Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = becker muscular disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 700 KB  
Review
Ethical Considerations Regarding Advanced Heart Failure Therapies in Patients Affected by Dystrophinopathies
by Marco Spagnolin, Luca Fazzini, Amedeo Terzi, Attilio Iacovoni, Raffaele Abete, Ottavio Zucchetti, Michele Senni and Mauro Gori
Cardiogenetics 2025, 15(3), 26; https://doi.org/10.3390/cardiogenetics15030026 - 22 Sep 2025
Viewed by 869
Abstract
Dystrophinopathies, including Duchenne and Becker muscular dystrophies (DMD and BMD), are inherited neuromuscular disorders frequently complicated by progressive cardiac involvement, ultimately leading to advanced heart failure. While heart transplantation and long-term left ventricular assist device (LVAD) therapy represent potential therapeutic options, their application [...] Read more.
Dystrophinopathies, including Duchenne and Becker muscular dystrophies (DMD and BMD), are inherited neuromuscular disorders frequently complicated by progressive cardiac involvement, ultimately leading to advanced heart failure. While heart transplantation and long-term left ventricular assist device (LVAD) therapy represent potential therapeutic options, their application in this population raises significant ethical challenges. This review explores the ethical implications surrounding the allocation of scarce medical resources, particularly in patients with limited life expectancy and multisystem disease, as in DMD. Decisions regarding eligibility for heart transplantation must balance individual benefit, considering the impact of excluding other potential recipients. LVAD therapy, although more accessible, still demands careful patient selection due to high perioperative risk and postoperative complications. The review emphasizes the need for transparent, multidisciplinary decision-making processes that respect patient autonomy while ensuring equitable and rational distribution of healthcare resources. Ultimately, while advanced therapies may be feasible in selected cases, particularly in BMD, ethical deliberation remains central to determining their appropriateness in the context of dystrophinopathies. Full article
(This article belongs to the Section Rare Disease-Neuromuscular Diseases)
Show Figures

Figure 1

20 pages, 2187 KB  
Article
Comparative Transcriptomic Profiling in Patients Affected by Duchenne and Becker Muscular Dystrophies: A Focus on ECM Genes Dysregulation
by Bartolo Rizzo, Francesca Dragoni, Maria Irene Dainesi, Rosalinda Di Gerlando, Evelyne Minucchi, Angela Lucia Berardinelli and Stella Gagliardi
Int. J. Mol. Sci. 2025, 26(14), 6594; https://doi.org/10.3390/ijms26146594 - 9 Jul 2025
Viewed by 2814
Abstract
The complexity of RNA metabolism has become crucial in neuromuscular diseases, especially for Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). Our goal was to search for possible pathways that differ between the two diseases, in which DMD develops a severe phenotype [...] Read more.
The complexity of RNA metabolism has become crucial in neuromuscular diseases, especially for Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). Our goal was to search for possible pathways that differ between the two diseases, in which DMD develops a severe phenotype compared to BMD. In this work, we aimed to evaluate the transcriptomic profile in skeletal muscle biopsies derived from patients with either DMD or BMD. We collected RNA obtained from pediatric patients with DMD (n = 12) and with BMD (n = 6). Compared to patients with BMD, patients with DMD showed a particular activation of genes involved in collagen synthesis, extracellular matrix organization, and Oncostatin M-dependent pathways, important for fibrotic processes. This suggests that a more severe phenotype in patients with DMD compared to those with BMD may be due to greater deregulation of these pathways, reflecting the clinical picture of patients observed. Our results allowed us to highlight the molecular differences between the two phenotypic groups, shedding light on the pathways that make Duchenne dystrophy more severe than its counterpart does. This study provides preliminary insights into the difference in gene expression between the two groups and lays the basis for the identification of possible mechanisms that differentiate between the two diseases. Full article
Show Figures

