Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = backbone dihedral angles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 2019 KB  
Short Note
5,5′-Di((E)-buta-1,3-dien-1-yl)-2,2′,3,3′-tetramethoxy-1,1′-biphenyl
by Maria Antonietta Dettori, Davide Fabbri, Roberto Dallocchio and Paola Carta
Molbank 2025, 2025(2), M2018; https://doi.org/10.3390/M2018 - 6 Jun 2025
Viewed by 683
Abstract
Phenylbutanoids, commonly found in various medicinal plants, have attracted significant attention due to their remarkable biological activities, including antioxidant, anti-inflammatory, and neuroprotective effects, as well as for their versatility as starting materials in organic synthesis. Among phenylbutanoids, phenyl-1,3-butadienes represent a unique class of [...] Read more.
Phenylbutanoids, commonly found in various medicinal plants, have attracted significant attention due to their remarkable biological activities, including antioxidant, anti-inflammatory, and neuroprotective effects, as well as for their versatility as starting materials in organic synthesis. Among phenylbutanoids, phenyl-1,3-butadienes represent a unique class of conjugated dienes, characterized by a phenyl (C6H5) group attached to a 1,3-butadiene (-CH=CH-CH=CH2) backbone. In this study, we synthesized the hydroxylated biphenyl 5,5′-di((E)-buta-1,3-dien-1-yl)-2,2′,3,3′-tetramethoxy-1,1′-biphenyl 1, closely related to its corresponding monomer 2, which is known for its broad range of pharmacological activities. The synthesis was carried out using microwave-assisted technologies. The structure of the synthesized compound was confirmed through elemental analysis, 13C-NMR, 1H-NMR, and ESI-MS spectrometry. Furthermore, we computed this novel compound’s conformational energy profile (CEP), evaluating how its energy varies with changes in the dihedral bond angle. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Graphical abstract

20 pages, 2474 KB  
Article
A Numerical Integrator for Kinetostatic Folding of Protein Molecules Modeled as Robots with Hyper Degrees of Freedom
by Amal Kacem, Khalil Zbiss and Alireza Mohammadi
Robotics 2024, 13(10), 150; https://doi.org/10.3390/robotics13100150 - 2 Oct 2024
Viewed by 1538
Abstract
The kinetostatic compliance method (KCM) models protein molecules as nanomechanisms consisting of numerous rigid peptide plane linkages. These linkages articulate with respect to each other through changes in the molecule dihedral angles, resulting in a kinematic mechanism with hyper degrees of freedom. Within [...] Read more.
The kinetostatic compliance method (KCM) models protein molecules as nanomechanisms consisting of numerous rigid peptide plane linkages. These linkages articulate with respect to each other through changes in the molecule dihedral angles, resulting in a kinematic mechanism with hyper degrees of freedom. Within the KCM framework, nonlinear interatomic forces drive protein folding by guiding the molecule’s dihedral angle vector towards its lowest energy state in a kinetostatic manner. This paper proposes a numerical integrator that is well suited to KCM-based protein folding and overcomes the limitations of traditional explicit Euler methods with fixed step size. Our proposed integration scheme is based on pseudo-transient continuation with an adaptive step size updating rule that can efficiently compute protein folding pathways, namely, the transient three-dimensional configurations of protein molecules during folding. Numerical simulations utilizing the KCM approach on protein backbones confirm the effectiveness of the proposed integrator. Full article
(This article belongs to the Special Issue Bioinspired Robotics: Toward Softer, Smarter and Safer)
Show Figures

