Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = backward compatibility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1605 KiB  
Article
Quantum-Secure Coherent Optical Networking for Advanced Infrastructures in Industry 4.0
by Ofir Joseph and Itzhak Aviv
Information 2025, 16(7), 609; https://doi.org/10.3390/info16070609 - 15 Jul 2025
Viewed by 196
Abstract
Modern industrial ecosystems, particularly those embracing Industry 4.0, increasingly depend on coherent optical networks operating at 400 Gbps and beyond. These high-capacity infrastructures, coupled with advanced digital signal processing and phase-sensitive detection, enable real-time data exchange for automated manufacturing, robotics, and interconnected factory [...] Read more.
Modern industrial ecosystems, particularly those embracing Industry 4.0, increasingly depend on coherent optical networks operating at 400 Gbps and beyond. These high-capacity infrastructures, coupled with advanced digital signal processing and phase-sensitive detection, enable real-time data exchange for automated manufacturing, robotics, and interconnected factory systems. However, they introduce multilayer security challenges—ranging from hardware synchronization gaps to protocol overhead manipulation. Moreover, the rise of large-scale quantum computing intensifies these threats by potentially breaking classical key exchange protocols and enabling the future decryption of stored ciphertext. In this paper, we present a systematic vulnerability analysis of coherent optical networks that use OTU4 framing, Media Access Control Security (MACsec), and 400G ZR+ transceivers. Guided by established risk assessment methodologies, we uncover critical weaknesses affecting management plane interfaces (e.g., MDIO and I2C) and overhead fields (e.g., Trail Trace Identifier, Bit Interleaved Parity). To mitigate these risks while preserving the robust data throughput and low-latency demands of industrial automation, we propose a post-quantum security framework that merges spectral phase masking with multi-homodyne coherent detection, strengthened by quantum key distribution for key management. This layered approach maintains backward compatibility with existing infrastructure and ensures forward secrecy against quantum-enabled adversaries. The evaluation results show a substantial reduction in exposure to timing-based exploits, overhead field abuses, and cryptographic compromise. By integrating quantum-safe measures at the optical layer, our solution provides a future-proof roadmap for network operators, hardware vendors, and Industry 4.0 stakeholders tasked with safeguarding next-generation manufacturing and engineering processes. Full article
Show Figures

Figure 1

16 pages, 413 KiB  
Article
Open-Source FPGA Implementation of an I3C Controller
by Jorge André Gastmaier Marques, Sergiu Arpadi and Maximiliam Luppe
Chips 2025, 4(1), 6; https://doi.org/10.3390/chips4010006 - 27 Jan 2025
Viewed by 1813
Abstract
Multiple serial interfaces have emerged to meet system requirements across devices, ranging from slower-speed buses, such as I2C, to high throughput serial interfaces, like JESD204. To address the need for a medium-speed protocol and to resolve I2C shortcomings, the [...] Read more.
Multiple serial interfaces have emerged to meet system requirements across devices, ranging from slower-speed buses, such as I2C, to high throughput serial interfaces, like JESD204. To address the need for a medium-speed protocol and to resolve I2C shortcomings, the MIPI Alliance developed the I3C specification, which is a royalty-free next-generation version of I2C with new features and backward compatibility. Since the MIPI Alliance’s I3C work only includes the specifications, it depends on third-party vendors to develop their own cores according to the specifications. Only a few processing systems contain I3C Controllers, each with its own partial implementation of the specification, and there are no open-source controller cores. Thus, this work presents an open-source I3C Controller HDL framework that operates at the maximum specified SDR frequency and is compatible with the Linux kernel. Both the core and Linux kernel drivers are available under permissive open-source licenses. The solution is mostly aimed at development boards with Xilinx Zynq and Intel Cyclone SoC; nevertheless, the structure of the project allows it to be ported to other vendors and carriers. Full article
Show Figures

