Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = axon regrowth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1189 KiB  
Review
Rewiring the Spine—Cutting-Edge Stem Cell Therapies for Spinal Cord Repair
by Yasir Mohamed Riza and Faisal A. Alzahrani
Int. J. Mol. Sci. 2025, 26(11), 5048; https://doi.org/10.3390/ijms26115048 - 23 May 2025
Cited by 1 | Viewed by 2188
Abstract
Spinal cord injury (SCI) is a debilitating neurological condition that leads to severe disabilities, significantly reducing patients’ quality of life and imposing substantial societal and economic burdens. SCI involves a complex pathogenesis, including primary irreversible damage and secondary injury driven by neuroinflammation, apoptosis, [...] Read more.
Spinal cord injury (SCI) is a debilitating neurological condition that leads to severe disabilities, significantly reducing patients’ quality of life and imposing substantial societal and economic burdens. SCI involves a complex pathogenesis, including primary irreversible damage and secondary injury driven by neuroinflammation, apoptosis, and ischemia. Current treatments often provide limited efficacy, underscoring the urgent need for innovative therapeutic strategies. This paper aims to explore the potential use of stem cell (SC) therapy and exosome-based treatments as transformative approaches for managing SCI and mitigating associated disabilities. SCs, such as mesenchymal stem cells (MSCs), neural stem cells (NSCs), and embryonic stem cells (ESCs), demonstrate regenerative capabilities, including self-renewal, differentiation into neurons and glial cells, and modulation of the injury microenvironment. These properties enable SCs to reduce inflammation, inhibit apoptosis, and promote neuronal regeneration in preclinical models. Exosome-based therapies, derived from SCs, offer a novel alternative by addressing challenges like immune rejection and tumorigenicity. Exosomes deliver biomolecules, such as miRNAs, fostering anti-inflammatory, anti-apoptotic, and pro-regenerative effects. They have shown efficacy in improving motor function, reducing glial scarring, and enhancing axonal regrowth in SCI models. The objective of this paper is to provide a comprehensive review of SC therapy and exosome-based approaches, emphasizing their potential to revolutionize SCI management while addressing ethical concerns, immune rejection, and the need for large-scale clinical trials. These therapies hold promise for improving recovery outcomes and alleviating the profound disabilities associated with SCI. Full article
(This article belongs to the Special Issue Mesenchymal Stem Cell-Based Therapy: Cell Therapy vs. EV Therapy)
Show Figures

Figure 1

15 pages, 4838 KiB  
Article
Hydrogen Peroxide Modulates the Timely Activation of Jun and Erk in Schwann Cells at the Injury Site and Is Required for Motor Axon Regeneration
by Samuele Negro, Chiara Baggio, Marika Tonellato, Marco Stazi, Giorgia D’Este, Aram Megighian, Cesare Montecucco and Michela Rigoni
Cells 2025, 14(9), 671; https://doi.org/10.3390/cells14090671 - 3 May 2025
Viewed by 1092
Abstract
Peripheral nervous system (PNS) neurons, including motor neurons (MNs), possess a remarkable ability to regenerate and reinnervate target muscles following nerve injury. This process is orchestrated by a combination of intrinsic neuronal properties and extrinsic factors, with Schwann cells (SCs) playing a central [...] Read more.
Peripheral nervous system (PNS) neurons, including motor neurons (MNs), possess a remarkable ability to regenerate and reinnervate target muscles following nerve injury. This process is orchestrated by a combination of intrinsic neuronal properties and extrinsic factors, with Schwann cells (SCs) playing a central role. Upon injury, SCs transition into a repair phenotype that allows axonal regeneration through molecular signaling and structural guidance. However, the identity of the SCs’ reprogramming factors is only partially known. We previously identified hydrogen peroxide (H2O2) as an early and key driver of nerve repair, inducing gene expression rewiring in SCs to support nerve re-growth. In this study, we quantitatively assessed the role of H2O2 in the activation of key pro-regenerative signaling pathways in SCs following sciatic nerve compression, specifically the extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun, which are essential for functional nerve recovery. Notably, we found that H2O2 neutralization does not impact degeneration, but it significantly affects the regenerative response. Collectively, our findings establish H2O2 as a promising regulator of the Schwann cell injury response at the injury site, linking oxidative signaling to the molecular mechanisms governing nerve regeneration. Full article
(This article belongs to the Special Issue Unveiling Axon-Glia Communication in Health and Disease)
Show Figures