Figure 1

27 pages, 22222 KB  
Review
Cardiomyopathies and Arrythmias in Neuromuscular Diseases
by Giuseppe Sgarito, Calogero Volpe, Stefano Bardari, Raimondo Calvanese, Paolo China, Giosuè Mascioli, Martina Nesti, Carlo Pignalberi, Manlio Cipriani and Massimo Zecchin
Cardiogenetics 2025, 15(1), 7; https://doi.org/10.3390/cardiogenetics15010007 - 3 Mar 2025
Cited by 1 | Viewed by 3895
Abstract
Neuromuscular diseases (NMDs) encompass various hereditary conditions affecting motor neurons, the neuromuscular junction, and skeletal muscles. These disorders are characterized by progressive muscle weakness and can manifest at different stages of life, from birth to adulthood. NMDs, such as Duchenne and Becker muscular [...] Read more.
Neuromuscular diseases (NMDs) encompass various hereditary conditions affecting motor neurons, the neuromuscular junction, and skeletal muscles. These disorders are characterized by progressive muscle weakness and can manifest at different stages of life, from birth to adulthood. NMDs, such as Duchenne and Becker muscular dystrophies, myotonic dystrophy, and limb–girdle muscular dystrophies, often involve cardiac complications, including cardiomyopathies and arrhythmias. Underlying genetic mutations contribute to skeletal and cardiac muscle dysfunction, particularly in the DMD, EMD, and LMNA genes. The progressive nature of muscle deterioration significantly reduces life expectancy, mainly due to respiratory and cardiac failure. The early detection of cardiac involvement through electrocardiography (ECG) and cardiac imaging is crucial for timely intervention. Pharmacological treatment focuses on managing cardiomyopathies and arrhythmias, with an emerging interest in gene therapies aimed at correcting underlying genetic defects. Heart transplantation, though historically controversial in patients with muscular dystrophies, is increasingly recognized as a viable option for individuals with advanced heart failure and moderate muscle impairment, leading to improved survival rates. Careful patient selection and management are critical to optimizing outcomes in these complex cases. Full article
(This article belongs to the Section Rare Disease-Neuromuscular Diseases)
Show Figures

Figure 1

18 pages, 2460 KB  
Review
The Unexplored Role of Connexin Hemichannels in Promoting Facioscapulohumeral Muscular Dystrophy Progression
by Macarena Díaz-Ubilla and Mauricio A. Retamal
Int. J. Mol. Sci. 2025, 26(1), 373; https://doi.org/10.3390/ijms26010373 - 4 Jan 2025
Viewed by 2172
Abstract
DUX4 is typically a repressed transcription factor, but its aberrant activation in Facioscapulohumeral Muscular Dystrophy (FSHD) leads to cell death by disrupting muscle homeostasis. This disruption affects crucial processes such as myogenesis, sarcolemma integrity, gene regulation, oxidative stress, immune response, and many other [...] Read more.
DUX4 is typically a repressed transcription factor, but its aberrant activation in Facioscapulohumeral Muscular Dystrophy (FSHD) leads to cell death by disrupting muscle homeostasis. This disruption affects crucial processes such as myogenesis, sarcolemma integrity, gene regulation, oxidative stress, immune response, and many other biological pathways. Notably, these disrupted processes have been associated, in other pathological contexts, with the presence of connexin (Cx) hemichannels—transmembrane structures that mediate communication between the intracellular and extracellular environments. Thus, hemichannels have been implicated in skeletal muscle atrophy, as observed in human biopsies and animal models of Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, and Dysferlinopathies, suggesting a potentially shared mechanism of muscle atrophy that has not yet been explored in FSHD. Despite various therapeutic strategies proposed to manage FSHD, no treatment or cure is currently available. This review summarizes the current understanding of the mechanisms underlying FSHD progression, with a focus on hormones, inflammation, reactive oxygen species (ROS), and mitochondrial function. Additionally, it explores the potential of targeting hemichannels as a therapeutic strategy to slow disease progression by preventing the spread of pathogenic factors between muscle cells. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Biology in Chile, 2nd Edition)
Show Figures