Figure 1

23 pages, 1510 KiB  
Article
Use of Kinetic Parameters from Thermal Analysis for Balancing Free Energy of Activation Based on Calcite Decomposition
by Andrzej Mianowski and Rafał Bigda
Energies 2025, 18(3), 570; https://doi.org/10.3390/en18030570 - 25 Jan 2025
Cited by 1 | Viewed by 597
Abstract
Based on the literature data, including our published paper on the thermal decomposition of solids, research regarding the possibility of balancing free energy of activation against Gibbs free energy was extended. The importance of nucleation accompanying the thermal decomposition reaction/process was established. For [...] Read more.
Based on the literature data, including our published paper on the thermal decomposition of solids, research regarding the possibility of balancing free energy of activation against Gibbs free energy was extended. The importance of nucleation accompanying the thermal decomposition reaction/process was established. For calcite, a symmetrical model was considered for the formation of the active state, followed by the formation into the solid, crystalline decomposition product CaO. When the decomposition is chemical in nature, we do not identify nucleation processes. This is determined by the forwards–backwards balance compatibility, and when an additional term appears, a reversible structural transformation is to be expected. An excess free energy model was proposed to determine the rate constant of activation. It is shown that the results of tests under dynamic conditions allow, with a good approximation, the determination of this quantity as tending towards a maximum rate constant equal to the Arrhenius pre-exponential factor. The solid product of the thermal decomposition of calcite is of great developmental importance, currently utilized for Calcium Looping (CaL) or for Carbon Capture and Storage (CCS) technologies using a reversible reaction of carbonation. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

18 pages, 5057 KiB  
Article
Road Traffic Gesture Autonomous Integrity Monitoring Using Fuzzy Logic
by Kwame Owusu Ampadu and Michael Huebner
Sensors 2025, 25(1), 152; https://doi.org/10.3390/s25010152 - 30 Dec 2024
Viewed by 907
Abstract
Occasionally, four cars arrive at the four legs of an unsignalized intersection at the same time or almost at the same time. If each lane has a stop sign, all four cars are required to stop. In such instances, gestures are used to [...] Read more.
Occasionally, four cars arrive at the four legs of an unsignalized intersection at the same time or almost at the same time. If each lane has a stop sign, all four cars are required to stop. In such instances, gestures are used to communicate approval for one vehicle to leave. Nevertheless, the autonomous vehicle lacks the ability to participate in gestural exchanges. A sophisticated in-vehicle traffic light system has therefore been developed to monitor and facilitate communication among autonomous vehicles and classic car drivers. The fuzzy logic-based system was implemented and evaluated on a self-organizing network comprising eight ESP32 microcontrollers, all operating under the same program. A single GPS sensor connects to each microcontroller that also manages three light-emitting diodes. The ESPNow broadcast feature is used. The system requires no internet service and no large-scale or long-term storage, such as the driving cloud platform, making it backward-compatible with classical vehicles. Simulations were conducted based on the order and arrival direction of vehicles at three junctions. Results have shown that autonomous vehicles at four-legged intersections can now communicate with human drivers at a much lower cost with precise position classification and lane dispersion under 30 s. Full article
Show Figures

Figure 1

23 pages, 1580 KiB  
Review
Exploring Post-Quantum Cryptography: Review and Directions for the Transition Process
by Kanza Cherkaoui Dekkaki, Igor Tasic and Maria-Dolores Cano
Technologies 2024, 12(12), 241; https://doi.org/10.3390/technologies12120241 - 23 Nov 2024
Cited by 6 | Viewed by 11726
Abstract
As quantum computing advances, current cryptographic protocols are increasingly vulnerable to quantum attacks, particularly those based on Public Key Infrastructure (PKI) like RSA or Elliptic Curve Cryptography (ECC). This paper presents a comprehensive review of Post-Quantum Cryptography (PQC) as a solution to protect [...] Read more.
As quantum computing advances, current cryptographic protocols are increasingly vulnerable to quantum attacks, particularly those based on Public Key Infrastructure (PKI) like RSA or Elliptic Curve Cryptography (ECC). This paper presents a comprehensive review of Post-Quantum Cryptography (PQC) as a solution to protect digital systems in the quantum era. We provide an in-depth analysis of various quantum-resistant cryptographic algorithms, including lattice-based, code-based, hash-based, isogeny-based, and multivariate approaches. The review highlights the National Institute of Standards and Technology (NIST) PQC standardization process, highlighting key algorithms, such as CRYSTALS–Kyber, CRYSTALS–Dilithium, Falcon, and SPHINCS+, and discusses the strengths, vulnerabilities, and implementation challenges of the leading algorithms. In addition, we explore transition strategies for organizations, emphasizing hybrid cryptography to ensure backward compatibility during migration. This study offers key insights into the future of cryptographic standards and the critical steps necessary to prepare for the transition from classical to quantum-resistant systems. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