Figure 1

12 pages, 1267 KB  
Article
Chirality and Rigidity in Triazole-Modified Peptidomimetics Interacting with Neuropilin-1
by Bartłomiej Fedorczyk, Patrycja Redkiewicz, Joanna Matalińska, Radosław Piast, Piotr Kosson and Rafał Wieczorek
Pharmaceuticals 2024, 17(2), 190; https://doi.org/10.3390/ph17020190 - 31 Jan 2024
Viewed by 1561
Abstract
The interaction of Neuropilin-1 (NRP-1) with vascular endothelial growth factor (VEGF) has been shown to promote angiogenesis under physiological and pathological conditions. Angiogenesis around tumors is a major factor allowing for their growth and spread. Disrupting NRP-1/VEGF complex formation is thus a promising [...] Read more.
The interaction of Neuropilin-1 (NRP-1) with vascular endothelial growth factor (VEGF) has been shown to promote angiogenesis under physiological and pathological conditions. Angiogenesis around tumors is a major factor allowing for their growth and spread. Disrupting NRP-1/VEGF complex formation is thus a promising pathway for the development of new anticancer pharmaceuticals. A large body of work has been produced in the last two decades detailing the development of inhibitors of NRP-1/VEGF complex formation. Among those were peptide A7R and its smaller derivatives KXXR and K(Har)XXR. It has been previously reported that replacement of the XX backbone with triazole residues has a positive effect on the proteolytic stability of inhibitors. It has also been reported that a higher dihedral angle range restriction of the XX backbone has a positive effect on the activity of inhibitors. In this work, we have designed new triazole derivatives of K(Har)XXR inhibitors with substitution allowing for higher range restriction of the XX backbone. The obtained peptidomimetics have greater activity than their less restricted counterparts. One of the newly obtained structures has greater affinity than the reference peptide A7R. Full article
Show Figures

Figure 1

19 pages, 3670 KB  
Article
Naive Prediction of Protein Backbone Phi and Psi Dihedral Angles Using Deep Learning
by Matic Broz, Marko Jukič and Urban Bren
Molecules 2023, 28(20), 7046; https://doi.org/10.3390/molecules28207046 - 12 Oct 2023
Cited by 2 | Viewed by 3470
Abstract
Protein structure prediction represents a significant challenge in the field of bioinformatics, with the prediction of protein structures using backbone dihedral angles recently achieving significant progress due to the rise of deep neural network research. However, there is a trend in protein structure [...] Read more.
Protein structure prediction represents a significant challenge in the field of bioinformatics, with the prediction of protein structures using backbone dihedral angles recently achieving significant progress due to the rise of deep neural network research. However, there is a trend in protein structure prediction research to employ increasingly complex neural networks and contributions from multiple models. This study, on the other hand, explores how a single model transparently behaves using sequence data only and what can be expected from the predicted angles. To this end, the current paper presents data acquisition, deep learning model definition, and training toward the final protein backbone angle prediction. The method applies a simple fully connected neural network (FCNN) model that takes only the primary structure of the protein with a sliding window of size 21 as input to predict protein backbone ϕ and ψ dihedral angles. Despite its simplicity, the model shows surprising accuracy for the ϕ angle prediction and somewhat lower accuracy for the ψ angle prediction. Moreover, this study demonstrates that protein secondary structure prediction is also possible with simple neural networks that take in only the protein amino-acid residue sequence, but more complex models are required for higher accuracies. Full article
Show Figures

Graphical abstract

17 pages, 1430 KB  
Article
Improving Geometric Validation Metrics and Ensuring Consistency with Experimental Data through TrioSA: An NMR Refinement Protocol
by Youngbeom Cho, Hyojung Ryu, Gyutae Lim, Seungyoon Nam and Jinhyuk Lee
Int. J. Mol. Sci. 2023, 24(17), 13337; https://doi.org/10.3390/ijms241713337 - 28 Aug 2023
Viewed by 1710
Abstract
Protein model refinement a the crucial step in improving the quality of a predicted protein model. This study presents an NMR refinement protocol called TrioSA (torsion-angle and implicit-solvation-optimized simulated annealing) that improves the accuracy of backbone/side-chain conformations and the overall structural quality of [...] Read more.
Protein model refinement a the crucial step in improving the quality of a predicted protein model. This study presents an NMR refinement protocol called TrioSA (torsion-angle and implicit-solvation-optimized simulated annealing) that improves the accuracy of backbone/side-chain conformations and the overall structural quality of proteins. TrioSA was applied to a subset of 3752 solution NMR protein structures accompanied by experimental NMR data: distance and dihedral angle restraints. We compared the initial NMR structures with the TrioSA-refined structures and found significant improvements in structural quality. In particular, we observed a reduction in both the maximum and number of NOE (nuclear Overhauser effect) violations, indicating better agreement with experimental NMR data. TrioSA improved geometric validation metrics of NMR protein structure, including backbone accuracy and the secondary structure ratio. We evaluated the contribution of each refinement element and found that the torsional angle potential played a significant role in improving the geometric validation metrics. In addition, we investigated protein–ligand docking to determine if TrioSA can improve biological outcomes. TrioSA structures exhibited better binding prediction compared to the initial NMR structures. This study suggests that further development and research in computational refinement methods could improve biomolecular NMR structural determination. Full article
(This article belongs to the Collection Feature Papers Collection in Biochemistry)
Show Figures