Figure 1

15 pages, 243 KB  
Article
AI-Powered Neurogenetics: Supporting Patient’s Evaluation with Chatbot
by Stefania Zampatti, Juliette Farro, Cristina Peconi, Raffaella Cascella, Claudia Strafella, Giulia Calvino, Domenica Megalizzi, Giulia Trastulli, Carlo Caltagirone and Emiliano Giardina
Genes 2025, 16(1), 29; https://doi.org/10.3390/genes16010029 - 27 Dec 2024
Cited by 3 | Viewed by 2144
Abstract
Background/Objectives: Artificial intelligence and large language models like ChatGPT and Google’s Gemini are promising tools with remarkable potential to assist healthcare professionals. This study explores ChatGPT and Gemini’s potential utility in assisting clinicians during the first evaluation of patients with suspected neurogenetic disorders. [...] Read more.
Background/Objectives: Artificial intelligence and large language models like ChatGPT and Google’s Gemini are promising tools with remarkable potential to assist healthcare professionals. This study explores ChatGPT and Gemini’s potential utility in assisting clinicians during the first evaluation of patients with suspected neurogenetic disorders. Methods: By analyzing the model’s performance in identifying relevant clinical features, suggesting differential diagnoses, and providing insights into possible genetic testing, this research seeks to determine whether these AI tools could serve as a valuable adjunct in neurogenetic assessments. Ninety questions were posed to ChatGPT (Versions 4o, 4, and 3.5) and Gemini: four questions about clinical diagnosis, seven about genetic inheritance, estimable recurrence risks, and available tests, and four questions about patient management, each for six different neurogenetic rare disorders (Hereditary Spastic Paraplegia type 4 and type 7, Huntington Disease, Fragile X-associated Tremor/Ataxia Syndrome, Becker Muscular Dystrophy, and FacioScapuloHumeral Muscular Dystrophy). Results: According to the results of this study, GPT chatbots demonstrated significantly better performance than Gemini. Nonetheless, all AI chatbots showed notable gaps in diagnostic accuracy and a concerning level of hallucinations. Conclusions: As expected, these tools can empower clinicians in assessing neurogenetic disorders, yet their effective use demands meticulous collaboration and oversight from both neurologists and geneticists. Full article
15 pages, 5959 KB  
Article
Molecular Study of the Fukutin-Related Protein (FKRP) Gene in Patients from Southern Italy with Duchenne/Becker-like Phenotype
by Antonio Qualtieri, Selene De Benedittis, Annamaria Cerantonio, Luigi Citrigno, Gemma Di Palma, Olivier Gallo, Francesca Cavalcanti and Patrizia Spadafora
Int. J. Mol. Sci. 2024, 25(19), 10356; https://doi.org/10.3390/ijms251910356 - 26 Sep 2024
Viewed by 2113
Abstract
Pathogenic variants localized in the gene coding for the Fukutin-Related Protein (FKRP) are responsible for Limb-Girdle Muscular Dystrophy type 9 (LGMDR9), Congenital Muscular Dystrophies type 1C (MDC1C), Walker–Warburg Syndrome (WWS), and Muscle–Eye–Brain diseases (MEBs). LGMDR9 is the fourth most common hereditary Limb Girdle [...] Read more.