Figure 1

16 pages, 2809 KiB  
Review
Personalized Stem Cell-Based Regeneration in Spinal Cord Injury Care
by Sasi Kumar Jagadeesan, Ryan Vimukthie Sandarage, Sathya Mathiyalagan and Eve Chung Tsai
Int. J. Mol. Sci. 2025, 26(8), 3874; https://doi.org/10.3390/ijms26083874 - 19 Apr 2025
Viewed by 2453
Abstract
Spinal cord injury (SCI) remains a major clinical challenge, with limited therapeutic options for restoring lost neurological function. While efforts to mitigate secondary damage have improved early-phase management, achieving sustained neurorepair and functional recovery remains elusive. Advances in stem cell engineering and regenerative [...] Read more.
Spinal cord injury (SCI) remains a major clinical challenge, with limited therapeutic options for restoring lost neurological function. While efforts to mitigate secondary damage have improved early-phase management, achieving sustained neurorepair and functional recovery remains elusive. Advances in stem cell engineering and regenerative medicine have opened new avenues for targeted interventions, particularly through the transplantation of neural stem/progenitor cells (NSPCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs). However, patient-specific factors such as cellular senescence, genetic and epigenetic variability, injury microenvironment, and comorbidities influence the efficacy of stem cell therapies by affecting graft survival and differentiation. Overcoming these challenges necessitates cutting-edge technologies, including single-cell transcriptomics, CRISPR-mediated hypoimmunogenic engineering, and biomaterial-based delivery platforms, which enable personalized and precision-driven SCI repair. Leveraging these advancements may help stem cell therapies overcome translational barriers and establish clinically viable regenerative solutions. This review explores the intersection of patient-specific variability, bioengineering innovations, and transcriptomic-guided precision medicine to define the next frontier in SCI therapy. Full article
(This article belongs to the Special Issue Molecular Pathology and Treatment of Spinal Cord Injury)
Show Figures

Figure 1

17 pages, 2785 KiB  
Article
Nuclear Magnetic Resonance Treatment Induces ßNGF Release from Schwann Cells and Enhances the Neurite Growth of Dorsal Root Ganglion Neurons In Vitro
by Anda Rad, Lukas Weigl, Bibiane Steinecker-Frohnwieser, Sarah Stadlmayr, Flavia Millesi, Maximilian Haertinger, Anton Borger, Paul Supper, Lorenz Semmler, Sonja Wolf, Aida Naghilou, Tamara Weiss, Hans G. Kress and Christine Radtke
Cells 2024, 13(18), 1544; https://doi.org/10.3390/cells13181544 - 13 Sep 2024
Viewed by 1934
Abstract
Peripheral nerve regeneration depends on close interaction between neurons and Schwann cells (SCs). After nerve injury, SCs produce growth factors and cytokines that are crucial for axon re-growth. Previous studies revealed the supernatant of SCs exposed to nuclear magnetic resonance therapy (NMRT) treatment [...] Read more.
Peripheral nerve regeneration depends on close interaction between neurons and Schwann cells (SCs). After nerve injury, SCs produce growth factors and cytokines that are crucial for axon re-growth. Previous studies revealed the supernatant of SCs exposed to nuclear magnetic resonance therapy (NMRT) treatment to increase survival and neurite formation of rat dorsal root ganglion (DRG) neurons in vitro. The aim of this study was to identify factors involved in transferring the observed NMRT-induced effects to SCs and consequently to DRG neurons. Conditioned media of NMRT-treated (CM NMRT) and untreated SCs (CM CTRL) were tested by beta-nerve growth factor (ßNGF) ELISA and multiplex cytokine panels to profile secreted factors. The expression of nociceptive transient receptor potential vanilloid 1 (TRPV1) channels was assessed and the intracellular calcium response in DRG neurons to high-potassium solution, capsaicin or adenosine triphosphate was measured mimicking noxious stimuli. NMRT induced the secretion of ßNGF and pro-regenerative-signaling factors. Blocking antibody experiments confirmed ßNGF as the main factor responsible for neurotrophic/neuritogenic effects of CM NMRT. The TRPV1 expression or sensitivity to specific stimuli was not altered, whereas the viability of cultured DRG neurons was increased. Positive effects of CM NMRT supernatant on DRG neurons are primarily mediated by increased ßNGF levels. Full article
Show Figures

