Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = bamboo fiber (BF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7574 KiB  
Article
Effect of Natural Fiber Characteristics on Properties of Cementitious Composites: A Comparison of Recycled Pulp from Beverage Cartons, Bamboo, and Eucalyptus Fibers
by Phouthanouthong Xaysombath, Nattakan Soykeabkaew, Darunee Wattanasiriwech and Suthee Wattanasiriwech
Constr. Mater. 2025, 5(3), 50; https://doi.org/10.3390/constrmater5030050 - 31 Jul 2025
Viewed by 165
Abstract
This study evaluates the influence of fiber type, geometry, and interfacial behavior on the physical and mechanical performance of cementitious composites reinforced with recycled pulp from beverage cartons (RPBC), bamboo fiber (BF), and eucalyptus fiber (EF) as the sole reinforcing agents. The BF [...] Read more.
This study evaluates the influence of fiber type, geometry, and interfacial behavior on the physical and mechanical performance of cementitious composites reinforced with recycled pulp from beverage cartons (RPBC), bamboo fiber (BF), and eucalyptus fiber (EF) as the sole reinforcing agents. The BF was rounded in shape and had the highest aspect ratio, while the ribbon-shaped EF exhibited the highest tensile strength index. The RPBC fibers were fibrillated and the shortest, with a ribbon shape. Flexural strength results showed that RPBCC achieved a maximum strength that was 47.6% higher than the control specimen (0% fiber), outperforming both BF- and EF-reinforced counterparts. This superior performance is attributed to the higher fibrillation level of the ribbon-shaped RPBC fibers, which promoted better fiber–matrix bonding. As the fiber content increased, the bulk density of EFC and BFC decreased linearly, while RPBC composites showed only a modest decrease in density. Porosity steadily increased in EFC and BFC, whereas a non-linear trend was observed in RPBCC, likely due to its unique morphology and fibrillation. Conversely, EFC exhibited significantly higher maximum fracture toughness (3600 J/m2 at 10 wt.%) compared to PBFCC (1600 J/m2 at 14 wt.%) and BFC (1400 J/m2 at 14 wt.%). This enhancement is attributed to extensive fiber pullout mechanisms and increased energy absorption during crack propagation. Overall, all composite types demonstrated flexural strength values above 4 MPa, placing them in the Grade I category. Those reinforced with 10–14% RPBC exhibited strengths of 11–12 MPa, categorizing them as Grade II according to ASTM C1186-02. Full article
Show Figures

Figure 1

15 pages, 8201 KiB  
Article
The Effect of Alkali Treatment on the Mechanical Strength, Thermal Stability, and Water Absorption of Bamboo Fiber/PLA Composites
by Xiaoyang Fang, Xin Tao, Yuxi Xie, Wei Xu, Hongwu Guo and Yi Liu
Forests 2025, 16(1), 123; https://doi.org/10.3390/f16010123 - 10 Jan 2025
Cited by 2 | Viewed by 984
Abstract
Alkali treatment is a prevalent method to enhance the interfacial compatibility of natural fiber-reinforced polymer composites (NFRPCs). Although the influence of alkali treatment on the properties of NFRPCs has been extensively investigated, previous studies have predominantly examined individual factors in isolation, leaving the [...] Read more.
Alkali treatment is a prevalent method to enhance the interfacial compatibility of natural fiber-reinforced polymer composites (NFRPCs). Although the influence of alkali treatment on the properties of NFRPCs has been extensively investigated, previous studies have predominantly examined individual factors in isolation, leaving the combined effects of alkali solution concentration, treatment temperature, and time relatively unexplored. In this study, an orthogonal experiment was conducted to assess the combined impacts of alkali solution (NaOH) concentration, treatment temperature, and time on the mechanical strength, thermal stability, and water absorption of bamboo fiber (BF)/polylactic acid (PLA) composites. The findings indicated that both the NaOH concentration and temperature exhibited a statistically significant effect (0.01 < p < 0.05) on the mechanical strength of BF/PLA composites, while the treatment time had no significant effect. Furthermore, all three factors had an extremely significant impact (p < 0.01) on the thermal stability of BF/PLA composites. The water absorption of BF/PLA composites was found to be significantly influenced by treatment temperature and time (p < 0.01), while no significant effect of NaOH concentration was observed. The optimal combination of alkali treatment parameters (concentration—5 wt%, temperature—25 °C, time—30 min) for BF/PLA composites was determined. Additionally, it was observed that the water absorption of alkali-treated BF/PLA composites was lower than that of untreated composites for shorter dipping times, but higher for prolonged dipping times. This work offers an important reference for the efficient application of alkali treatment to NFRPCs. Full article
Show Figures

Figure 1

16 pages, 10339 KiB  
Article
Exploring the Application Method of Bamboo Powder in Promoting the Development of Sustainable Outdoor Furniture
by Yafei Fan, Ziqian Zhu, Jiacheng Luan and Yi Liu
Sustainability 2024, 16(24), 11282; https://doi.org/10.3390/su162411282 - 23 Dec 2024
Cited by 2 | Viewed by 1436
Abstract
With the depletion of fossil fuels, more and more green products are appearing in daily necessities. Bamboo is a common sustainable biomaterial with the characteristics of fast growth, easy bending, low cost, and easy processing, and it is widely used in furniture design. [...] Read more.
With the depletion of fossil fuels, more and more green products are appearing in daily necessities. Bamboo is a common sustainable biomaterial with the characteristics of fast growth, easy bending, low cost, and easy processing, and it is widely used in furniture design. However, the poor aging resistance and UV resistance of natural bamboo materials limit their application in outdoor furniture. In order to improve the service life of outdoor bamboo furniture, this study prepared bamboo boards from bamboo powder and utilized them in the design of outdoor furniture. The research was conducted in two stages. In the first stage, functional modification was carried out on the surface of bamboo fibers (BF). Epoxy resin and UV absorber ZnO were introduced into the bamboo powder matrix, and a three-dimensional network structure of bamboo powder-based polymer material was formed by adjusting the material ratio and reaction conditions. With the increase of ZnO content, the absorption of moisture by the bamboo powder-based polymer materials decreased. The compressive strength of 1.5%ZnO-Board reached 36.8 MPa, exceeding the compressive strength of C30 concrete. In the second stage, 1.5% ZnO-Board was selected for solidification and demolding, and used as the seat surface for outdoor chairs. Through the car crushing experiment, the chair panel did not undergo significant deformation during the car crushing process. The anti-aging experiment showed that the structure and morphology of the panel would not be damaged by long-term UV irradiation. The panel did not show any weight changes in the anti-water-absorption experiment. By using low-contrast color combinations, the seats can be organically integrated into the environmental background, effectively enhancing the coordination and unity of the overall aesthetic harmony of the space. Compared with the commonly used plastic outdoor seats, the outdoor seats prepared in this study showed a 144% increase in carbon reduction effect. This study highlights the potential of modified bamboo powder for the design of outdoor furniture, which is of great significance to reducing outdoor plastic products and promoting sustainable life. Full article
Show Figures