Pathogenic variants localized in the gene coding for the Fukutin-Related Protein (FKRP) are responsible for Limb-Girdle Muscular Dystrophy type 9 (LGMDR9), Congenital Muscular Dystrophies type 1C (MDC1C), Walker–Warburg Syndrome (WWS), and Muscle–Eye–Brain diseases (MEBs). LGMDR9 is the fourth most common hereditary Limb Girdle Muscular Dystrophy in Italy. LGMDR9 patients with severe disease show an overlapping Duchenne/Becker phenotype and may have secondary dystrophin reduction on muscle biopsy. We conducted a molecular analysis of the FKRP gene by direct sequencing in 153 patients from Southern Italy (Calabria) with Duchenne/Becker-like phenotypes without confirmed genetic diagnosis. Mutational screening of the patients (112 men and 41 women, aged between 5 and 84 years), revealed pathogenic variants in 16 subjects. The most frequent variants identified were c.427C > A, p.R143S, and c.826C > A, p.L276I (NM_024301.5). The results obtained show that the Duchenne/Becker-like phenotype is frequently determined by mutations in the FKRP gene in our cohort and highlight the importance of considering LGMDR9 in the differential diagnosis of dystrophinopathies in Calabria. Finally, this study, which, to our knowledge, is the first conducted on Calabrian subjects, will contribute to the rapid identification and management of LGMDR9 patients. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1589 KB  
Article
An Integrated Transcriptomics and Genomics Approach Detects an X/Autosome Translocation in a Female with Duchenne Muscular Dystrophy
by Alba Segarra-Casas, Vicente A. Yépez, German Demidov, Steven Laurie, Anna Esteve-Codina, Julien Gagneur, Yolande Parkhurst, Robert Muni-Lofra, Elizabeth Harris, Chiara Marini-Bettolo, Volker Straub and Ana Töpf
Int. J. Mol. Sci. 2024, 25(14), 7793; https://doi.org/10.3390/ijms25147793 - 16 Jul 2024
Cited by 3 | Viewed by 2497
Abstract
Duchenne and Becker muscular dystrophies, caused by pathogenic variants in DMD, are the most common inherited neuromuscular conditions in childhood. These diseases follow an X-linked recessive inheritance pattern, and mainly males are affected. The most prevalent pathogenic variants in the DMD gene [...] Read more.
Duchenne and Becker muscular dystrophies, caused by pathogenic variants in DMD, are the most common inherited neuromuscular conditions in childhood. These diseases follow an X-linked recessive inheritance pattern, and mainly males are affected. The most prevalent pathogenic variants in the DMD gene are copy number variants (CNVs), and most patients achieve their genetic diagnosis through Multiplex Ligation-dependent Probe Amplification (MLPA) or exome sequencing. Here, we investigated a female patient presenting with muscular dystrophy who remained genetically undiagnosed after MLPA and exome sequencing. RNA sequencing (RNAseq) from the patient’s muscle biopsy identified an 85% reduction in DMD expression compared to 116 muscle samples included in the cohort. A de novo balanced translocation between chromosome 17 and the X chromosome (t(X;17)(p21.1;q23.2)) disrupting the DMD and BCAS3 genes was identified through trio whole genome sequencing (WGS). The combined analysis of RNAseq and WGS played a crucial role in the detection and characterisation of the disease-causing variant in this patient, who had been undiagnosed for over two decades. This case illustrates the diagnostic odyssey of female DMD patients with complex structural variants that are not detected by current panel or exome sequencing analysis. Full article
(This article belongs to the Special Issue Molecular Advances in Muscular Dystrophy)
Show Figures