Figure 1

20 pages, 1873 KiB  
Review
Axonal Regeneration after Spinal Cord Injury: Molecular Mechanisms, Regulatory Pathways, and Novel Strategies
by Mohammed Ibrahim Elmalky, Gonzalo Alvarez-Bolado, Alexander Younsi and Thomas Skutella
Biology 2024, 13(9), 703; https://doi.org/10.3390/biology13090703 - 7 Sep 2024
Cited by 7 | Viewed by 5349
Abstract
Axonal regeneration in the spinal cord after traumatic injuries presents a challenge for researchers, primarily due to the nature of adult neurons and the inhibitory environment that obstructs neuronal regrowth. Here, we review current knowledge of the intricate network of molecular and cellular [...] Read more.
Axonal regeneration in the spinal cord after traumatic injuries presents a challenge for researchers, primarily due to the nature of adult neurons and the inhibitory environment that obstructs neuronal regrowth. Here, we review current knowledge of the intricate network of molecular and cellular mechanisms that hinder axonal regeneration, with a focus on myelin-associated inhibitors (MAIs) and other inhibitory guidance molecules, as well as the pivotal pathways implicated in both inhibiting and facilitating axonal regrowth, such as PKA/AMP, PI3K/Akt/mTOR, and Trk, alongside the regulatory roles of neurotrophins and axonal guidance cues. We also examine current insights into gene therapy, tissue engineering, and pharmacological interventions that show promise in overcoming barriers to axonal regrowth. Full article
(This article belongs to the Special Issue Advances in the Fields of Neurotrauma and Neuroregeneration)
Show Figures

Figure 1

16 pages, 3792 KiB  
Article
AAV-Mediated Expression of miR-17 Enhances Neurite and Axon Regeneration In Vitro
by Raquel Alves Almeida, Carolina Gomes Ferreira, Victor Ulysses Souza Matos, Julia Meireles Nogueira, Marina Pimenta Braga, Lucas Caldi Gomes, Erika Cristina Jorge, Frederico Marianetti Soriani, Uwe Michel and Vinicius Toledo Ribas
Int. J. Mol. Sci. 2024, 25(16), 9057; https://doi.org/10.3390/ijms25169057 - 21 Aug 2024
Viewed by 1437
Abstract
Neurodegenerative disorders, including traumatic injuries to the central nervous system (CNS) and neurodegenerative diseases, are characterized by early axonal damage, which does not regenerate in the adult mammalian CNS, leading to permanent neurological deficits. One of the primary causes of the loss of [...] Read more.
Neurodegenerative disorders, including traumatic injuries to the central nervous system (CNS) and neurodegenerative diseases, are characterized by early axonal damage, which does not regenerate in the adult mammalian CNS, leading to permanent neurological deficits. One of the primary causes of the loss of regenerative ability is thought to be a developmental decline in neurons’ intrinsic capability for axon growth. Different molecules are involved in the developmental loss of the ability for axon regeneration, including many transcription factors. However, the function of microRNAs (miRNAs), which are also modulators of gene expression, in axon re-growth is still unclear. Among the various miRNAs recently identified with roles in the CNS, miR-17, which is highly expressed during early development, emerges as a promising target to promote axon regeneration. Here, we used adeno-associated viral (AAV) vectors to overexpress miR-17 (AAV.miR-17) in primary cortical neurons and evaluate its effects on neurite and axon regeneration in vitro. Although AAV.miR-17 had no significant effect on neurite outgrowth and arborization, it significantly enhances neurite regeneration after scratch lesion and axon regeneration after axotomy of neurons cultured in microfluidic chambers. Target prediction and functional annotation analyses suggest that miR-17 regulates gene expression associated with autophagy and cell metabolism. Our findings suggest that miR-17 promotes regenerative response and thus could mitigate neurodegenerative effects. Full article
(This article belongs to the Special Issue Non-coding RNA in Physiology and Pathophysiology)
Show Figures