24 pages, 25883 KiB  
Article
Modular Hemipelvic Prosthesis Preserves Normal Biomechanics and Showed Good Compatibility: A Finite Element Analysis
by Yuanrui Luo, Hongtao Sheng, Yong Zhou, Li Min, Chongqi Tu and Yi Luo
J. Funct. Biomater. 2024, 15(9), 276; https://doi.org/10.3390/jfb15090276 - 21 Sep 2024
Cited by 4 | Viewed by 1858
Abstract
This study aimed to evaluate the biomechanical compatibility of a modular hemipelvic prosthesis by comparing stress distributions between an implanted pelvis and a healthy pelvis. Finite element analysis was used to simulate bilateral standing loads on both models, analyzing critical regions such as [...] Read more.
This study aimed to evaluate the biomechanical compatibility of a modular hemipelvic prosthesis by comparing stress distributions between an implanted pelvis and a healthy pelvis. Finite element analysis was used to simulate bilateral standing loads on both models, analyzing critical regions such as the sacroiliac joints, iliac crest, acetabulum, and prosthesis connection points. Six models with varied displacements of the hip joint rotational center were also introduced to assess the impact of deviations on stress distribution. The implanted pelvis had a stress distribution closely matching that of the intact pelvis, indicating that the prosthesis design maintained the biomechanical integrity of the pelvis. Stress patterns in displacement models with deviations of less than 10 mm were similar to the standard model, with only minor changes in stress magnitude. However, backward, upward, and inward deviations resulted in stress concentrations, particularly in the prosthesis connection points, increasing the likelihood of mechanical failure. The modular hemipelvic prosthesis demonstrated good biomechanical compatibility with minimal impact on pelvic stress distribution, even with moderate deviations in the hip joint’s rotational center; outward, forward, and downward displacements are preferable to minimize stress concentration and prevent implant failure in cases where minor deviations in the rotational center are unavoidable during surgery. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

27 pages, 5633 KiB  
Article
FILO: Automated FIx-LOcus Identification for Android Framework Compatibility Issues
by Marco Mobilio, Oliviero Riganelli, Daniela Micucci and Leonardo Mariani
Information 2024, 15(8), 423; https://doi.org/10.3390/info15080423 - 23 Jul 2024
Viewed by 1460
Abstract
Keeping up with the fast evolution of mobile operating systems is challenging for developers, who have to frequently adapt their apps to the upgrades and behavioral changes of the underlying API framework. Those changes often break backward compatibility. The consequence is that apps, [...] Read more.
Keeping up with the fast evolution of mobile operating systems is challenging for developers, who have to frequently adapt their apps to the upgrades and behavioral changes of the underlying API framework. Those changes often break backward compatibility. The consequence is that apps, if not updated, may misbehave and suffer unexpected crashes if executed within an evolved environment. Being able to quickly identify the portion of the app that should be modified to provide compatibility with new API versions can be challenging. To facilitate the debugging activities of problems caused by backward incompatible upgrades of the operating system, this paper presents FILO, a technique that is able to recommend the method that should be modified to implement the fix by analyzing a single failing execution. FILO can also provide additional information and key symptomatic anomalous events that can help developers understand the reason for the failure, therefore facilitating the implementation of the fix. We evaluated FILO against 18 real compatibility problems related to Android upgrades and compared it with Spectrum-Based Localization approaches. Results show that FILO is able to efficiently and effectively identify the fix-locus in the apps. Full article
(This article belongs to the Topic Software Engineering and Applications)
Show Figures