Figure 1

10 pages, 1497 KB  
Case Report
De Novo p.Asp3368Gly Variant of Dystrophin Gene Associated with X-Linked Dilated Cardiomyopathy and Skeletal Myopathy: Clinical Features and In Silico Analysis
by Maria d’Apolito, Alessandra Ranaldi, Francesco Santoro, Sara Cannito, Matteo Gravina, Rosa Santacroce, Ilaria Ragnatela, Alessandra Margaglione, Giovanna D’Andrea, Grazia Casavecchia, Natale Daniele Brunetti and Maurizio Margaglione
Int. J. Mol. Sci. 2024, 25(5), 2787; https://doi.org/10.3390/ijms25052787 - 28 Feb 2024
Cited by 4 | Viewed by 3036
Abstract
Dystrophin (DMD) gene mutations are associated with skeletal muscle diseases such as Duchenne and Becker Muscular Dystrophy (BMD) and X-linked dilated cardiomyopathy (XL-DCM). To investigate the molecular basis of DCM in a 37-year-old woman. Clinical and genetic investigations were performed. Genetic [...] Read more.
Dystrophin (DMD) gene mutations are associated with skeletal muscle diseases such as Duchenne and Becker Muscular Dystrophy (BMD) and X-linked dilated cardiomyopathy (XL-DCM). To investigate the molecular basis of DCM in a 37-year-old woman. Clinical and genetic investigations were performed. Genetic testing was performed with whole exome sequencing (WES) using the Illumina platform. According to the standard protocol, a variant found by WES was confirmed in all available members of the family by bi-directional capillary Sanger resequencing. The effect of the variant was investigated by using an in silico prediction of pathogenicity. The index case was a 37-year-old woman diagnosed with DCM at the age of 33. A germline heterozygous A>G transversion at nucleotide 10103 in the DMD gene, leading to an aspartic acid–glycine substitution at the amino acid 3368 of the DMD protein (c.10103A>G p.Asp3368Gly), was identified and confirmed by PCR-based Sanger sequencing of the exon 70. In silico prediction suggests that this variant could have a deleterious impact on protein structure and functionality (CADD = 30). The genetic analysis was extended to the first-degree relatives of the proband (mother, father, and sister) and because of the absence of the variant in both parents, the p.Asp3368Gly substitution was considered as occurring de novo. Then, the direct sequencing analysis of her 8-year-old son identified as hemizygous for the same variant. The young patient did not present any signs or symptoms attributable to DCM, but reported asthenia and presented with bilateral calf hypertrophy at clinical examination. Laboratory testing revealed increased levels of creatinine kinase (maximum value of 19,000 IU/L). We report an early presentation of dilated cardiomyopathy in a 33-year-old woman due to a de novo pathogenic variant of the dystrophin (DMD) gene (p.Asp3368Gly). Genetic identification of this variant allowed an early diagnosis of a skeletal muscle disease in her son. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 3388 KB  
Article
In-Frame Deletion of Dystrophin Exons 8–50 Results in DMD Phenotype
by Tatiana V. Egorova, Ivan I. Galkin, Oleg A. Velyaev, Svetlana G. Vassilieva, Irina M. Savchenko, Vyacheslav A. Loginov, Marina A. Dzhenkova, Diana S. Korshunova, Olga S. Kozlova, Dmitry N. Ivankov and Anna V. Polikarpova
Int. J. Mol. Sci. 2023, 24(11), 9117; https://doi.org/10.3390/ijms24119117 - 23 May 2023
Cited by 7 | Viewed by 5518
Abstract
Mutations that prevent the production of proteins in the DMD gene cause Duchenne muscular dystrophy. Most frequently, these are deletions leading to reading-frame shift. The “reading-frame rule” states that deletions that preserve ORF result in a milder Becker muscular dystrophy. By removing several [...] Read more.
Mutations that prevent the production of proteins in the DMD gene cause Duchenne muscular dystrophy. Most frequently, these are deletions leading to reading-frame shift. The “reading-frame rule” states that deletions that preserve ORF result in a milder Becker muscular dystrophy. By removing several exons, new genome editing tools enable reading-frame restoration in DMD with the production of BMD-like dystrophins. However, not every truncated dystrophin with a significant internal loss functions properly. To determine the effectiveness of potential genome editing, each variant should be carefully studied in vitro or in vivo. In this study, we focused on the deletion of exons 8–50 as a potential reading-frame restoration option. Using the CRISPR-Cas9 tool, we created the novel mouse model DMDdel8-50, which has an in-frame deletion in the DMD gene. We compared DMDdel8-50 mice to C57Bl6/CBA background control mice and previously generated DMDdel8-34 KO mice. We discovered that the shortened protein was expressed and correctly localized on the sarcolemma. The truncated protein, on the other hand, was unable to function like a full-length dystrophin and prevent disease progression. On the basis of protein expression, histological examination, and physical assessment of the mice, we concluded that the deletion of exons 8–50 is an exception to the reading-frame rule. Full article
Show Figures

Figure 1

13 pages, 257 KB  
Review
Psychopharmacological Treatments for Mental Disorders in Patients with Neuromuscular Diseases: A Scoping Review
by Chiara Brusa, Giulio Gadaleta, Rossella D’Alessandro, Guido Urbano, Martina Vacchetti, Chiara Davico, Benedetto Vitiello, Federica S. Ricci and Tiziana E. Mongini
Brain Sci. 2022, 12(2), 176; https://doi.org/10.3390/brainsci12020176 - 28 Jan 2022
Cited by 10 | Viewed by 4692
Abstract
Mental disorders are observed in neuromuscular diseases, especially now that patients are living longer. Psychiatric symptoms may be severe and psychopharmacological treatments may be required. However, very little is known about pharmacotherapy in these conditions. We aimed to summarize the current knowledge on [...] Read more.
Mental disorders are observed in neuromuscular diseases, especially now that patients are living longer. Psychiatric symptoms may be severe and psychopharmacological treatments may be required. However, very little is known about pharmacotherapy in these conditions. We aimed to summarize the current knowledge on the use of psychopharmacological treatments for mental disorders in patients living with a neuromuscular disease. A scoping review was performed using the methodology of the Joanna Briggs Institute. Four databases were searched from January 2000 to July 2021. Articles were screened based on titles and abstracts. Full-text papers published in peer-reviewed journals in English were selected. Twenty-six articles met eligibility criteria, all being case reports/series focusing on the psychopharmacological control of psychiatric symptoms for the following conditions: myasthenia gravis (n = 11), Duchenne (n = 5) and Becker (n = 3) muscular dystrophy, mitochondrial disorders (n = 3), glycogen storage disease (n = 1), myotonic dystrophy (n = 1), hyperkalemic periodic paralysis (n = 1), and congenital myasthenic syndrome (n = 1). None of the articles provided details on the decision-making process to choose a specific drug/regimen or on follow-up strategies to monitor safety and efficacy. Larger studies showing real-world data would be required to guide consensus-based recommendations, thus improving current standards of care and, ultimately, the quality of life of patients and their families. Full article
(This article belongs to the Special Issue Advanced Research in Neuromuscular Disorders)
13 pages, 1172 KB  
Article
Assessing Cognitive Function in Neuromuscular Diseases: A Pilot Study in a Sample of Children and Adolescents
by Rossella D’Alessandro, Neftj Ragusa, Martina Vacchetti, Enrica Rolle, Francesca Rossi, Chiara Brusa, Chiara Davico, Benedetto Vitiello, Tiziana Mongini and Federica S. Ricci
J. Clin. Med. 2021, 10(20), 4777; https://doi.org/10.3390/jcm10204777 - 18 Oct 2021
Cited by 9 | Viewed by 3485
Abstract
Central nervous system (CNS) involvement has been variously studied in pediatric neuromuscular disorders (NMDs). The primary goal of this study was to assess cognitive functioning in NMDs, and secondary aims were to investigate possible associations of cognitive impairment with motor impairment, neurodevelopmental delay, [...] Read more.
Central nervous system (CNS) involvement has been variously studied in pediatric neuromuscular disorders (NMDs). The primary goal of this study was to assess cognitive functioning in NMDs, and secondary aims were to investigate possible associations of cognitive impairment with motor impairment, neurodevelopmental delay, and genotype. This was a cross-sectional study of 43 pediatric patients, affected by six NMDs. Myotonic dystrophy type 1 (DM1) and glycogen storage disease type 2 (GSD2) patients had a delay on the Bayley-III scales. On Wechsler scales, DMD and DM1 patients showed lower FSIQ scores, with an intellectual disability (ID) in 27% and 50%, respectively. FSIQ was normal in Becker muscular dystrophy (BMD), GSD2, and hereditary motor sensory neuropathy (HMSN) patients, while higher individual scores were found in the spinal muscular atrophy (SMA) group. In the DM1 cohort, lower FSIQ correlated with worse motor performance (ρ = 0.84, p < 0.05), and delayed speech acquisition was associated with ID (p = 0.048), with worse cognitive impairment in the congenital than in the infantile form (p = 0.04). This study provides further evidence of CNS in some NMDs and reinforces the need to include cognitive assessment in protocols of care of selected pediatric NMDs. Full article
(This article belongs to the Special Issue Feature Papers in Clinical Psychology)
Show Figures

Figure 1

14 pages, 24381 KB  
Article
Comprehensive Molecular Analysis of DMD Gene Increases the Diagnostic Value of Dystrophinopathies: A Pilot Study in a Southern Italy Cohort of Patients
by Fatima Domenica Elisa De Palma, Marcella Nunziato, Valeria D’Argenio, Maria Savarese, Gabriella Esposito and Francesco Salvatore
Diagnostics 2021, 11(10), 1910; https://doi.org/10.3390/diagnostics11101910 - 15 Oct 2021
Cited by 12 | Viewed by 3702
Abstract
Duchenne/Becker muscular dystrophy (DMD/BMD) is an X-linked neuromuscular disease due to pathogenic sequence variations in the dystrophin (DMD) gene, one of the largest human genes. More than 70% of DMD gene defects result from genomic rearrangements principally leading to large deletions, while [...] Read more.
Duchenne/Becker muscular dystrophy (DMD/BMD) is an X-linked neuromuscular disease due to pathogenic sequence variations in the dystrophin (DMD) gene, one of the largest human genes. More than 70% of DMD gene defects result from genomic rearrangements principally leading to large deletions, while the remaining are small nucleotide variants, including nonsense and missense variants, small insertions/deletions or splicing alterations. Considering the large size of the gene and the wide mutational spectrum, the comprehensive molecular diagnosis of DMD/BMD is complex and may require several laboratory methods, thus increasing the time and costs of the analysis. In an attempt to simplify DMD/BMD molecular diagnosis workflow, we tested an NGS method suitable for the detection of all the different types of genomic variations that may affect the DMD gene. Forty previously analyzed patients were enrolled in this study and re-analyzed using the next generation sequencing (NGS)-based single-step procedure. The NGS results were compared with those from multiplex ligation-dependent probe amplification (MLPA)/multiplex PCR and/or Sanger sequencing. Most of the previously identified deleted/duplicated exons and point mutations were confirmed by NGS and 1 more pathogenic point mutation (a nonsense variant) was identified. Our results show that this NGS-based strategy overcomes limitations of traditionally used methods and is easily transferable to routine diagnostic procedures, thereby increasing the diagnostic power of DMD molecular analysis. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