Figure 1

30 pages, 7178 KiB  
Article
T12-L3 Nerve Transfer-Induced Locomotor Recovery in Rats with Thoracolumbar Contusion: Essential Roles of Sensory Input Rerouting and Central Neuroplasticity
by Dou Yu, Xiang Zeng, Zaid S. Aljuboori, Rachel Dennison, Liquan Wu, Jamie A. Anderson and Yang D. Teng
Cells 2023, 12(24), 2804; https://doi.org/10.3390/cells12242804 - 8 Dec 2023
Cited by 1 | Viewed by 2486
Abstract
Locomotor recovery after spinal cord injury (SCI) remains an unmet challenge. Nerve transfer (NT), the connection of a functional/expendable peripheral nerve to a paralyzed nerve root, has long been clinically applied, aiming to restore motor control. However, outcomes have been inconsistent, suggesting that [...] Read more.
Locomotor recovery after spinal cord injury (SCI) remains an unmet challenge. Nerve transfer (NT), the connection of a functional/expendable peripheral nerve to a paralyzed nerve root, has long been clinically applied, aiming to restore motor control. However, outcomes have been inconsistent, suggesting that NT-induced neurological reinstatement may require activation of mechanisms beyond motor axon reinnervation (our hypothesis). We previously reported that to enhance rat locomotion following T13-L1 hemisection, T12-L3 NT must be performed within timeframes optimal for sensory nerve regrowth. Here, T12-L3 NT was performed for adult female rats with subacute (7–9 days) or chronic (8 weeks) mild (SCImi: 10 g × 12.5 mm) or moderate (SCImo: 10 g × 25 mm) T13-L1 thoracolumbar contusion. For chronic injuries, T11-12 implantation of adult hMSCs (1-week before NT), post-NT intramuscular delivery of FGF2, and environmentally enriched/enlarged (EEE) housing were provided. NT, not control procedures, qualitatively improved locomotion in both SCImi groups and animals with subacute SCImo. However, delayed NT did not produce neurological scale upgrading conversion for SCImo rats. Ablation of the T12 ventral/motor or dorsal/sensory root determined that the T12-L3 sensory input played a key role in hindlimb reanimation. Pharmacological, electrophysiological, and trans-synaptic tracing assays revealed that NT strengthened integrity of the propriospinal network, serotonergic neuromodulation, and the neuromuscular junction. Besides key outcomes of thoracolumbar contusion modeling, the data provides the first evidence that mixed NT-induced locomotor efficacy may rely pivotally on sensory rerouting and pro-repair neuroplasticity to reactivate neurocircuits/central pattern generators. The finding describes a novel neurobiology mechanism underlying NT, which can be targeted for development of innovative neurotization therapies. Full article
Show Figures