Figure 1

15 pages, 4493 KB  
Article
Energy Landscapes and Heat Capacity Signatures for Monomers and Dimers of Amyloid-Forming Hexapeptides
by Nicy and David J. Wales
Int. J. Mol. Sci. 2023, 24(13), 10613; https://doi.org/10.3390/ijms241310613 - 25 Jun 2023
Cited by 3 | Viewed by 1466
Abstract
Amyloid formation is a hallmark of various neurodegenerative disorders. In this contribution, energy landscapes are explored for various hexapeptides that are known to form amyloids. Heat capacity (CV) analysis at low temperature for these hexapeptides reveals that the low energy [...] Read more.
Amyloid formation is a hallmark of various neurodegenerative disorders. In this contribution, energy landscapes are explored for various hexapeptides that are known to form amyloids. Heat capacity (CV) analysis at low temperature for these hexapeptides reveals that the low energy structures contributing to the first heat capacity feature above a threshold temperature exhibit a variety of backbone conformations for amyloid-forming monomers. The corresponding control sequences do not exhibit such structural polymorphism, as diagnosed via end-to-end distance and a dihedral angle defined for the monomer. A similar heat capacity analysis for dimer conformations obtained using basin-hopping global optimisation shows clear features in end-to-end distance versus dihedral correlation plots, where amyloid-forming sequences exhibit a preference for larger end-to-end distances and larger positive dihedrals. These results hold true for sequences taken from tau, amylin, insulin A chain, a de novo designed peptide, and various control sequences. While there is a little overall correlation between the aggregation propensity and the temperature at which the low-temperature CV feature occurs, further analysis suggests that the amyloid-forming sequences exhibit the key CV feature at a lower temperature compared to control sequences derived from the same protein. Full article
(This article belongs to the Special Issue Protein Misfolding)
Show Figures

Figure 1

18 pages, 4777 KB  
Article
Conformational Dynamics of the Soluble and Membrane-Bound Forms of Interleukin-1 Receptor Type-1: Insights into Linker Flexibility and Domain Orientation
by João P. Luís, Ana I. Mata, Carlos J. V. Simões and Rui M. M. Brito
Int. J. Mol. Sci. 2022, 23(5), 2599; https://doi.org/10.3390/ijms23052599 - 26 Feb 2022
Cited by 5 | Viewed by 3536
Abstract
Interleukin-1 receptor type 1 (IL-1R1) is a key player in inflammation and immune responses. This receptor regulates IL-1 activity in two forms: as a membrane-bound form and as a soluble ectodomain. The details and differences between the conformational dynamics of the membrane-bound and [...] Read more.
Interleukin-1 receptor type 1 (IL-1R1) is a key player in inflammation and immune responses. This receptor regulates IL-1 activity in two forms: as a membrane-bound form and as a soluble ectodomain. The details and differences between the conformational dynamics of the membrane-bound and the soluble IL-1R1 ectodomains (ECDs) remain largely elusive. Here, we study and compare the structural dynamics of the soluble and membrane-bound IL-1R1-ECDs using molecular dynamics (MD) simulations, focusing on the flexible interdomain linker of the ECD, as well as the spatial rearrangements between the Ig-like domains of the ECD. To explore the membrane-bound conformations, a full-length IL-1R1 structural model was developed and subjected to classical equilibrium MD. Comparative analysis of multiple MD trajectories of the soluble and the membrane-bound IL-1R1-ECDs reveals that (i) as somewhat expected, the extent of the visited “open-to-closed” transitional states differs significantly between the soluble and membrane-bound forms; (ii) the soluble form presents open-closed transitions, sampling a wider rotational motion between the Ig-like domains of the ECD, visiting closed and “twisted” conformations in higher extent, whereas the membrane-bound form is characterized by more conformationally restricted states; (iii) interestingly, the backbone dihedral angles of residues Glu202, Glu203 and Asn204, located in the flexible linker, display the highest variations during the transition between discrete conformational states detected in IL-1R1, thus appearing to work as the “central wheel of a clock’s movement”. The simulations and analyses presented in this contribution offer a deeper insight into the structure and dynamics of IL-1R1, which may be explored in a drug discovery setting. Full article
(This article belongs to the Special Issue Molecular Dynamics from Macromolecule to Small Molecules)
Show Figures