15 pages, 6939 KB  
Article
Renadirsen, a Novel 2′OMeRNA/ENA® Chimera Antisense Oligonucleotide, Induces Robust Exon 45 Skipping for Dystrophin In Vivo
by Kentaro Ito, Hideo Takakusa, Masayo Kakuta, Akira Kanda, Nana Takagi, Hiroyuki Nagase, Nobuaki Watanabe, Daigo Asano, Ryoya Goda, Takeshi Masuda, Akifumi Nakamura, Yoshiyuki Onishi, Toshio Onoda, Makoto Koizumi, Yasuhiro Takeshima, Masafumi Matsuo and Kiyosumi Takaishi
Curr. Issues Mol. Biol. 2021, 43(3), 1267-1281; https://doi.org/10.3390/cimb43030090 - 25 Sep 2021
Cited by 14 | Viewed by 5362
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease caused by out-of-frame or nonsense mutation in the dystrophin gene. It begins with a loss of ambulation between 9 and 14 years of age, followed by various other symptoms including cardiac dysfunction. Exon skipping [...] Read more.
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease caused by out-of-frame or nonsense mutation in the dystrophin gene. It begins with a loss of ambulation between 9 and 14 years of age, followed by various other symptoms including cardiac dysfunction. Exon skipping of patients’ DMD pre-mRNA induced by antisense oligonucleotides (AOs) is expected to produce shorter but partly functional dystrophin proteins, such as those possessed by patients with the less severe Becker muscular dystrophy. We are working on developing modified nucleotides, such as 2′-O,4′-C-ethylene-bridged nucleic acids (ENAs), possessing high nuclease resistance and high affinity for complementary RNA strands. Here, we demonstrate the preclinical characteristics (exon-skipping activity in vivo, stability in blood, pharmacokinetics, and tissue distribution) of renadirsen, a novel AO modified with 2′-O-methyl RNA/ENA chimera phosphorothioate designed for dystrophin exon 45 skipping and currently under clinical trials. Notably, systemic delivery of renadirsen sodium promoted dystrophin exon skipping in cardiac muscle, skeletal muscle, and diaphragm, compared with AOs with the same sequence as renadirsen but conventionally modified by PMO and 2′OMePS. These findings suggest the promise of renadirsen sodium as a therapeutic agent that improves not only skeletal muscle symptoms but also other symptoms in DMD patients, such as cardiac dysfunction. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