Figure 1

17 pages, 4000 KiB  
Article
βPix Guanine Nucleotide Exchange Factor Regulates Regeneration of Injured Peripheral Axons
by Yewon Jeon, Yoon Kyung Shin, Hwigyeong Kim, Yun Young Choi, Minjae Kang, Younghee Kwon, Yongcheol Cho, Sung Wook Chi and Jung Eun Shin
Int. J. Mol. Sci. 2023, 24(18), 14357; https://doi.org/10.3390/ijms241814357 - 20 Sep 2023
Cited by 3 | Viewed by 1886
Abstract
Axon regeneration is essential for successful recovery after peripheral nerve injury. Although growth cone reformation and axonal extension are crucial steps in axonal regeneration, the regulatory mechanisms underlying these dynamic processes are poorly understood. Here, we identify βPix (Arhgef7), the guanine nucleotide exchange [...] Read more.
Axon regeneration is essential for successful recovery after peripheral nerve injury. Although growth cone reformation and axonal extension are crucial steps in axonal regeneration, the regulatory mechanisms underlying these dynamic processes are poorly understood. Here, we identify βPix (Arhgef7), the guanine nucleotide exchange factor for Rac1 GTPase, as a regulator of axonal regeneration. After sciatic nerve injury in mice, the expression levels of βPix increase significantly in nerve segments containing regenerating axons. In regrowing axons, βPix is localized in the peripheral domain of the growth cone. Using βPix neuronal isoform knockout (NIKO) mice in which the neuronal isoforms of βPix are specifically removed, we demonstrate that βPix promotes neurite outgrowth in cultured dorsal root ganglion neurons and in vivo axon regeneration after sciatic nerve crush injury. Activation of cJun and STAT3 in the cell bodies is not affected in βPix NIKO mice, supporting the local action of βPix in regenerating axons. Finally, inhibiting Src, a kinase previously identified as an activator of the βPix neuronal isoform, causes axon outgrowth defects in vitro, like those found in the βPix NIKO neurons. Altogether, these data indicate that βPix plays an important role in axonal regrowth during peripheral nerve regeneration. Full article
Show Figures

Figure 1

15 pages, 3520 KiB  
Article
Axonal Regrowth of Olfactory Sensory Neurons In Vitro
by Rebecca Sipione, Nicolas Liaudet, Francis Rousset, Basile N. Landis, Julien Wen Hsieh and Pascal Senn
Int. J. Mol. Sci. 2023, 24(16), 12863; https://doi.org/10.3390/ijms241612863 - 16 Aug 2023
Cited by 4 | Viewed by 2590
Abstract
One of the most prevalent causes of olfactory loss includes traumatic brain injury with subsequent shearing of olfactory axons at the level of the cribriform plate (anterior skull base). Scar tissue at this level may prevent axonal regrowth toward the olfactory bulb. Currently, [...] Read more.
One of the most prevalent causes of olfactory loss includes traumatic brain injury with subsequent shearing of olfactory axons at the level of the cribriform plate (anterior skull base). Scar tissue at this level may prevent axonal regrowth toward the olfactory bulb. Currently, there is no cure for this debilitating and often permanent condition. One promising therapeutic concept is to implant a synthetic scaffold with growth factors through the cribriform plate/scar tissue to induce neuroregeneration. The first step toward this goal is to investigate the optimum conditions (growth factors, extracellular matrix proteins) to boost this regeneration. However, the lack of a specifically tailored in vitro model and an automated procedure for quantifying axonal length limits our ability to address this issue. The aim of this study is to create an automated quantification tool to measure axonal length and to determine the ideal growth factors and extracellular proteins to enhance axonal regrowth of olfactory sensory neurons in a mouse organotypic 2D model. We harvested olfactory epithelium (OE) of C57BL/6 mice and cultured them during 15 days on coverslips coated with various extracellular matrix proteins (Fibronectin, Collagen IV, Laminin, none) and different growth factors: fibroblast growth factor 2 (FGF2), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), retinoic acid (RA), transforming growth factor β (TGFβ), and none. We measured the attachment rate on coverslips, the presence of cellular and axonal outgrowth, and finally, the total axonal length with a newly developed automated high-throughput quantification tool. Whereas the coatings did not influence attachment and neuronal outgrowth rates, the total axonal length was enhanced on fibronectin and collagen IV (p = 0.001). The optimum growth factor supplementation media to culture OE compared to the control condition were as follows: FGF2 alone and FGF2 from day 0 to 7 followed by FGF2 in combination with NGF from day 7 to 15 (p < 0.0001). The automated quantification tool to measure axonal length outperformed the standard Neuron J application by reducing the average analysis time from 22 to 3 min per specimen. In conclusion, robust regeneration of murine olfactory neurons in vitro can be induced, controlled, and efficiently measured using an automated quantification tool. These results will help advance the therapeutic concept closer toward preclinical studies. Full article
Show Figures