Figure 1

24 pages, 1549 KiB  
Article
On the Determination of Efficiency of a Gas Compressor
by Dean L. Millar
Energies 2024, 17(13), 3260; https://doi.org/10.3390/en17133260 - 2 Jul 2024
Cited by 2 | Viewed by 1835
Abstract
For a gas undergoing a compression process, it is more appropriate to think of either isentropic or polytropic efficiency as process-defining parameters indicating that a given end state of compression has been achieved, rather than a measure of effectiveness of conversion of one [...] Read more.
For a gas undergoing a compression process, it is more appropriate to think of either isentropic or polytropic efficiency as process-defining parameters indicating that a given end state of compression has been achieved, rather than a measure of effectiveness of conversion of one form of energy into another. The polytropic efficiency, as defined in ASME PTC-10 standard for compressor field trials and acceptance tests, actually involves the comparison of two distinct compression processes, neither of which are actually connected to the performance of the compressors producing them. Consequently, it is not rational to compare the ASME PTC-10 polytropic efficiency of a compressor designed to compress a gas predominantly adiabatically with that for a compressor designed to compress a gas predominantly isothermally. A framework correcting this situation is set out and is illustrated with several numerical examples. Suggestions for maintaining backward compatibility with ASME PTC-10 are also put forward. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

28 pages, 51558 KiB  
Article
LiDAR-Based Morphometry of Dolines in Aggtelek Karst (Hungary) and Slovak Karst (Slovakia)
by Tamás Telbisz, László Mari and Balázs Székely
Remote Sens. 2024, 16(5), 737; https://doi.org/10.3390/rs16050737 - 20 Feb 2024
Cited by 4 | Viewed by 2692
Abstract
LiDAR-based digital terrain models (DTMs) represent an advance in the investigation of small-scale geomorphological features, including dolines of karst terrains. Important issues in doline morphometry are (i) which statistical distributions best model the size distribution of doline morphometric parameters and (ii) how to [...] Read more.
LiDAR-based digital terrain models (DTMs) represent an advance in the investigation of small-scale geomorphological features, including dolines of karst terrains. Important issues in doline morphometry are (i) which statistical distributions best model the size distribution of doline morphometric parameters and (ii) how to characterize the volume of dolines based on high-resolution DTMs. For backward compatibility, how previous datasets obtained predominantly from topographic maps relate to doline data derived from LiDAR is also examined. Our study area includes the karst plateaus of Aggtelek Karst and Slovak Karst national parks, whose caves are part of the UNESCO World Heritage. To characterize the study area, the relationships between doline parameters and topography were studied, as well as their geological characteristics. Our analysis revealed that the LiDAR-based doline density is 25% higher than the value calculated from topographic maps. Furthermore, LiDAR-based doline delineations are slightly larger and less rounded than in the case of topographic maps. The plateaus of the study area are characterized by low (5–10 km−2), moderate (10–30 km−2), and medium (30–35 km−2) doline densities. In terms of topography, the slope trend is decisive since the doline density is negligible in areas where the general slope is steeper than 12°. As for the lithology, 75% of the dolines can be linked to Wetterstein Limestone. The statistical distribution of the doline area can be well modeled by the lognormal distribution. To describe the DTM-based volume of dolines, a new parameter (k) is introduced to characterize their 3D shape: it is equal to the product of the area and the depth divided by the volume. This parameter indicates whether the idealized shape of the doline is closer to a cylinder, a bowl (calotte), a cone, or a funnel shape. The results show that most sinkholes in the study area have a transitional shape between a bowl (calotte) and a cone. Full article
Show Figures