Figure 1

14 pages, 5186 KiB  
Article
Comparison of Effects of Plasma Surface Modifications of Bamboo and Hemp Fibers on Mechanical Properties of Fiber-Reinforced Epoxy Composites
by Pornchai Rachtanapun, Choncharoen Sawangrat, Thidarat Kanthiya, Kannikar Kaewpai, Parichat Thipchai, Nuttapol Tanadchangsaeng, Patnarin Worajittiphon, Jonghwan Suhr, Pitiwat Wattanachai and Kittisak Jantanasakulwong
Polymers 2024, 16(23), 3394; https://doi.org/10.3390/polym16233394 - 30 Nov 2024
Cited by 3 | Viewed by 1783
Abstract
In this study, we investigated the behaviors of epoxy composites reinforced with bamboo (BF) and hemp (HF) fibers. Both fibers were treated using dielectric barrier discharge (DBD) plasma for various durations (2.5 to 20 min). Epoxy resin (ER) was mixed with BF or [...] Read more.
In this study, we investigated the behaviors of epoxy composites reinforced with bamboo (BF) and hemp (HF) fibers. Both fibers were treated using dielectric barrier discharge (DBD) plasma for various durations (2.5 to 20 min). Epoxy resin (ER) was mixed with BF or HF with and without plasma treatment. The Fourier-transform infrared spectra of the plasma-treated fibers showed an enhanced peak intensity of carboxyl groups. ER/BF treated for 20 min exhibited a high tensile strength (up to 56.5 MPa), while ER/HF treated for 20 min exhibited a more significant increase in elongation at break (6.4%). Flexural tests indicated that the plasma treatment significantly improved the flexural strength of the hemp composites (up to 62.2 MPa) compared to the bamboo composites. The plasma treatment increased the fiber surface roughness and interfacial bonding in both composites. The thermal stability and wettability were improved by the DBD plasma treatment. The DBD plasma treatment enhanced the interfacial adhesion between fibers and ER matrix, which improved the mechanical, thermal, and wettability properties of the composites. Full article
(This article belongs to the Special Issue Recent Developments in Wood Polymer Composites)
Show Figures

Figure 1

14 pages, 2604 KiB  
Article
Effect of Plasma Treatment on Bamboo Fiber-Reinforced Epoxy Composites
by Pornchai Rachtanapun, Choncharoen Sawangrat, Thidarat Kanthiya, Parichat Thipchai, Kannikar Kaewapai, Jonghwan Suhr, Patnarin Worajittiphon, Nuttapol Tanadchangsaeng, Pitiwat Wattanachai and Kittisak Jantanasakulwong
Polymers 2024, 16(7), 938; https://doi.org/10.3390/polym16070938 - 29 Mar 2024
Cited by 13 | Viewed by 2796
Abstract
Bamboo cellulose fiber (BF)-reinforced epoxy (EP) composites were fabricated with BF subjected to plasma treatment using argon (Ar), oxygen (O2), and nitrogen (N2) gases. Optimal mechanical properties of the EP/BF composites were achieved with BFs subjected to 30 min [...] Read more.
Bamboo cellulose fiber (BF)-reinforced epoxy (EP) composites were fabricated with BF subjected to plasma treatment using argon (Ar), oxygen (O2), and nitrogen (N2) gases. Optimal mechanical properties of the EP/BF composites were achieved with BFs subjected to 30 min of plasma treatment using Ar. This is because Ar gas improved the plasma electron density, surface polarity, and BF roughness. Flexural strength and flexural modulus increased with O2 plasma treatment. Scanning electron microscopy images showed that the etching of the fiber surface with Ar gas improved interfacial adhesion. The water contact angle and surface tension of the EP/BF composite improved after 10 min of Ar treatment, owing to the compatibility between the BFs and the EP matrix. The Fourier transform infrared spectroscopy results confirmed a reduction in lignin after treatment and the formation of new peaks at 1736 cm−1, which indicated a reaction between epoxy groups of the EP and carbon in the BF backbone. This reaction improved the compatibility, mechanical properties, and water resistance of the composites. Full article
Show Figures

Figure 1

14 pages, 6189 KiB  
Article
PLA-Based Hybrid Biocomposites: Effects of Fiber Type, Fiber Content, and Annealing on Thermal and Mechanical Properties
by Supitcha Yaisun and Tatiya Trongsatitkul
Polymers 2023, 15(20), 4106; https://doi.org/10.3390/polym15204106 - 16 Oct 2023
Cited by 12 | Viewed by 3341
Abstract
In this study, we utilized a hybridization approach for two different fibers to overcome the drawbacks of single-fiber-reinforced PLA composites. Coir fiber and bamboo leaf fiber were used as reinforcing natural fibers as their properties complement one another. Additionally, we combined thermal annealing [...] Read more.
In this study, we utilized a hybridization approach for two different fibers to overcome the drawbacks of single-fiber-reinforced PLA composites. Coir fiber and bamboo leaf fiber were used as reinforcing natural fibers as their properties complement one another. Additionally, we combined thermal annealing with hybridization techniques to further improve the overall properties of the composites. The results showed that the hybridization of BF: CF with a ratio of 1:2 gave PLA-based hybrid composites optimal mechanical and thermal properties. Furthermore, the improvement in the thermal stability of hybrid composites, attributable to an increase in crystallinity, was a result of thermal annealing. The improvement in HDT in annealed 1BF:2CF hybrid composite was about 13.76% higher than that of the neat PLA. Annealing of the composites led to increased crystallinity, which was confirmed using differential scanning calorimetry (DSC). The synergistic effect of hybridization and annealing, leading to the improvement in the thermal properties, opened up the possibilities for the use of PLA-based composites. In this study, we demonstrated that a combined technique can be utilized as a strategy for improving the properties of 100% biocomposites and help overcome some limitations of the use of PLA in many applications. Full article
Show Figures

Graphical abstract

12 pages, 3735 KiB  
Article
Changes in the Structural Composition and Moisture-Adsorption Properties of Mechanically Rolled Bamboo Fibers
by Wenjuan Zhao, Jian Zhang, Wenfu Zhang, Jin Wang and Ge Wang
Materials 2022, 15(10), 3463; https://doi.org/10.3390/ma15103463 - 11 May 2022
Cited by 5 | Viewed by 2784
Abstract
The chemical content, mechanical capability, and dimensional stability of bamboo fibers (BFs) are all directly related to the hygroscopic behavior, which is crucial for industrial applications. To support the utilization of BFs, the structural and chemical composition of BFs with different opening times [...] Read more.
The chemical content, mechanical capability, and dimensional stability of bamboo fibers (BFs) are all directly related to the hygroscopic behavior, which is crucial for industrial applications. To support the utilization of BFs, the structural and chemical composition of BFs with different opening times after mechanical rolling were investigated in this study, and the Guggenheim–Anderson–de Boer (GAB) model was selected to predict their moisture-adsorption properties. The results showed that the length and diameter of the fibers gradually decreased with the increase in the number of openings, and the fibers gradually separated from bundles into single fibers. It was also observed that the treated BFs exhibited different equilibrium moisture contents (EMCs). BFs with a smaller number of openings had a higher hemicellulose content and more exposed parenchyma cells on the fibers, which increased the number of water adsorption sites. As the number of openings increased, the parenchyma cells on the fibers decreased, and the lignin content increased, which reduced the number of fiber moisture-adsorption sites and decreased the EMC of the fibers. Full article
Show Figures

Figure 1

14 pages, 2175 KiB  
Article
Continuous Bamboo Fibers/Fire-Retardant Polyamide 11: Dynamic Mechanical Behavior of the Biobased Composite
by Louise Lods, Tutea Richmond, Jany Dandurand, Eric Dantras, Colette Lacabanne, Jean-Michel Durand, Edouard Sherwood, Gilles Hochstetter and Philippe Ponteins
Polymers 2022, 14(2), 299; https://doi.org/10.3390/polym14020299 - 12 Jan 2022
Cited by 8 | Viewed by 2736
Abstract
A biobased composite was generated from bamboo fibers (BF) and a polyamide 11 (PA11) matrix. In order to fulfill security requirements, a PA11 already containing a flame retardant (FR) was chosen: This matrix is referred as PA11-FR. In this work, the effects of [...] Read more.
A biobased composite was generated from bamboo fibers (BF) and a polyamide 11 (PA11) matrix. In order to fulfill security requirements, a PA11 already containing a flame retardant (FR) was chosen: This matrix is referred as PA11-FR. In this work, the effects of flame retardant (melamine cyanurate) on the composite properties were considered. In the calorimetric study, the glass transition and melting temperatures of PA11-FR were the same as those of PA11. The melamine cyanurate (MC) had no influence on these parameters. Thermogravimetric analysis revealed that PA11-FR was less stable than PA11. The presence of MC facilitated thermal decomposition regardless of the analysis atmosphere used. It is important to note that the presence of FR did not influence processing conditions (especially the viscosity parameter) for the biosourced composite. Continuous BF-reinforced PA 11-FR composites, single ply, with 60% of fibers were processed and analyzed using dynamic mechanical analysis. In shear mode, comparative data recorded for BF/PA11-FR composite and the PA11-FR matrix demonstrated that the shear glassy modulus was significantly improved: multiplied by a factor of 1.6 due to the presence of fibers. This result reflected hydrogen bonding between reinforcing fibers and the matrix, resulting in a significant transfer of stress. In tensile mode, the conservative modulus of BF/PA11-FR reached E’ = 8.91 GPa. Upon BF introduction, the matrix tensile modulus was multiplied by 5.7. It can be compared with values of a single bamboo fiber recorded under the same experimental conditions: 31.58 GPa. The difference is partly explained by the elementary fibers’ lack of alignment in the composite. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

22 pages, 2304 KiB  
Article
Effect of Dietary Fiber and Thermal Conditions on Rice Bran Wax-Based Structured Edible Oils
by Laura Principato, Daniele Carullo, Andrea Bassani, Alice Gruppi, Guillermo Duserm Garrido, Roberta Dordoni and Giorgia Spigno
Foods 2021, 10(12), 3072; https://doi.org/10.3390/foods10123072 - 10 Dec 2021
Cited by 5 | Viewed by 3467
Abstract
In this work, extra-virgin olive oil (EVO)- and sunflower oil (SFO)-based oleogels were structured using rice bran wax (RBW) at 10% by weight (w/w). Bamboo fiber milled with 40 (BF40), 90 (BF90) and 150 (BF [...] Read more.
In this work, extra-virgin olive oil (EVO)- and sunflower oil (SFO)-based oleogels were structured using rice bran wax (RBW) at 10% by weight (w/w). Bamboo fiber milled with 40 (BF40), 90 (BF90) and 150 (BF150) µm of average size was added as a structuring agent. The effect of fiber addition and cooling temperature (0, 4, and 25 °C) on thermal and structural parameters of achieved gels was assessed by rheological (both in rotational and oscillatory mode), texture, and differential scanning calorimetry tests. Oleogelation modified the rheological behavior of EVO and SFO, thus shifting from a Newtonian trend typical of oils to a pseudoplastic non-Newtonian behavior in gels. Moreover, oleogels behaved as solid-like systems with G′ > G″, regardless of the applied condition. All samples exhibit a thermal-reversible behavior, even though the presence of hysteresis suggests a partial reduction in structural properties under stress. Decreasing in cooling temperature negatively contributed to network formation, despite being partially recovered by low-granulometry fiber addition. The latter dramatically improved either textural, rheological, or stability parameters of gels, as compared with only edible oil-based systems. Finally, wax/gel compatibility affected the crystallization enthalpy and final product stability (gel strength) due to different gelator–gelator and gelator–solvent interactions. Full article
Show Figures

Figure 1

12 pages, 1931 KiB  
Article
Use of Organic Acids in Bamboo Fiber-Reinforced Polypropylene Composites: Mechanical Properties and Interfacial Morphology
by Lety del Pilar Fajardo Cabrera de Lima, Cristian David Chamorro Rodríguez and José Herminsul Mina Hernandez
Polymers 2021, 13(12), 2007; https://doi.org/10.3390/polym13122007 - 19 Jun 2021
Cited by 11 | Viewed by 2965
Abstract
In obtaining wood polymer composites (WPCs), a weak interfacial bonding can cause problems during the processing and affect the mechanical properties of the resulting composites. A coupling agent (CA) is commonly used to solving this limitation. To improve the interfacial bonding between bamboo [...] Read more.
In obtaining wood polymer composites (WPCs), a weak interfacial bonding can cause problems during the processing and affect the mechanical properties of the resulting composites. A coupling agent (CA) is commonly used to solving this limitation. To improve the interfacial bonding between bamboo fiber (BF) and a polypropylene matrix, the effect of three organic acids on the mechanical properties and interfacial morphology were investigated. The BF/PP composites were prepared in five families: the first without CA, the second using a maleic anhydride-grafted polypropylene coupling agent, and the third, fourth, and fifth families with the addition of organic acids (OA) tricarboxylic acid (TRIA), hexadecanoic acid (HEXA), and dodecanoic acid (DODA), respectively. The use of OA in BF/PP improved the interfacial adhesion with the PP matrix, and it results in better mechanical performance than composites without CA. Composites coupled with MAPP, TRIA, DODA, and HEXA showed an increase in Young’s modulus of about 26%, 23%, 15%, and 16% respectively compared to the composite without CA incorporation. In tensile strength, the increase in composites with CA was about 190%, while in the flexural modulus, the coupled composites showed higher values, and the increase was more in composites with TRIA: about 46%. The improvement caused by tricarboxylic acid was similar to that promoted by the addition of maleic anhydride-grafted polypropylene (MAPP). Full article
(This article belongs to the Special Issue Mechanical Properties of Polymer Composites)
Show Figures

Graphical abstract

17 pages, 2771 KiB  
Article
Influence of Coupling Agent in Mechanical, Physical and Thermal Properties of Polypropylene/Bamboo Fiber Composites: Under Natural Outdoor Aging
by Lety del Pilar Fajardo Cabrera de Lima, Ruth Marlene Campomanes Santana and Cristian David Chamorro Rodríguez
Polymers 2020, 12(4), 929; https://doi.org/10.3390/polym12040929 - 17 Apr 2020
Cited by 44 | Viewed by 4710
Abstract
Researches on thermoplastic composites using natural fiber as reinforcement are increasing, but studies of durability over time are scarce. In this sense the objective of this study is to evaluate changes in the properties of polypropylene/bamboo fiber (PP/BF) composite and the influence of [...] Read more.
Researches on thermoplastic composites using natural fiber as reinforcement are increasing, but studies of durability over time are scarce. In this sense the objective of this study is to evaluate changes in the properties of polypropylene/bamboo fiber (PP/BF) composite and the influence of the use of coupling agent (CA) in these composites after natural ageing. The PP/BF (70/30 wt) composites and 3% wt CA (citric acid from natural origin and maleic anhydride grafted polypropylene from petrochemical origin) were prepared by using an internal mixer chamber and then injection-molded. The samples were exposed to natural weathering for a total period of 12 months and characterized before and after exposure. All exposed composites experienced a decrease in their properties, however, the use of CA promoted more stability; in mechanical properties, the composites with CA showed lower loss about 23% in Young′s modulus, 18% in tensile stress at break, and 6% in impact strength. This behavior was similar in thermal and physical properties, the result for the CA of natural origin being similar to that of synthetic origin. These results indicate that the use of a CA may promote higher interaction between the fiber and the polymer. In addition, the CAs of organic origin and synthetic origin exhibited similar responses to natural ageing. Full article
Show Figures

Graphical abstract

13 pages, 2439 KiB  
Article
Utilization of Waste Bamboo Fibers in Thermoplastic Composites: Influence of the Chemical Composition and Thermal Decomposition Behavior
by Chin-Hao Yeh and Teng-Chun Yang
Polymers 2020, 12(3), 636; https://doi.org/10.3390/polym12030636 - 11 Mar 2020
Cited by 27 | Viewed by 5910
Abstract
In this study, four types of waste bamboo fibers (BFs), Makino bamboo (Phyllostachys makinoi), Moso bamboo (Phyllostachys pubescens), Ma bamboo (Dendrocalamus latiflorus), and Thorny bamboo (Bambusa stenostachya), were used as reinforcements and incorporated into polypropylene [...] Read more.
In this study, four types of waste bamboo fibers (BFs), Makino bamboo (Phyllostachys makinoi), Moso bamboo (Phyllostachys pubescens), Ma bamboo (Dendrocalamus latiflorus), and Thorny bamboo (Bambusa stenostachya), were used as reinforcements and incorporated into polypropylene (PP) to manufacture bamboo–PP composites (BPCs). To investigate the effects of the fibers from these bamboo species on the properties of the BPCs, their chemical compositions were evaluated, and their thermal decomposition kinetics were analyzed by the Flynn–Wall–Ozawa (FWO) method and the Criado method. Thermogravimetric results indicated that the Makino BF was the most thermally stable since it showed the highest activation energy at various conversion rates that were calculated by the FWO method. Furthermore, using the Criado method, the thermal decomposition mechanisms of the BFs were revealed by diffusion when the conversion rates (α) were below 0.5. When the α values were above 0.5, their decomposition mechanisms trended to the random nucleation mechanism. Additionally, the results showed that the BPC with Thorny BFs exhibited the highest moisture content and water absorption rate due to this BF having high hemicellulose content, while the BPC with Makino BFs had high crystallinity and high lignin content, which gave the resulting BPC better tensile properties. Full article
(This article belongs to the Collection Reinforced Polymer Composites)
Show Figures

Graphical abstract

12 pages, 7085 KiB  
Article
Investigation of the Flame-Retardant and Mechanical Properties of Bamboo Fiber-Reinforced Polypropylene Composites with Melamine Pyrophosphate and Aluminum Hypophosphite Addition
by Lu Fang, Xizhen Lu, Jian Zeng, Yingyi Chen and Qiheng Tang
Materials 2020, 13(2), 479; https://doi.org/10.3390/ma13020479 - 19 Jan 2020
Cited by 36 | Viewed by 4714
Abstract
To improve the flame-retardant performance of bamboo fiber (BF) reinforced polypropylene (PP) composites, melamine pyrophosphate (MPP) and aluminum hypophosphite (AP) at a constant mass ratio of 2:1 were added. The influence of the MPP/AP mass fraction on the mechanical and flame-retardant properties of [...] Read more.
To improve the flame-retardant performance of bamboo fiber (BF) reinforced polypropylene (PP) composites, melamine pyrophosphate (MPP) and aluminum hypophosphite (AP) at a constant mass ratio of 2:1 were added. The influence of the MPP/AP mass fraction on the mechanical and flame-retardant properties of the BF reinforced PP composites were evaluated by mechanical testing, limiting oxygen index (LOI) and cone calorimetry. Mechanical tests demonstrate that tensile properties of BF/PP decreased with the increase of MPP/AP mass fraction, while flexural properties of composites exhibited very different tendencies. Both flexural strength and modulus increased slightly with the addition of MPP/AP at first, and then decreased significantly after a relatively high content of MPP/AP was loaded. This was due to the poor interfacial compatibility between PP and MPP/AP. The flame retardancy of BF/PP composites has been greatly improved. When 30% MPP/AP was loaded into the composites, the LOI increased to 27.2%, which was 42.4% higher than that of the composite without flame retardant addition. Cone calorimetry results indicated that MPP/AP worked in both gas and condensed phases during the combustion process. Peak heat release rate, total smoke production and mass loss of the composites were significantly reduced because of the addition of MPP/AP. Full article
Show Figures