Figure 1

21 pages, 1562 KiB  
Review
Stem Cell Scaffolds for the Treatment of Spinal Cord Injury—A Review
by Grace Hey, Matthew Willman, Aashay Patel, Michael Goutnik, Jonathan Willman and Brandon Lucke-Wold
Biomechanics 2023, 3(3), 322-342; https://doi.org/10.3390/biomechanics3030028 - 1 Aug 2023
Cited by 12 | Viewed by 4274
Abstract
Spinal cord injury (SCI) is a profoundly debilitating yet common central nervous system condition resulting in significant morbidity and mortality rates. Major causes of SCI encompass traumatic incidences such as motor vehicle accidents, falls, and sports injuries. Present treatment strategies for SCI aim [...] Read more.
Spinal cord injury (SCI) is a profoundly debilitating yet common central nervous system condition resulting in significant morbidity and mortality rates. Major causes of SCI encompass traumatic incidences such as motor vehicle accidents, falls, and sports injuries. Present treatment strategies for SCI aim to improve and enhance neurologic functionality. The ability for neural stem cells (NSCs) to differentiate into diverse neural and glial cell precursors has stimulated the investigation of stem cell scaffolds as potential therapeutics for SCI. Various scaffolding modalities including composite materials, natural polymers, synthetic polymers, and hydrogels have been explored. However, most trials remain largely in the preclinical stage, emphasizing the need to further develop and refine these treatment strategies before clinical implementation. In this review, we delve into the physiological processes that underpin NSC differentiation, including substrates and signaling pathways required for axonal regrowth post-injury, and provide an overview of current and emerging stem cell scaffolding platforms for SCI. Full article
(This article belongs to the Section Neuromechanics)
Show Figures

Figure 1

17 pages, 1391 KiB  
Review
Understanding the Role of the Glial Scar through the Depletion of Glial Cells after Spinal Cord Injury
by Lucila Perez-Gianmarco and Maria Kukley
Cells 2023, 12(14), 1842; https://doi.org/10.3390/cells12141842 - 13 Jul 2023
Cited by 21 | Viewed by 4001
Abstract
Spinal cord injury (SCI) is a condition that affects between 8.8 and 246 people in a million and, unlike many other neurological disorders, it affects mostly young people, causing deficits in sensory, motor, and autonomic functions. Promoting the regrowth of axons is one [...] Read more.
Spinal cord injury (SCI) is a condition that affects between 8.8 and 246 people in a million and, unlike many other neurological disorders, it affects mostly young people, causing deficits in sensory, motor, and autonomic functions. Promoting the regrowth of axons is one of the most important goals for the neurological recovery of patients after SCI, but it is also one of the most challenging goals. A key event after SCI is the formation of a glial scar around the lesion core, mainly comprised of astrocytes, NG2+-glia, and microglia. Traditionally, the glial scar has been regarded as detrimental to recovery because it may act as a physical barrier to axon regrowth and release various inhibitory factors. However, more and more evidence now suggests that the glial scar is beneficial for the surrounding spared tissue after SCI. Here, we review experimental studies that used genetic and pharmacological approaches to ablate specific populations of glial cells in rodent models of SCI in order to understand their functional role. The studies showed that ablation of either astrocytes, NG2+-glia, or microglia might result in disorganization of the glial scar, increased inflammation, extended tissue degeneration, and impaired recovery after SCI. Hence, glial cells and glial scars appear as important beneficial players after SCI. Full article
(This article belongs to the Special Issue Glial Scar: Formation and Regeneration)
Show Figures

