adamo, Federica Ciuchi, Maria Penelope De Santo, Paola Astolfi, Isabelle Warner, Eric Scharrer, Michela Pisani, Francesco Vita and Oriano Francescangeli
Nanomaterials 2022, 12(13), 2285; https://doi.org/10.3390/nano12132285 - 2 Jul 2022
Cited by 5 | Viewed by 2310
Abstract
Bent-core mesogens (BCMs) are a class of thermotropic liquid crystals featuring several unconventional properties. However, the interpretation and technological exploitation of their unique behavior have been hampered by the difficulty of controlling their anchoring at surfaces. To tackle this issue, we report the [...] Read more.
Bent-core mesogens (BCMs) are a class of thermotropic liquid crystals featuring several unconventional properties. However, the interpretation and technological exploitation of their unique behavior have been hampered by the difficulty of controlling their anchoring at surfaces. To tackle this issue, we report the nanoscale structural characterization of BCM films prepared using the Langmuir–Blodgett technique. Even though BCMs are quite different from typical amphiphilic molecules, we demonstrate that stable molecular films form over water, which can then be transferred onto silicon substrates. The combination of Brewster angle microscopy, atomic force microscopy, and X-ray reflectivity measurements shows that the molecules, once transferred onto a solid substrate, form a bilayer structure with a bottom layer of flat molecules and an upper layer of upright molecules. These results suggest that Langmuir–Blodgett films of BCMs can provide a useful means to control the alignment of this class of liquid crystals. Full article
Show Figures

Figure 1

15 pages, 2112 KiB  
Article
From Bend to Splay Dominated Elasticity in Nematics
by Davide Revignas and Alberta Ferrarini
Crystals 2021, 11(7), 831; https://doi.org/10.3390/cryst11070831 - 17 Jul 2021
Cited by 6 | Viewed by 3959
Abstract
In the past decade, much evidence has been provided for an unusually low cost for bend deformations in the nematic phase of bent-core mesogens and bimesogens (liquid crystal dimers) having a bent shape on average. Recently, an analogous effect was observed for the [...] Read more.
In the past decade, much evidence has been provided for an unusually low cost for bend deformations in the nematic phase of bent-core mesogens and bimesogens (liquid crystal dimers) having a bent shape on average. Recently, an analogous effect was observed for the splay mode of bent-core mesogens with an acute apical angle. Here, we present a systematic computational investigation of the Frank elastic constants of nematics made of V-shaped particles, with bend angles ranging from acute to obtuse. We show that by tuning this angle, the elastic behavior switches from bend dominated (K33>K11) to splay dominated (K11>K33), with anomalously low values of the splay and the bend constant, respectively. This is related to a change in the shape polarity of particles, which is associated with the emergence of polar order, longitudinal for splay and transversal for bend deformations. Crucial to this study is the use of a recently developed microscopic elastic theory, able to account for the interplay of mesogen morphology and director deformations. Full article
(This article belongs to the Special Issue In Celebration of Noel A. Clark’s 80th Birthday)
Show Figures

Graphical abstract

14 pages, 4302 KiB  
Article
Photosensitive Bent-Core Compounds with Azo-Group Attached to the Central Ring
by Martin Cigl, Věra Hamplová, Damian Pociecha and Vladimíra Novotná
Crystals 2020, 10(11), 1030; https://doi.org/10.3390/cryst10111030 - 11 Nov 2020
Cited by 5 | Viewed by 2773
Abstract
We prepared and studied bent-core liquid crystalline (LC) compounds based on 1,3-disubstituted benzene in a central part and azo-linkage attached directly to this bent core. We designed three structures and checked their mesogenic properties, as well as photosensitivity. We found that two studied [...] Read more.
We prepared and studied bent-core liquid crystalline (LC) compounds based on 1,3-disubstituted benzene in a central part and azo-linkage attached directly to this bent core. We designed three structures and checked their mesogenic properties, as well as photosensitivity. We found that two studied compounds revealed columnar LC mesophases, which we transformed to the isotropic phase under the illumination of UV light. We concluded that only one type of structural motif was not mesogenic. For LC compounds, we established phases and phase transition temperatures based on differential scanning calorimetry (DSC) measurements and observations in a polarizing microscope. To confirm phase identification, X-ray studies were performed and structural parameters describing the columnar phases supplied. Full article
(This article belongs to the Special Issue Photosensitive Liquid Crystals)
Show Figures