Graphical abstract

16 pages, 4101 KiB  
Article
Surface Modification of Bamboo Fibers to Enhance the Interfacial Adhesion of Epoxy Resin-Based Composites Prepared by Resin Transfer Molding
by Dong Wang, Tian Bai, Wanli Cheng, Can Xu, Ge Wang, Haitao Cheng and Guangping Han
Polymers 2019, 11(12), 2107; https://doi.org/10.3390/polym11122107 - 15 Dec 2019
Cited by 48 | Viewed by 6237
Abstract
Bamboo fibers (BFs)-reinforced epoxy resin (EP) composites are prepared by resin transfer molding (RTM). The influence of BFs surface modification (NaOH solution or coupling agents, i.e., KH550 and KH560) on interfacial properties of BFs/EP composites is systematically investigated. The synergistic effect of hydrolysis, [...] Read more.
Bamboo fibers (BFs)-reinforced epoxy resin (EP) composites are prepared by resin transfer molding (RTM). The influence of BFs surface modification (NaOH solution or coupling agents, i.e., KH550 and KH560) on interfacial properties of BFs/EP composites is systematically investigated. The synergistic effect of hydrolysis, peeling reaction of BFs, and the condensation reaction of hydrolyzed coupling agents are confirmed by FTIR. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) reveal that the interfacial compatibility of NaOH- and silane-modified BFs/EP composites was significantly improved. KH550-modified BFs/EP composite renders optimal tensile, flexural, and impact strength values of 68 MPa, 86 MPa, and 226 J/m. The impact resistance mechanism at the interface of BFs/EP composites was proposed. Moreover, the dynamic mechanical properties, creep behavior, and differential scanning calorimetry of BFs/EP composites have also been carried out to understand thermal stabilities. Overall, the surface-modified BFs-reinforced EP composites exhibited superior interfacial bonding. Full article
(This article belongs to the Special Issue Epoxy Resins and Composites)
Show Figures

Figure 1

12 pages, 1359 KiB  
Article
Nonisothermal Crystallization Kinetics of Acetylated Bamboo Fiber-Reinforced Polypropylene Composites
by Yu-Shan Jhu, Teng-Chun Yang, Ke-Chang Hung, Jin-Wei Xu, Tung-Lin Wu and Jyh-Horng Wu
Polymers 2019, 11(6), 1078; https://doi.org/10.3390/polym11061078 - 22 Jun 2019
Cited by 24 | Viewed by 4410
Abstract
The crystallization behavior of bamboo fiber (BF) reinforced polypropylene (PP) composites (BPCs) was investigated using a differential scanning calorimeter (DSC). The results showed that unmodified BF as a nucleation agent accelerated the crystallization rate of the PP matrix during cooling whereas there is [...] Read more.
The crystallization behavior of bamboo fiber (BF) reinforced polypropylene (PP) composites (BPCs) was investigated using a differential scanning calorimeter (DSC). The results showed that unmodified BF as a nucleation agent accelerated the crystallization rate of the PP matrix during cooling whereas there is no significant effect on the improved crystallization rate in BPCs with acetylated BFs. Based on the Avrami method, Avrami–Ozawa method, and Friedman method, the corresponding crystallization kinetics of PP reinforced with different acetylation levels of BFs were further analyzed. The results demonstrated that the crystal growth mechanism of the PP matrix for BPCs with unmodified and various acetylated BFs exhibited tabular crystal growth with heterogeneous nucleation. A higher cooling rate is required to achieve a certain relative crystallinity degree at the unit crystallization time for BPCs with a higher weight percent gain (WPG) of acetylated BFs (WPG >13%). Furthermore, based on the Friedman method, the lowest crystallization activation energy was observed for the BPCs with 19% WPG of acetylated BFs. Full article
(This article belongs to the Special Issue Wood Plastic Composites)
Show Figures

Graphical abstract

Back to TopTop