Figure 1

18 pages, 7197 KiB  
Article
Composite Fibrin/Carbon Microfiber Implants for Bridging Spinal Cord Injury: A Translational Approach in Pigs
by Alexandra Alves-Sampaio, Patricia Del-Cerro and Jorge E. Collazos-Castro
Int. J. Mol. Sci. 2023, 24(13), 11102; https://doi.org/10.3390/ijms241311102 - 5 Jul 2023
Cited by 7 | Viewed by 2136
Abstract
Biomaterials may enhance neural repair after spinal cord injury (SCI) and testing their functionality in large animals is essential to achieve successful clinical translation. This work developed a porcine contusion/compression SCI model to investigate the consequences of myelotomy and implantation of fibrin gel [...] Read more.
Biomaterials may enhance neural repair after spinal cord injury (SCI) and testing their functionality in large animals is essential to achieve successful clinical translation. This work developed a porcine contusion/compression SCI model to investigate the consequences of myelotomy and implantation of fibrin gel containing biofunctionalized carbon microfibers (MFs). Fourteen pigs were distributed in SCI, SCI/myelotomy, and SCI/myelotomy/implant groups. An automated device was used for SCI. A dorsal myelotomy was performed on the lesion site at 1 day post-injury for removing cloths and devitalized tissue. Bundles of MFs coated with a conducting polymer and cell adhesion molecules were embedded in fibrin gel and used to bridge the spinal cord cavity. Reproducible lesions of about 1 cm in length were obtained. Myelotomy and lesion debridement caused no further neural damage compared to SCI alone but had little positive effect on neural regrowth. The MFs/fibrin gel implant facilitated axonal sprouting, elongation, and alignment within the lesion. However, the implant also increased lesion volume and was ineffective in preventing fibrosis, thus precluding functional neural regeneration. Our results indicate that myelotomy and lesion debridement can be advantageously used for implanting MF-based scaffolds. However, the implants need refinement and pharmaceuticals will be necessary to limit scarring. Full article
Show Figures

Figure 1

22 pages, 1582 KiB  
Review
Regenerative Potential of Injured Spinal Cord in the Light of Epigenetic Regulation and Modulation
by Samudra Gupta, Suman Dutta and Subhra Prakash Hui
Cells 2023, 12(13), 1694; https://doi.org/10.3390/cells12131694 - 22 Jun 2023
Cited by 10 | Viewed by 3487
Abstract
A spinal cord injury is a form of physical harm imposed on the spinal cord that causes disability and, in many cases, leads to permanent mammalian paralysis, which causes a disastrous global issue. Because of its non-regenerative aspect, restoring the spinal cord’s role [...] Read more.
A spinal cord injury is a form of physical harm imposed on the spinal cord that causes disability and, in many cases, leads to permanent mammalian paralysis, which causes a disastrous global issue. Because of its non-regenerative aspect, restoring the spinal cord’s role remains one of the most daunting tasks. By comparison, the remarkable regenerative ability of some regeneration-competent species, such as some Urodeles (Axolotl), Xenopus, and some teleost fishes, enables maximum functional recovery, even after complete spinal cord transection. During the last two decades of intensive research, significant progress has been made in understanding both regenerative cells’ origins and the molecular signaling mechanisms underlying the regeneration and reconstruction of damaged spinal cords in regenerating organisms and mammals, respectively. Epigenetic control has gradually moved into the center stage of this research field, which has been helped by comprehensive work demonstrating that DNA methylation, histone modifications, and microRNAs are important for the regeneration of the spinal cord. In this review, we concentrate primarily on providing a comparison of the epigenetic mechanisms in spinal cord injuries between non-regenerating and regenerating species. In addition, we further discuss the epigenetic mediators that underlie the development of a regeneration-permissive environment following injury in regeneration-competent animals and how such mediators may be implicated in optimizing treatment outcomes for spinal cord injurie in higher-order mammals. Finally, we briefly discuss the role of extracellular vesicles (EVs) in the context of spinal cord injury and their potential as targets for therapeutic intervention. Full article
(This article belongs to the Collection Cell Biology of Spinal Cord Injury and Repair)
Show Figures