Graphical abstract

28 pages, 8397 KiB  
Article
Tracking the Route Walked by Missing Persons and Fugitives: A Geoforensics Casework (Italy)
by Roberta Somma
Geosciences 2023, 13(11), 335; https://doi.org/10.3390/geosciences13110335 - 2 Nov 2023
Cited by 1 | Viewed by 2553
Abstract
Criminal investigations aiming to track the route walked by missing persons and fugitives (MPFs) usually involve intelligence analysts, military planners, experts in mobile forensics, traditional investigative methods, and sniffer dog handlers. Nonetheless, when MPFs are devoid of any technological device and move in [...] Read more.
Criminal investigations aiming to track the route walked by missing persons and fugitives (MPFs) usually involve intelligence analysts, military planners, experts in mobile forensics, traditional investigative methods, and sniffer dog handlers. Nonetheless, when MPFs are devoid of any technological device and move in uninhabited rural areas devoid of tele cameras and densely covered by vegetation, tracking the route walked by MPFs may be a much more arduous task. In the XVIII century, the expert Georg Popp was able to link a homicide suspect to a sequence of different sites of criminal interest, located in the countryside, by studying the stains of soils found on the footwear and trousers of the suspect. In such complex cases, a very efficient approach for tracking the route walked by MPFs may consist of comparing the geological traces found on the MPFs and their belongings with soils exposed in the event scenes. In particular, the search for peculiar or rare particles and aggregates may strengthen the weight of the geological forensic evidence comparisons. A match of mineralogical, textural, and organic matter data may demonstrate the provenance of the traces from the soil of a specific site, thereby linking the MPFs to the scene of events. Based on the above, the present paper reports geological determinations accomplished for a “mediatic” casework. The results allowed a general high degree of compatibility among traces collected on the MPFs and on the soil from the scene of events to be ascertained. The most significant positive matches, based on the finding of ten peculiar and rare particles and assemblages, allowed the reconstruction of a route about 1.1 km long, as the crow flies, on the event site. Although this procedure was extremely time consuming and available only in a backwards reconstruction linked to the MPFs’ findings, it was of uttermost importance in strengthening the inferences proposed, and for which other methods could not provide any information. Full article
(This article belongs to the Special Issue The State-of-Art Methods and Case Studies in Geoforensics)
Show Figures

Figure 1

21 pages, 2427 KiB  
Article
Nonlocality, Superposition, and Time in the 4+1 Formalism
by Filip Strubbe
Entropy 2023, 25(11), 1493; https://doi.org/10.3390/e25111493 - 29 Oct 2023
Viewed by 1741
Abstract
The field of quantum gravity struggles with several problems related to time, quantum measurement, nonlocality, and realism. To address these issues, this study develops a 4+1 formalism featuring a flat 4D spacetime evolving with a second form of time, τ, worldlines that [...] Read more.
The field of quantum gravity struggles with several problems related to time, quantum measurement, nonlocality, and realism. To address these issues, this study develops a 4+1 formalism featuring a flat 4D spacetime evolving with a second form of time, τ, worldlines that locally conserve momentum, and a hypersurface representing the present. As a function of τ, worldlines can spatially readjust and influences can travel backward or forward in the time dimension along these worldlines, offering a physical mechanism for retrocausality. Three theoretical models are presented, elucidating how nonlocality in an EPR experiment, the arrival time problem, and superposition in a Mach–Zehnder interferometer can be understood within this 4+1 framework. These results demonstrate that essential quantum phenomena can be reproduced in the 4+1 formalism while upholding the principles of realism, locality, and determinism at a fundamental level. Additionally, there is no measurement or collapse problem, and a natural explanation for the quantum-to-classical transition is obtained. Furthermore, observations of a 4D block universe and of the flow of time can be simultaneously understood. With these properties, the presented 4+1 formalism lays an interesting foundation for a quantum gravity theory based on intuitive principles and compatible with our observation of time. Full article
(This article belongs to the Special Issue Time and Temporal Asymmetries)
Show Figures

Figure 1

21 pages, 15285 KiB  
Article
A Reinforcement Learning Method of Solving Markov Decision Processes: An Adaptive Exploration Model Based on Temporal Difference Error
by Xianjia Wang, Zhipeng Yang, Guici Chen and Yanli Liu
Electronics 2023, 12(19), 4176; https://doi.org/10.3390/electronics12194176 - 8 Oct 2023
Cited by 5 | Viewed by 3687
Abstract
Traditional backward recursion methods face a fundamental challenge in solving Markov Decision Processes (MDP), where there exists a contradiction between the need for knowledge of optimal expected payoffs and the inability to acquire such knowledge during the decision-making process. To address this challenge [...] Read more.
Traditional backward recursion methods face a fundamental challenge in solving Markov Decision Processes (MDP), where there exists a contradiction between the need for knowledge of optimal expected payoffs and the inability to acquire such knowledge during the decision-making process. To address this challenge and strike a reasonable balance between exploration and exploitation in the decision process, this paper proposes a novel model known as Temporal Error-based Adaptive Exploration (TEAE). Leveraging reinforcement learning techniques, TEAE overcomes the limitations of traditional MDP solving methods. TEAE exhibits dynamic adjustment of exploration probabilities based on the agent’s performance, on the one hand. On the other hand, TEAE approximates the optimal expected payoff function for subprocesses after specific states and times by integrating deep convolutional neural networks to minimize the temporal difference error between the dual networks. Furthermore, the paper extends TEAE to DQN-PER and DDQN-PER methods, resulting in DQN-PER-TEAE and DDQN-PER-TEAE variants, which not only demonstrate the generality and compatibility of the TEAE model with existing reinforcement learning techniques but also validate the practicality and applicability of the proposed approach in a broader MDP reinforcement learning context. To further validate the effectiveness of TEAE, the paper conducts a comprehensive evaluation using multiple metrics, compares its performance with other MDP reinforcement learning methods, and conducts case studies. Ultimately, simulation results and case analyses consistently indicate that TEAE exhibits higher efficiency, highlighting its potential in driving advancements in the field. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

20 pages, 889 KiB  
Article
Distributed and Lightweight Software Assurance in Cellular Broadcasting Handshake and Connection Establishment
by Sourav Purification, Jinoh Kim, Jonghyun Kim, Ikkyun Kim and Sang-Yoon Chang
Electronics 2023, 12(18), 3782; https://doi.org/10.3390/electronics12183782 - 7 Sep 2023
Cited by 1 | Viewed by 1345
Abstract
With developments in OpenRAN and software-defined radio (SDR), the mobile networking implementations for radio and security control are becoming increasingly software-based. We design and build a lightweight and distributed software assurance scheme, which ensures that a wireless user holds the correct software (version/code) [...] Read more.
With developments in OpenRAN and software-defined radio (SDR), the mobile networking implementations for radio and security control are becoming increasingly software-based. We design and build a lightweight and distributed software assurance scheme, which ensures that a wireless user holds the correct software (version/code) for their wireless networking implementations. Our scheme is distributed (to support the distributed and ad hoc networking that does not utilize the networking-backend infrastructure), lightweight (to support the resource-constrained device operations), modular (to support compatibility with the existing mobile networking protocols), and supports broadcasting (as mobile and wireless networking has broadcasting applications). Our scheme is distinct from the remote code attestation in trusted computing, which requires hardwarebased security and real-time challenge-and-response communications with a centralized trusted server, thus making its deployment prohibitive in the distributed and broadcasting-based mobile networking environments. We design our scheme to be prover-specific and incorporate the Merkle tree for the verification efficiency to make it appropriate for a wireless-broadcasting medium with multiple receivers. In addition to the theoretical design and analysis, we implement our scheme to assure srsRAN (a popular open-source software for cellular technology, including 4G and 5G) and provide a concrete implementation and application instance to highlight our scheme’s modularity, backward compatibility to the existing 4G/5G standardized protocol, and broadcasting support. Our scheme implementation incorporates delivering the proof in the srsRAN-implemented 4G/5G cellular handshake and connection establishment in radio resource control (RRC). We conduct experiments using SDR and various processors to demonstrate the lightweight design and its appropriateness for wireless networking applications. Our results show that the number of hash computations for the proof verification grows logarithmically with the number of software code files being assured and that the verification takes three orders of magnitude less time than the proof generation, while the proof generation overhead itself is negligible compared to the software update period. Full article
(This article belongs to the Special Issue 5G Mobile Telecommunication Systems and Recent Advances)
Show Figures