16 pages, 2903 KB  
Article
Dystrophin Dp71 Subisoforms Localize to the Mitochondria of Human Cells
by Emma Tabe Eko Niba, Hiroyuki Awano, Tomoko Lee, Yasuhiro Takeshima, Masakazu Shinohara, Hisahide Nishio and Masafumi Matsuo
Life 2021, 11(9), 978; https://doi.org/10.3390/life11090978 - 16 Sep 2021
Cited by 3 | Viewed by 4348
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease caused by deficiency in dystrophin, a protein product encoded by the DMD gene. Mitochondrial dysfunction is now attracting much attention as a central player in DMD pathology. However, dystrophin has never been explored [...] Read more.
Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease caused by deficiency in dystrophin, a protein product encoded by the DMD gene. Mitochondrial dysfunction is now attracting much attention as a central player in DMD pathology. However, dystrophin has never been explored in human mitochondria. Here, we analyzed dystrophin in cDNAs and mitochondrial fractions of human cells. Mitochondrial fraction was obtained using a magnetic-associated cell sorting (MACS) technology. Dystrophin was analyzed by reverse transcription (RT)-PCR and western blotting using an antibody against the dystrophin C-terminal. In isolated mitochondrial fraction from HEK293 cells, dystrophin was revealed as a band corresponding to Dp71b and Dp71ab subisoforms. Additionally, in mitochondria from HeLa, SH-SY5Y, CCL-136 and HepG2 cells, signals for Dp71b and Dp71ab were revealed as well. Concomitantly, dystrophin mRNAs encoding Dp71b and Dp71ab were disclosed by RT-PCR in these cells. Primary cultured myocytes from three dystrophinopathy patients showed various levels of mitochondrial Dp71 expression. Coherently, levels of mRNA were different in all cells reflecting the protein content, which indicated predominant accumulation of Dp71. Dystrophin was demonstrated to be localized to human mitochondrial fraction, specifically as Dp71 subisoforms. Myocytes derived from dystrophinopathy patients manifested different levels of mitochondrial Dp71, with higher expression revealed in myocytes from Becker muscular dystrophy (BMD) patient-derived myocytes. Full article
(This article belongs to the Special Issue Duchenne Muscular Dystrophy: Mechanisms and Therapeutic Strategies)
Show Figures

Figure 1

13 pages, 3508 KB  
Article
Validation of Chemokine Biomarkers in Duchenne Muscular Dystrophy
by Michael Ogundele, Jesslyn S. Zhang, Mansi V. Goswami, Marissa L. Barbieri, Utkarsh J. Dang, James S. Novak, Eric P. Hoffman, Kanneboyina Nagaraju, CINRG-DNHS Investigators and Yetrib Hathout
Life 2021, 11(8), 827; https://doi.org/10.3390/life11080827 - 13 Aug 2021
Cited by 13 | Viewed by 4509
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle disease involving complex skeletal muscle pathogenesis. The pathogenesis is triggered by sarcolemma instability due to the lack of dystrophin protein expression, leading to Ca2+ influx, muscle fiber apoptosis, inflammation, muscle necrosis, and fibrosis. Our [...] Read more.
Duchenne muscular dystrophy (DMD) is a progressive muscle disease involving complex skeletal muscle pathogenesis. The pathogenesis is triggered by sarcolemma instability due to the lack of dystrophin protein expression, leading to Ca2+ influx, muscle fiber apoptosis, inflammation, muscle necrosis, and fibrosis. Our lab recently used two high-throughput multiplexing techniques (e.g., SomaScan® aptamer assay and tandem mass tag-(TMT) approach) and identified a series of serum protein biomarkers tied to different pathobiochemical pathways. In this study, we focused on validating the circulating levels of three proinflammatory chemokines (CCL2, CXCL10, and CCL18) that are believed to be involved in an early stage of muscle pathogenesis. We used highly specific and reproducible MSD ELISA assays and examined the association of these chemokines with DMD pathogenesis, age, disease severity, and response to glucocorticoid treatment. As expected, we confirmed that these three chemokines were significantly elevated in serum and muscle samples of DMD patients relative to age-matched healthy controls (p-value < 0.05, CCL18 was not significantly altered in muscle samples). These three chemokines were not significantly elevated in Becker muscular dystrophy (BMD) patients, a milder form of dystrophinopathy, when compared in a one-way ANOVA to a control group but remained significantly elevated in the age-matched DMD group (p < 0.05). CCL2 and CCL18 but not CXCL10 declined with age in DMD patients, whereas all three chemokines remained unchanged with age in BMD and controls. Only CCL2 showed significant association with time to climb four steps in the DMD group (r = 0.48, p = 0.038) and neared significant association with patients’ reported outcome in the BMD group (r = 0.39, p = 0.058). Furthermore, CCL2 was found to be elevated in a serum of the mdx mouse model of DMD, relative to wild-type mouse model. This study suggests that CCL2 might be a suitable candidate biomarker for follow-up studies to demonstrate its physiological significance and clinical utility in DMD. Full article
(This article belongs to the Special Issue Duchenne Muscular Dystrophy: Mechanisms and Therapeutic Strategies)
Show Figures

Figure 1

Back to TopTop