Figure 1

21 pages, 529 KiB  
Review
Effects of Electrical Stimulation on Facial Paralysis Recovery after Facial Nerve Injury: A Review on Preclinical and Clinical Studies
by Myung Chul Yoo, Jeong Hee Kim, Yong Jun Kim, Junyang Jung, Sung Soo Kim, Sang Hoon Kim and Seung Geun Yeo
J. Clin. Med. 2023, 12(12), 4133; https://doi.org/10.3390/jcm12124133 - 19 Jun 2023
Cited by 13 | Viewed by 7586
Abstract
Various methods have been used to improve function and manage facial nerve injury. Although electrical stimulation therapy is frequently used to treat facial paralysis, its effects have been found to vary and no clear standards have been developed. The current review describes the [...] Read more.
Various methods have been used to improve function and manage facial nerve injury. Although electrical stimulation therapy is frequently used to treat facial paralysis, its effects have been found to vary and no clear standards have been developed. The current review describes the results of preclinical and clinical studies evaluating the effectiveness of electrical stimulation therapy in promoting the recovery of a peripheral facial nerve injury. Evidence is presented showing the efficacy of electrical stimulation in promoting nerve regeneration after peripheral nerve injuries in both animal models and human patients. The ability of electrical stimulation to promote the recovery of facial paralysis was found to depend on the type of injury (compression or transection), the species of animal tested, the type of disease, the frequency and method of electrical stimulation, and the duration of the follow-up. Electrical stimulation, however, can also have potential negative outcomes, such as reinforcing synkinesis, including mistargeted axonal regrowth via inappropriate routes; excessive collateral axonal branching at the lesion site; and multiple innervations at neuromuscular junctions. Because of the inconsistencies among studies and the low quality of evidence, electrical stimulation therapy is not currently regarded as a primary treatment of facial paralysis in patients. However, understanding the effects of electrical stimulation, as determined in preclinical and clinical studies, is important for the potential validity of future research on electrical stimulation. Full article
(This article belongs to the Special Issue Clinical Frontiers in Nerve Repair and Regeneration)
Show Figures

Figure 1

14 pages, 4830 KiB  
Communication
Endogenous Glycoprotein GPM6a Is Involved in Neurite Outgrowth in Rat Dorsal Root Ganglion Neurons
by Gabriela I. Aparicio, Antonella León, Rocío Gutiérrez Fuster, Baylen Ravenscraft, Paula V. Monje and Camila Scorticati
Biomolecules 2023, 13(4), 594; https://doi.org/10.3390/biom13040594 - 25 Mar 2023
Cited by 6 | Viewed by 3166
Abstract
The peripheral nervous system (PNS) has a unique ability for self-repair. Dorsal root ganglion (DRG) neurons regulate the expression of different molecules, such as neurotrophins and their receptors, to promote axon regeneration after injury. However, the molecular players driving axonal regrowth need to [...] Read more.
The peripheral nervous system (PNS) has a unique ability for self-repair. Dorsal root ganglion (DRG) neurons regulate the expression of different molecules, such as neurotrophins and their receptors, to promote axon regeneration after injury. However, the molecular players driving axonal regrowth need to be better defined. The membrane glycoprotein GPM6a has been described to contribute to neuronal development and structural plasticity in central-nervous-system neurons. Recent evidence indicates that GPM6a interacts with molecules from the PNS, although its role in DRG neurons remains unknown. Here, we characterized the expression of GPM6a in embryonic and adult DRGs by combining analysis of public RNA-seq datasets with immunochemical approaches utilizing cultures of rat DRG explants and dissociated neuronal cells. M6a was detected on the cell surfaces of DRG neurons throughout development. Moreover, GPM6a was required for DRG neurite elongation in vitro. In summary, we provide evidence on GPM6a being present in DRG neurons for the first time. Data from our functional experiments support the idea that GPM6a could contribute to axon regeneration in the PNS. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop