Investigation of the Flame-Retardant and Mechanical Properties of Bamboo Fiber-Reinforced Polypropylene Composites with Melamine Pyrophosphate and Aluminum Hypophosphite Addition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. MPP/AP-BF/PP Composites Manufacturing
2.3. MPP/AP-BF/PP Composites Characterization
2.3.1. Mechanical Properties
2.3.2. Scanning Electron Microscopy (SEM)
2.3.3. Limited Oxygen Index (LOI)
2.3.4. Cone Calorimeter (CONE)
3. Results and Discussion
3.1. Mechanical Properties of BF/PP Composites under Different Mass Fractions of Flame Retardant Addition
3.1.1. Tensile Strength
3.1.2. Flexural Properties
3.2. Micromorphology of BF/PP Composites under Different Mass Fractions of Flame Retardant Addition
3.3. LOI Results of BF/PP Composites under Different Mass Fractions of Flame Retardant Addition
3.4. Flame Retardancy of BF/PP Composites under Different Mass Fractions of Flame Retardant Addition
3.4.1. TTI
3.4.2. HRR and THR
3.4.3. TSP Analysis
3.4.4. Flame Retardant Mechanism of MPP/AP
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gholampour, A.; Ozbakkaloglu, T. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. J. Mater. Sci. 2020, 55, 829–892. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Zuo, Y.; Li, W.; Li, P.; Zhao, X.; Li, X.; Wu, Y. Plasticization of bamboo fiber/polylactic acid degradable composite. J. For. Eng. 2018, 3, 77–82. [Google Scholar] [CrossRef]
- Kumar, N.; Mireja, S.; Khandelwal, V.; Arun, B.; Manik, G. Light-weight high-strength hollow glass microspheres and bamboo fiber based hybrid polypropylene composite: A strength analysis and morphological study. Compos. Part. B Eng. 2017, 109, 277–285. [Google Scholar] [CrossRef]
- Rahman, M.R.; Hamdan, S.; Hashim, D.M.A.; Islam, M.S.; Takagi, H. Bamboo Fiber Polypropylene Composites: Effect of Fiber Treatment and Nano Clay on Mechanical and Thermal Properties. J. Vinyl Addit. Technol. 2015, 21, 253–258. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, Y.; Wang, G.; Cheng, H.; Guo, W. An Investigation on the Comprehensive Property Assessment and Future Directions of Single Bamboo Fiber Reinforced Polypropylene Composites Fabricated by a Non-Woven Paving and Advanced Molding Process. Materials 2019, 12, 2641. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Fang, L.; Guo, W. Effects of ammonium polyphosphat on properties of bamboo/polypropylene mats reinforced phenolic resin composites. J. For. Eng. 2018, 3, 77–81. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, Y.; Ren, Y.; Zhang, W.; Guo, W. A novel strategy for the extraction and preparation of bamboo fiber-reinforced polypropylene composites. Polym. Compos. 2019, 40, 2178–2186. [Google Scholar] [CrossRef]
- Liu, L.; Qian, M.; Song, P.; Huang, G.; Yu, Y.; Fu, S. Fabrication of Green Lignin-based Flame Retardants for Enhancing the Thermal and Fire Retardancy Properties of Polypropylene/Wood Composites. ACS Sustain. Chem. Eng. 2016, 4, 2422–2431. [Google Scholar] [CrossRef]
- Sun, L.; Wu, Q.; Xie, Y.; Cueto, R.; Lee, S.; Wang, Q. Thermal degradation and flammability behavior of fire-retarded wood flour/polypropylene composites. J. Fire Sci. 2016, 34, 226–239. [Google Scholar] [CrossRef]
- Schirp, A.; Su, S. Effectiveness of pre-treated wood particles and halogen-free flame retardants used in wood-plastic composites. Polym. Degrad. Stab. 2016, 126, 81–92. [Google Scholar] [CrossRef]
- Nie, S.; Liu, X.; Wu, K.; Dai, G.; Hu, Y. Intumescent flame retardation of polypropylene/bamboo fiber semi-biocomposites. J. Therm. Anal. Calorim. 2013, 111, 425–430. [Google Scholar] [CrossRef]
- Alongi, J.; Han, Z.; Bourbigot, S. Intumescence: Tradition versus novelty. A comprehensive review. Prog. Polym. Sci. 2015, 51, 28–73. [Google Scholar] [CrossRef]