Graphical abstract

7 pages, 1908 KiB  
Article
Preferential Circularly Polarized Luminescence from a Nano-Segregated Liquid Crystalline Phase Using a Polymerized Twisted Nematic Platform
by Jae-Jin Lee and Suk-Won Choi
Polymers 2020, 12(11), 2529; https://doi.org/10.3390/polym12112529 - 29 Oct 2020
Cited by 4 | Viewed by 2320
Abstract
In this study, a polymerized twisted nematic (TN) network was used as an extrinsic chiral platform to overcome the heterogeneity during spontaneous symmetry breaking in a mixed system comprising an achiral bent-core molecule and rod-like mesogen. The TN platform was prepared by photopolymerizing [...] Read more.
In this study, a polymerized twisted nematic (TN) network was used as an extrinsic chiral platform to overcome the heterogeneity during spontaneous symmetry breaking in a mixed system comprising an achiral bent-core molecule and rod-like mesogen. The TN platform was prepared by photopolymerizing a reactive mesogen dispersed in a low molecular weight liquid crystal with TN orientation. The use of TN orientation to correct the degeneracy in bent-core molecular systems has been previously reported; however, to the best of our knowledge, this is the first study that uses an extrinsic chiral platform of a polymerized TN network. The heterogeneity in the nano-segregated phase of the achiral mixture was suppressed using the extrinsic TN platform with a twisted angle θ of ≥ |±30°|. When an achiral mixture doped with a luminescent guest molecule was refilled into the extrinsic chiral platform, preferential deracemization with one-handedness occurred, corresponding to the handedness of the TN platform. Therefore, circularly polarized luminescence with a preferential handedness can be achieved using this extrinsic chiral platform. Full article
(This article belongs to the Special Issue Polymer-Based Materials in Liquid Crystals)
Show Figures

Graphical abstract

6 pages, 1141 KiB  
Communication
Enhancement of Luminescence Dissymmetry Factor in Nano-Segregated Phase Generated by Phase Separation between Helical Nanofilaments and Liquid-Crystalline Smectic A Phase
by Jae-Jin Lee and Suk-Won Choi
Crystals 2020, 10(10), 952; https://doi.org/10.3390/cryst10100952 - 19 Oct 2020
Cited by 4 | Viewed by 2681
Abstract
Although several methods exist for the synthesis of circularly polarized luminescent (CPL) materials, the methods are extremely complex and tedious. In recent years, the chiral host-achiral luminescent guest method and the achiral host-achiral luminescent guest method have been employed to fabricate CPL materials; [...] Read more.
Although several methods exist for the synthesis of circularly polarized luminescent (CPL) materials, the methods are extremely complex and tedious. In recent years, the chiral host-achiral luminescent guest method and the achiral host-achiral luminescent guest method have been employed to fabricate CPL materials; however, the main disadvantage of the latter is the small luminescence dissymmetry factor (glum) that limits the practical applications of the method. Therefore, this study reports on the enhancement of glum in a nano-segregated phase system, generated by the phase separation between helical nanofilaments (HNFs; originating from an achiral bent-core molecule) and a liquid-crystalline (LC) smectic A (SmA) phase (originating from an achiral rod-like mesogen). The observed glum value in the nano-segregated phase between the HNFs and LC SmA phase was larger than that in the nano-segregated phase between the HNFs and LC nematic (N) phase. The enhancement of the glum value was attributed to the order parameter (S) of the dye molecules in the SmA phase being larger than that in the N phase. Therefore, we concluded that the S value of the fluorescent dye molecules, doped into the embedded LC phase between the HNFs, strongly influenced the glum value. Full article
(This article belongs to the Special Issue Organic Optoelectronic Materials)
Show Figures

Graphical abstract

42 pages, 15770 KiB  
Review
Influences of Central Units and Terminal Chains on the Banana-Shaped Liquid Crystals
by Tang Xin Ting, Mohd Sani Sarjadi and Md Lutfor Rahman
Crystals 2020, 10(10), 857; https://doi.org/10.3390/cryst10100857 - 24 Sep 2020
Cited by 19 | Viewed by 4862
Abstract
Azo-functionalized materials are one of the appealing groups of the functionalized materials owing to their photoswitching behaviour and have been explored for various potential applications viz., optical data storage, sensor, display devices, nonlinear materials and molecular switches. Recently, azo-functionalized bent-core liquid crystals [...] Read more.
Azo-functionalized materials are one of the appealing groups of the functionalized materials owing to their photoswitching behaviour and have been explored for various potential applications viz., optical data storage, sensor, display devices, nonlinear materials and molecular switches. Recently, azo-functionalized bent-core liquid crystals (BCLCs) have gained significant attention because they have dual properties of BCLCs and azobenzene, which enables to generate new multifaceted functional and smart materials. In this report, the recently synthesized azobenzene containing bent-core mesogens and its subclass, the so-called hockey stick and V-shaped molecules are summarized. The mesomorphic behaviour of reported BCLCs affected by the type of central core unit, the nature, number and position of the lateral substituents and the type and length of the terminal chain are discussed. The photoisomerization process of these photoresponsive BCLCs in solid, solution and mesophase, as well as the impact of light on the chemical and electrical properties of them, are discussed. Full article
(This article belongs to the Section Liquid Crystals)
Show Figures

Figure 1

29 pages, 12796 KiB  
Review
Nanostructure of Unconventional Liquid Crystals Investigated by Synchrotron Radiation
by Francesco Vita, Fabrizio Corrado Adamo, Michela Pisani and Oriano Francescangeli
Nanomaterials 2020, 10(9), 1679; https://doi.org/10.3390/nano10091679 - 26 Aug 2020
Cited by 4 | Viewed by 4111
Abstract
The macroscopic properties of novel liquid crystal (LC) systems—LCs with unconventional molecular structure as well as conventional LCs in unconventional geometries—directly descend from their mesoscopic structural organization. While X-ray diffraction (XRD) is an obvious choice to investigate their nanoscale structure, conventional diffractometry is [...] Read more.
The macroscopic properties of novel liquid crystal (LC) systems—LCs with unconventional molecular structure as well as conventional LCs in unconventional geometries—directly descend from their mesoscopic structural organization. While X-ray diffraction (XRD) is an obvious choice to investigate their nanoscale structure, conventional diffractometry is often hampered by experimental difficulties: the low scattering power and short-range positional order of the materials, resulting in weak and diffuse diffraction features; the need to perform measurements in challenging conditions, e.g., under magnetic and/or electric fields, on thin films, or at high temperatures; and the necessity to probe micron-sized volumes to tell the local structural properties from their macroscopic average. Synchrotron XRD allows these problems to be circumvented thanks to the superior diffraction capabilities (brilliance, q-range, energy and space resolution) and advanced sample environment available at synchrotron beamlines. Here, we highlight the potentiality of synchrotron XRD in the field of LCs by reviewing a selection of experiments on three unconventional LC systems: the potentially biaxial and polar nematic phase of bent-core mesogens; the very high-temperature nematic phase of all-aromatic LCs; and polymer-dispersed liquid crystals. In all these cases, synchrotron XRD unveils subtle nanostructural features that are reflected into macroscopic properties of great interest from both fundamental and technological points of view. Full article
Show Figures

Graphical abstract

20 pages, 4672 KiB  
Article
The Role of Substitution in the Apex Position of the Bent-Core on Mesomorphic Properties of New Series of Liquid Crystalline Materials
by Helena Skopalová, Petr Špaček, Václav Kozmík, Jiří Svoboda, Vladimíra Novotná, Damian Pociecha and Michal Kohout
Crystals 2020, 10(9), 735; https://doi.org/10.3390/cryst10090735 - 21 Aug 2020
Cited by 2 | Viewed by 2848
Abstract
We present the synthesis and mesomorphic properties of the new series of bent-core liquid crystals based on 3-hydroxybenzoic acid bearing a lateral substituent in the apex position. Four different substituents of various sizes and electronic properties have been used. We have found that [...] Read more.
We present the synthesis and mesomorphic properties of the new series of bent-core liquid crystals based on 3-hydroxybenzoic acid bearing a lateral substituent in the apex position. Four different substituents of various sizes and electronic properties have been used. We have found that only compounds substituted with fluorine are mesogenic and exhibit one mesophase, whose type differs when prolonging the terminal alkyl chain. For homologues with shorter alkyl chains (octyl, decyl), a columnar B1-type of a mesophase was observed, while materials with longer terminal chains (dodecyl, tetradecyl) exhibited a switchable lamellar SmCAPA phase. Calorimetric measurements, texture observations under a polarizing microscope were performed and electro-optical properties studied. Additionally, dielectric measurements were realized to characterize the molecular dynamics in the SmCAPA phase. All mesogenic compounds were further studied by X-ray measurements to confirm phase identification and obtain more information about their structural parameters. Full article
(This article belongs to the Special Issue Bent-Shaped Liquid Crystals and Beyond)
Show Figures

Graphical abstract

15 pages, 5382 KiB  
Article
Comparative 2H NMR and X-Ray Diffraction Investigation of a Bent-Core Liquid Crystal Showing a Nematic Phase
by Maria Ghilardi, Fabrizio C. Adamo, Francesco Vita, Oriano Francescangeli and Valentina Domenici
Crystals 2020, 10(4), 284; https://doi.org/10.3390/cryst10040284 - 9 Apr 2020
Cited by 6 | Viewed by 4236
Abstract
Bent-core liquid crystals showing a nematic phase stable at low temperatures are very attractive for applicative purposes in view of the inherent biaxial nature of the nematic phase. In this work, a typical five-ring bent-core mesogen was investigated by means of 2H [...] Read more.
Bent-core liquid crystals showing a nematic phase stable at low temperatures are very attractive for applicative purposes in view of the inherent biaxial nature of the nematic phase. In this work, a typical five-ring bent-core mesogen was investigated by means of 2H NMR spectroscopy and X-ray diffraction (XRD) methods. These techniques provide complementary information on the structural properties of the nematic phase and the average mesogen conformation: small-angle XRD reveals the presence of short-range positional order in the form of skewed cybotaxis, while a comparison of the orientational order parameters measured by wide-angle XRD and NMR provides an estimate of the molecule bend angle. In addition, 2H NMR puts in evidence the occurrence of an unexpected transition to a low-temperature tilted phase, having a crystalline or smectic-like character. The results were compared with those of previous 13C NMR investigations. Full article
(This article belongs to the Special Issue Nuclear Magnetic Resonance of Liquid Crystals)
Show Figures

Graphical abstract

15 pages, 7939 KiB  
Article
New SmAPF Mesogens Designed for Analog Electrooptics Applications
by Eva D. Korblova, Edward Guzman, Joseph E. Maclennan, Matthew A. Glaser, Renfan Shao, Edgardo Garcia, Yongqiang Shen, Rayshan Visvanathan, Noel A. Clark and David M. Walba
Materials 2017, 10(11), 1284; https://doi.org/10.3390/ma10111284 - 9 Nov 2017
Cited by 5 | Viewed by 4465
Abstract
We have previously reported the first realization of an orthogonal ferroelectric bent-core SmAPF phase by directed design in mesogens with a single tricarbosilane-terminated alkoxy tail. Given the potentially useful electrooptic properties of this phase, including analog phase-only electrooptic index modulation with optical [...] Read more.
We have previously reported the first realization of an orthogonal ferroelectric bent-core SmAPF phase by directed design in mesogens with a single tricarbosilane-terminated alkoxy tail. Given the potentially useful electrooptic properties of this phase, including analog phase-only electrooptic index modulation with optical latching, we have been exploring its “structure space”, searching for novel SmAPF mesogens. Here, we report two classes of these—the first designed to optimize the dynamic range of the index modulation in parallel-aligned cells by lowering the bend angle of the rigid core, and the second expanding the structure space of the phase by replacing the tricarbosilane-terminated alkyl tail with a polyfluorinated polyethylene glycol oligomer. Full article
(This article belongs to the Special Issue Liquid Crystal-Assisted Advanced Functional Materials)
Show Figures

Figure 1

Back to TopTop