Figure 1

17 pages, 3546 KB  
Article
Constrained Dipeptide Surrogates: 5- and 7-Hydroxy Indolizidin-2-one Amino Acid Synthesis from Iodolactonization of Dehydro-2,8-diamino Azelates
by Ramakotaiah Mulamreddy and William D. Lubell
Molecules 2022, 27(1), 67; https://doi.org/10.3390/molecules27010067 - 23 Dec 2021
Cited by 2 | Viewed by 3524
Abstract
The constrained dipeptide surrogates 5- and 7-hydroxy indolizidin-2-one N-(Boc)amino acids have been synthesized from L-serine as a chiral educt. A linear precursor ∆4-unsaturated (2S,8S)-2,8-bis[N-(Boc)amino]azelic acid was prepared in five steps from L-serine. Although epoxidation [...] Read more.
The constrained dipeptide surrogates 5- and 7-hydroxy indolizidin-2-one N-(Boc)amino acids have been synthesized from L-serine as a chiral educt. A linear precursor ∆4-unsaturated (2S,8S)-2,8-bis[N-(Boc)amino]azelic acid was prepared in five steps from L-serine. Although epoxidation and dihydroxylation pathways gave mixtures of hydroxy indolizidin-2-one diastereomers, iodolactonization of the ∆4-azelate stereoselectively delivered a lactone iodide from which separable (5S)- and (7S)-hydroxy indolizidin-2-one N-(Boc)amino esters were synthesized by sequences featuring intramolecular iodide displacement and lactam formation. X-ray analysis of the (7S)-hydroxy indolizidin-2-one N-(Boc)amino ester indicated that the backbone dihedral angles embedded in the bicyclic ring system resembled those of the central residues of an ideal type II’ β-turn indicating the potential for peptide mimicry. Full article
Show Figures

Graphical abstract

18 pages, 5840 KB  
Article
Comparative Analysis of Ethylene/Diene Copolymerization and Ethylene/Propylene/Diene Terpolymerization Using Ansa-Zirconocene Catalyst with Alkylaluminum/Borate Activator: The Effect of Conjugated and Nonconjugated Dienes on Catalytic Behavior and Polymer Microstructure
by Amjad Ali, Muhammad Khurram Tufail, Muhammad Imran Jamil, Waleed Yaseen, Nafees Iqbal, Munir Hussain, Asad Ali, Tariq Aziz, Zhiqiang Fan and Li Guo
Molecules 2021, 26(7), 2037; https://doi.org/10.3390/molecules26072037 - 2 Apr 2021
Cited by 25 | Viewed by 4278
Abstract
The copolymerization of ethylene‒diene conjugates (butadiene (BD), isoprene (IP) and nonconjugates (5-ethylidene-2-norbornene (ENB), vinyl norbornene VNB, 4-vinylcyclohexene (VCH) and 1, 4-hexadiene (HD)), and terpolymerization of ethylene-propylene-diene conjugates (BD, IP) and nonconjugates (ENB, VNB, VCH and HD) using two traditional catalysts of C2 [...] Read more.
The copolymerization of ethylene‒diene conjugates (butadiene (BD), isoprene (IP) and nonconjugates (5-ethylidene-2-norbornene (ENB), vinyl norbornene VNB, 4-vinylcyclohexene (VCH) and 1, 4-hexadiene (HD)), and terpolymerization of ethylene-propylene-diene conjugates (BD, IP) and nonconjugates (ENB, VNB, VCH and HD) using two traditional catalysts of C2-symmetric metallocene—silylene-bridged rac-Me2Si(2-Me-4-Ph-Ind)2ZrCl2 (complex A) and ethylene-bridged rac-Et(Ind)2ZrCl2 (complex B)—with a [Ph3C][B(C6F5)4] borate/TIBA co-catalyst, were intensively studied. Compared to that in the copolymerization of ethylene diene, the catalytic activity was more significant in E/P/diene terpolymerization. We obtained a maximum yield of both metallocene catalysts with conjugated diene between 3.00 × 106 g/molMt·h and 5.00 × 106 g/molMt·h. ENB had the highest deactivation impact on complex A, and HD had the most substantial deactivation effect on complex B. A 1H NMR study suggests that dienes were incorporated into the co/ter polymers’ backbone through regioselectivity. ENB and VNB, inserted by the edo double bond, left the ethylidene double bond intact, so VCH had an exo double bond. Complex A’s methyl and phenyl groups rendered it structurally stable and exhibited a dihedral angle greater than that of complex B, resulting in 1, 2 isoprene insertion higher than 1, 4 isoprene that is usually incapable of polymerization coordination. High efficiency in terms of co- and ter- monomer incorporation with higher molecular weight was found for complex 1. The rate of incorporation of ethylene and propylene in the terpolymer backbone structure may also be altered by the conjugated and nonconjugated dienes. 13C-NMR, 1H-NMR, and GPC techniques were used to characterize the polymers obtained. Full article
(This article belongs to the Special Issue Copolymers: Preparation and Applications)
Show Figures