Figure 1

12 pages, 2476 KiB  
Article
Neural Network-Based Prediction for Secret Key Rate of Underwater Continuous-Variable Quantum Key Distribution through a Seawater Channel
by Yun Mao, Yiwu Zhu, Hui Hu, Gaofeng Luo, Jinguang Wang, Yijun Wang and Ying Guo
Entropy 2023, 25(6), 937; https://doi.org/10.3390/e25060937 - 14 Jun 2023
Cited by 2 | Viewed by 1665
Abstract
Continuous-variable quantum key distribution (CVQKD) plays an important role in quantum communications, because of its compatible setup for optical implementation with low cost. For this paper, we considered a neural network approach to predicting the secret key rate of CVQKD with discrete modulation [...] Read more.
Continuous-variable quantum key distribution (CVQKD) plays an important role in quantum communications, because of its compatible setup for optical implementation with low cost. For this paper, we considered a neural network approach to predicting the secret key rate of CVQKD with discrete modulation (DM) through an underwater channel. A long-short-term-memory-(LSTM)-based neural network (NN) model was employed, in order to demonstrate performance improvement when taking into account the secret key rate. The numerical simulations showed that the lower bound of the secret key rate could be achieved for a finite-size analysis, where the LSTM-based neural network (NN) was much better than that of the backward-propagation-(BP)-based neural network (NN). This approach helped to realize the fast derivation of the secret key rate of CVQKD through an underwater channel, indicating that it can be used for improving performance in practical quantum communications. Full article
(This article belongs to the Special Issue Quantum Communication and Quantum Key Distribution)
Show Figures

Figure 1

18 pages, 10594 KiB  
Article
Construction Method of Digital Twin System for Thin-Walled Workpiece Machining Error Control Based on Analysis of Machine Tool Dynamic Characteristics
by Wenkai Zhao, Rongyi Li, Xianli Liu, Jun Ni, Chao Wang, Canlun Li and Libo Zhao
Machines 2023, 11(6), 600; https://doi.org/10.3390/machines11060600 - 1 Jun 2023
Cited by 7 | Viewed by 2693
Abstract
In the intelligent optimization process of aerospace thin-walled parts, there are issues such as solidification of core knowledge base, high system coupling degree, and real-time evaluation and optimization feedback required for the knowledge base. These problems make it difficult to expand the functions [...] Read more.
In the intelligent optimization process of aerospace thin-walled parts, there are issues such as solidification of core knowledge base, high system coupling degree, and real-time evaluation and optimization feedback required for the knowledge base. These problems make it difficult to expand the functions of the digital twin system and meet the growing processing needs, ultimately hindering the application of digital twin technology. To address these issues, a digital twin system for controlling processing errors in thin-walled parts was built using a microservices architecture. In addition, a method for building a digital twin system at the processing unit level with the best coupling degree was proposed, mainly targeting the dynamic characteristics analysis knowledge base of thin-walled parts. Furthermore, to meet the requirements for backward compatibility of the processing unit level digital twin system, a comprehensive solution including the construction, operation, evaluation, optimization, and visualization of a knowledge base for the dynamic characteristics of the processing unit was proposed, providing guidance for the digital transformation and upgrading of CNC machine tools and the optimization of processing technology based on digital twin technology. Full article
(This article belongs to the Special Issue Recent Progress of Thin Wall Machining)
Show Figures

Figure 1

Back to TopTop