- Feng, C.; Liang, M.; Jiang, J.; Huang, J.; Liu, H. Synergistic effect of a novel triazine charring agent and ammonium polyphosphate on the flame retardant properties of halogen-free flame retardant polypropylene composites. Thermochim. Acta 2016, 627, 83–90. [Google Scholar] [CrossRef]
- Xie, H.; Lai, X.; Li, H.; Zeng, X. Synthesis of a novel macromolecular charring agent with free-radical quenching capability and its synergism in flame retardant polypropylene. Polym. Degrad. Stab. 2016, 130, 68–77. [Google Scholar] [CrossRef]
- Liu, Z.; Dai, M.; Zhang, Y.; Gao, X.; Zhang, Q. Preparation and performances of novel waterborne intumescent fire retardant coatings. Prog. Org. Coat. 2016, 95, 100–106. [Google Scholar] [CrossRef]
- Horacek, H.; Pieh, S. The importance of intumescent systems for fire protection of plastic materials. Polym. Int. 2000, 49, 1106–1114. [Google Scholar] [CrossRef]
- Bourbigot, S.; Le Bras, M.; Duquesne, S.; Rochery, M. Recent advances for intumescent polymers. Macromol. Mater. Eng. 2004, 289, 499–511. [Google Scholar] [CrossRef]
- Chen, M.-J.; Shao, Z.-B.; Wang, X.-L.; Chen, L.; Wang, Y.-Z. Halogen-Free Flame-Retardant Flexible Polyurethane Foam with a Novel Nitrogen-Phosphorus Flame Retardant. Ind. Eng. Chem. Res. 2012, 51, 9769–9776. [Google Scholar] [CrossRef]
- Horacek, H.; Grabner, R. Advantages of flame retardants based on nitrogen compounds. Polym. Degrad. Stab. 1996, 54, 205–215. [Google Scholar] [CrossRef]
- Price, D.; Liu, Y.; Milnes, G.J.; Hull, R.; Kandola, B.K.; Horrocks, A.R. An investigation into the mechanism of flame retardancy and smoke suppression by melamine in flexible polyurethane foam. Fire Mater. 2002, 26, 201–206. [Google Scholar] [CrossRef]
- Arao, Y.; Nakamura, S.; Tomita, Y.; Takakuwa, K.; Umemura, T.; Tanaka, T. Improvement on fire retardancy of wood flour/polypropylene composites using various fire retardants. Polym. Degrad. Stab. 2014, 100, 79–85. [Google Scholar] [CrossRef]
- Pang, J.Y.; Mo, X.Z.; Liu, Y.X.; Zhu, Y.F. Flame Retardation of Banana Fiber Reinforced Epoxy Composites Using Melamine Pyrophosphate and Pentaerythritol as Intumescent Flame Retardants. Adv. Mater. Res. 2015, 1096, 429–434. [Google Scholar] [CrossRef]
- Lai, X.; Zeng, X.; Li, H.; Liao, F.; Yin, C.; Zhang, H. Synergistic Effect Between a Triazine-Based Macromolecule and Melamine Pyrophosphate in Flame Retardant Polypropylene. Polym. Compos. 2012, 33, 35–43. [Google Scholar] [CrossRef]
- Yang, W.; Song, L.; Hu, Y.; Lu, H.; Yuen, R.K.K. Enhancement of fire retardancy performance of glass-fibre reinforced poly(ethylene terephthalate) composites with the incorporation of aluminum hypophosphite and melamine cyanurate. Compos. Part. B Eng. 2011, 42, 1057–1065. [Google Scholar] [CrossRef]
- Zhao, B.; Chen, L.; Long, J.-W.; Chen, H.-B.; Wang, Y.-Z. Aluminum Hypophosphite versus Alkyl-Substituted Phosphinate in Polyamide 6: Flame Retardance, Thermal Degradation, and Pyrolysis Behavior. Ind. Eng. Chem. Res. 2013, 52, 2875–2886. [Google Scholar] [CrossRef]
- Yang, W.; Hu, Y.; Tai, Q.; Lu, H.; Song, L.; Yuen, R.K.K. Fire and mechanical performance of nanoclay reinforced glass-fiber/PBT composites containing aluminum hypophosphite particles. Compos. Part. A Appl. Sci. Manuf. 2011, 42, 794–800. [Google Scholar] [CrossRef]
- Zhao, P.; Guo, C.; Li, L. Flame retardancy and thermal degradation properties of polypropylene/wood flour composite modified with aluminum hypophosphite/melamine cyanurate. J. Therm. Anal. Calorim. 2019, 135, 3085–3093. [Google Scholar] [CrossRef]
- Zhao, P.; Guo, C.; Li, L. Exploring the effect of melamine pyrophosphate and aluminum hypophosphite on flame retardant wood flour/polypropylene composites. Constr. Build. Mater. 2018, 170, 193–199. [Google Scholar] [CrossRef]
- Fiber-Reinforced Plastic Composites—Determination of Tensile Properties; GB/T1447-2005; Standardization Administration of the People’s Republic of China: Beijing, China, 2005.
- Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index); ASTM D-2863-17; ASTM International: West Conshohocken, PA, USA, 2017.
- Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter; ASTM E1354-17; ASTM International: West Conshohocken, PA, USA, 2017.
- Patel, N.; Rohatgi, V.; Lee, L.J. Influence of processing and material variables on resin-fiber interface in liquid composite molding. Fiber Reinf. Plast. Compos. 1993, 14, 161–172. [Google Scholar] [CrossRef]
- Herrera-Franco, P.J.; Valadez-González, A. A study of the mechanical properties of short natural-fiber reinforced composites. Composites Part. B 2005, 36, 597–608. [Google Scholar] [CrossRef]
Sample | BF (wt%) | PP (wt%) | MPP (wt%) | AP (wt%) | Mass Ratio (MPP:AP) |
---|---|---|---|---|---|
BF/PP | 50 | 50 | 0 | 0 | 0:0 |
5 wt%MPP/AP-BF/PP | 47.5 | 47.5 | 3.33 | 1.67 | 2:1 |
10 wt%MPP/AP-BF/PP | 45 | 45 | 6.67 | 3.33 | 2:1 |
20 wt%MPP/AP-BF/PP | 40 | 40 | 13.33 | 6.67 | 2:1 |
30 wt%MPP/AP-BF/PP | 35 | 35 | 20 | 10 | 2:1 |
Sample | BF/PP | 5% MPP/AP-BF/PP | 10% MPP/AP-BF/PP | 20% MPP/AP-BF/PP | 30% MPP/AP-BF/PP |
---|---|---|---|---|---|
TTI (s) | 16 | 18 | 19 | 21 | 24 |
p-HRR (kW/m2) | 360 | 351 | 314 | 269 | 221 |
THR (MJ/m2) | 135 | 132 | 125 | 109 | 107 |
TSP (m2/m2) | 1427 | 1667 | 1742 | 1575 | 1316 |
Char remains at 1600 s (%) | 0.7 | 2.8 | 8.3 | 16.4 | 24.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, L.; Lu, X.; Zeng, J.; Chen, Y.; Tang, Q. Investigation of the Flame-Retardant and Mechanical Properties of Bamboo Fiber-Reinforced Polypropylene Composites with Melamine Pyrophosphate and Aluminum Hypophosphite Addition. Materials 2020, 13, 479. https://doi.org/10.3390/ma13020479
Fang L, Lu X, Zeng J, Chen Y, Tang Q. Investigation of the Flame-Retardant and Mechanical Properties of Bamboo Fiber-Reinforced Polypropylene Composites with Melamine Pyrophosphate and Aluminum Hypophosphite Addition. Materials. 2020; 13(2):479. https://doi.org/10.3390/ma13020479
Chicago/Turabian StyleFang, Lu, Xizhen Lu, Jian Zeng, Yingyi Chen, and Qiheng Tang. 2020. "Investigation of the Flame-Retardant and Mechanical Properties of Bamboo Fiber-Reinforced Polypropylene Composites with Melamine Pyrophosphate and Aluminum Hypophosphite Addition" Materials 13, no. 2: 479. https://doi.org/10.3390/ma13020479
APA StyleFang, L., Lu, X., Zeng, J., Chen, Y., & Tang, Q. (2020). Investigation of the Flame-Retardant and Mechanical Properties of Bamboo Fiber-Reinforced Polypropylene Composites with Melamine Pyrophosphate and Aluminum Hypophosphite Addition. Materials, 13(2), 479. https://doi.org/10.3390/ma13020479