Graphical abstract

41 pages, 9860 KB  
Article
Constructing 3-Dimensional Atomic-Resolution Models of Nonsulfated Glycosaminoglycans with Arbitrary Lengths Using Conformations from Molecular Dynamics
by Elizabeth K. Whitmore, Devon Martin and Olgun Guvench
Int. J. Mol. Sci. 2020, 21(20), 7699; https://doi.org/10.3390/ijms21207699 - 18 Oct 2020
Cited by 17 | Viewed by 4311
Abstract
Glycosaminoglycans (GAGs) are the linear carbohydrate components of proteoglycans (PGs) and are key mediators in the bioactivity of PGs in animal tissue. GAGs are heterogeneous, conformationally complex, and polydisperse, containing up to 200 monosaccharide units. These complexities make studying GAG conformation a challenge [...] Read more.
Glycosaminoglycans (GAGs) are the linear carbohydrate components of proteoglycans (PGs) and are key mediators in the bioactivity of PGs in animal tissue. GAGs are heterogeneous, conformationally complex, and polydisperse, containing up to 200 monosaccharide units. These complexities make studying GAG conformation a challenge for existing experimental and computational methods. We previously described an algorithm we developed that applies conformational parameters (i.e., all bond lengths, bond angles, and dihedral angles) from molecular dynamics (MD) simulations of nonsulfated chondroitin GAG 20-mers to construct 3-D atomic-resolution models of nonsulfated chondroitin GAGs of arbitrary length. In the current study, we applied our algorithm to other GAGs, including hyaluronan and nonsulfated forms of dermatan, keratan, and heparan and expanded our database of MD-generated GAG conformations. Here, we show that individual glycosidic linkages and monosaccharide rings in 10- and 20-mers of hyaluronan and nonsulfated dermatan, keratan, and heparan behave randomly and independently in MD simulation and, therefore, using a database of MD-generated 20-mer conformations, that our algorithm can construct conformational ensembles of 10- and 20-mers of various GAG types that accurately represent the backbone flexibility seen in MD simulations. Furthermore, our algorithm efficiently constructs conformational ensembles of GAG 200-mers that we would reasonably expect from MD simulations. Full article
Show Figures

Figure 1

23 pages, 4353 KB  
Article
Efficient Construction of Atomic-Resolution Models of Non-Sulfated Chondroitin Glycosaminoglycan Using Molecular Dynamics Data
by Elizabeth K. Whitmore, Gabriel Vesenka, Hanna Sihler and Olgun Guvench
Biomolecules 2020, 10(4), 537; https://doi.org/10.3390/biom10040537 - 2 Apr 2020
Cited by 17 | Viewed by 4870
Abstract
Glycosaminoglycans (GAGs) are linear, structurally diverse, conformationally complex carbohydrate polymers that may contain up to 200 monosaccharides. These characteristics present a challenge for studying GAG conformational thermodynamics at atomic resolution using existing experimental methods. Molecular dynamics (MD) simulations can overcome this challenge but [...] Read more.
Glycosaminoglycans (GAGs) are linear, structurally diverse, conformationally complex carbohydrate polymers that may contain up to 200 monosaccharides. These characteristics present a challenge for studying GAG conformational thermodynamics at atomic resolution using existing experimental methods. Molecular dynamics (MD) simulations can overcome this challenge but are only feasible for short GAG polymers. To address this problem, we developed an algorithm that applies all conformational parameters contributing to GAG backbone flexibility (i.e., bond lengths, bond angles, and dihedral angles) from unbiased all-atom explicit-solvent MD simulations of short GAG polymers to rapidly construct models of GAGs of arbitrary length. The algorithm was used to generate non-sulfated chondroitin 10- and 20-mer ensembles which were compared to MD-generated ensembles for internal validation. End-to-end distance distributions in constructed and MD-generated ensembles have minimal differences, suggesting that our algorithm produces conformational ensembles that mimic the backbone flexibility seen in simulation. Non-sulfated chondroitin 100- and 200-mer ensembles were constructed within a day, demonstrating the efficiency of the algorithm and reduction in time and computational cost compared to simulation. Full article
Show Figures

Figure 1

21 pages, 1554 KB  
Article
Changes of Conformation in Albumin with Temperature by Molecular Dynamics Simulations
by Piotr Weber, Piotr Bełdowski, Krzysztof Domino, Damian Ledziński and Adam Gadomski
Entropy 2020, 22(4), 405; https://doi.org/10.3390/e22040405 - 1 Apr 2020
Cited by 5 | Viewed by 3979
Abstract
This work presents the analysis of the conformation of albumin in the temperature range of 300 K 312 K , i.e., in the physiological range. Using molecular dynamics simulations, we calculate values of the backbone and dihedral angles for this molecule. We [...] Read more.
This work presents the analysis of the conformation of albumin in the temperature range of 300 K 312 K , i.e., in the physiological range. Using molecular dynamics simulations, we calculate values of the backbone and dihedral angles for this molecule. We analyze the global dynamic properties of albumin treated as a chain. In this range of temperature, we study parameters of the molecule and the conformational entropy derived from two angles that reflect global dynamics in the conformational space. A thorough rationalization, based on the scaling theory, for the subdiffusion Flory–De Gennes type exponent of 0 . 4 unfolds in conjunction with picking up the most appreciable fluctuations of the corresponding statistical-test parameter. These fluctuations coincide adequately with entropy fluctuations, namely the oscillations out of thermodynamic equilibrium. Using Fisher’s test, we investigate the conformational entropy over time and suggest its oscillatory properties in the corresponding time domain. Using the Kruscal–Wallis test, we also analyze differences between the root mean square displacement of a molecule at various temperatures. Here we show that its values in the range of 306 K 309 K are different than in another temperature. Using the Kullback–Leibler theory, we investigate differences between the distribution of the root mean square displacement for each temperature and time window. Full article
Show Figures

Figure 1

18 pages, 2605 KB  
Article
Ribbon α-Conotoxin KTM Exhibits Potent Inhibition of Nicotinic Acetylcholine Receptors
by Leanna A. Marquart, Matthew W. Turner, Lisa R. Warner, Matthew D. King, James R. Groome and Owen M. McDougal
Mar. Drugs 2019, 17(12), 669; https://doi.org/10.3390/md17120669 - 28 Nov 2019
Cited by 2 | Viewed by 3872
Abstract
KTM is a 16 amino acid peptide with the sequence WCCSYPGCYWSSSKWC. Here, we present the nuclear magnetic resonance (NMR) structure and bioactivity of this rationally designed α-conotoxin (α-CTx) that demonstrates potent inhibition of rat α3β2-nicotinic acetylcholine receptors (rα3β2-nAChRs). Two bioassays were used to [...] Read more.
KTM is a 16 amino acid peptide with the sequence WCCSYPGCYWSSSKWC. Here, we present the nuclear magnetic resonance (NMR) structure and bioactivity of this rationally designed α-conotoxin (α-CTx) that demonstrates potent inhibition of rat α3β2-nicotinic acetylcholine receptors (rα3β2-nAChRs). Two bioassays were used to test the efficacy of KTM. First, a qualitative PC12 cell-based assay confirmed that KTM acts as a nAChR antagonist. Second, bioactivity evaluation by two-electrode voltage clamp electrophysiology was used to measure the inhibition of rα3β2-nAChRs by KTM (IC50 = 0.19 ± 0.02 nM), and inhibition of the same nAChR isoform by α-CTx MII (IC50 = 0.35 ± 0.8 nM). The three-dimensional structure of KTM was determined by NMR spectroscopy, and the final set of 20 structures derived from 32 distance restraints, four dihedral angle constraints, and two disulfide bond constraints overlapped with a mean global backbone root-mean-square deviation (RMSD) of 1.7 ± 0.5 Å. The structure of KTM did not adopt the disulfide fold of α-CTx MII for which it was designed, but instead adopted a flexible ribbon backbone and disulfide connectivity of C2–C16 and C3–C8 with an estimated 12.5% α-helical content. In contrast, α-CTx MII, which has a native fold of C2–C8 and C3–C16, has an estimated 38.1% α-helical secondary structure. KTM is the first reported instance of a Framework I (CC-C-C) α-CTx with ribbon connectivity to display sub-nanomolar inhibitory potency of rα3β2-nAChR subtypes. Full article
(This article belongs to the Special Issue Cone Snail Venom Peptides, from Treasure Hunt to Drug Leads)
Show Figures

Graphical abstract

20 pages, 2494 KB  
Article
Conformation and Dynamics of the Cyclic Lipopeptide Viscosinamide at the Water-Lipid Interface
by Niels Geudens, Benjámin Kovács, Davy Sinnaeve, Feyisara Eyiwumi Oni, Monica Höfte and José C. Martins
Molecules 2019, 24(12), 2257; https://doi.org/10.3390/molecules24122257 - 17 Jun 2019
Cited by 7 | Viewed by 4561
Abstract
Cyclic lipodepsipeptides or CLiPs from Pseudomonas are secondary metabolites that mediate a wide range of biological functions for their producers, and display antimicrobial and anticancer activities. Direct interaction of CLiPs with the cellular membranes is presumed to be essential in causing these. To [...] Read more.
Cyclic lipodepsipeptides or CLiPs from Pseudomonas are secondary metabolites that mediate a wide range of biological functions for their producers, and display antimicrobial and anticancer activities. Direct interaction of CLiPs with the cellular membranes is presumed to be essential in causing these. To understand the processes involved at the molecular level, knowledge of the conformation and dynamics of CLiPs at the water-lipid interface is required to guide the interpretation of biophysical investigations in model membrane systems. We used NMR and molecular dynamics to study the conformation, location and orientation of the Pseudomonas CLiP viscosinamide in a water/dodecylphosphocholine solution. In the process, we demonstrate the strong added value of combining uniform, isotope-enriched viscosinamide and protein NMR methods. In particular, the use of techniques to determine backbone dihedral angles and detect and identify long-lived hydrogen bonds, establishes that the solution conformation previously determined in acetonitrile is maintained in water/dodecylphosphocholine solution. Paramagnetic relaxation enhancements pinpoint viscosinamide near the water-lipid interface, with its orientation dictated by the amphipathic distribution of hydrophobic and hydrophilic residues. Finally, the experimental observations are supported by molecular dynamics simulations. Thus a firm structural basis is now available for interpreting biophysical and bioactivity data relating to this class of compounds. Full article
(This article belongs to the Special Issue Cyclic Peptide Analogues and Non-peptide Mimetics)
Show Figures

Graphical abstract

22 pages, 3318 KB  
Article
Impact of Side Chains of Conjugated Polymers on Electronic Structure: A Case Study
by Clemens Matt, Florian Lombeck, Michael Sommer and Till Biskup
Polymers 2019, 11(5), 870; https://doi.org/10.3390/polym11050870 - 13 May 2019
Cited by 6 | Viewed by 4053
Abstract
Processing from solution is a crucial aspect of organic semiconductors, as it is at the heart of the promise of easy and inexpensive manufacturing of devices. Introducing alkyl side chains is an approach often used to increase solubility and enhance miscibility in blends. [...] Read more.
Processing from solution is a crucial aspect of organic semiconductors, as it is at the heart of the promise of easy and inexpensive manufacturing of devices. Introducing alkyl side chains is an approach often used to increase solubility and enhance miscibility in blends. The influence of these side chains on the electronic structure, although highly important for a detailed understanding of the structure-function relationship of these materials, is still barely understood. Here, we use time-resolved electron paramagnetic resonance spectroscopy with its molecular resolution to investigate the role of alkyl side chains on the polymer PCDTBT and a series of its building blocks with increasing length. Comparing our results to the non-hexylated compounds allows us to distinguish four different factors determining exciton delocalization. Detailed quantum-chemical calculations (DFT) allows us to further interpret our spectroscopic data and to relate our findings to the molecular geometry. Alkylation generally leads to more localized excitons, most prominent only for the polymer. Furthermore, singlet excitons are more delocalized than the corresponding triplet excitons, despite the larger dihedral angles within the backbone found for the singlet-state geometries. Our results show TREPR spectroscopy of triplet excitons to be well suited for investigating crucial aspects of the structure-function relationship of conjugated polymers used as organic semiconductors on a molecular basis. Full article
(This article belongs to the Special Issue Synthesis and Application of Conjugated Polymers)
Show Figures

Graphical abstract

Back to TopTop