Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (119)

Search Parameters:
Keywords = average molar concentration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2922 KiB  
Article
Identification, Antioxidant and Immunomodulatory Activities of a Neutral Exopolysaccharide from Lactiplantibacillus plantarum DMDL 9010
by Yanyan Huang, Weiting Liang, Yunhui Lu, Jie Xiong, Dongmei Liu and Xiangze Jia
Nutrients 2025, 17(14), 2265; https://doi.org/10.3390/nu17142265 - 9 Jul 2025
Viewed by 306
Abstract
Objectives: This study investigated the properties of a neutral exopolysaccharide (EPS-LP1) with an average molecular weight of 55,637 Da, isolated from Lactiplantibacillus plantarum DMDL 9010 (LP9010). Results: The composition of EPS-LP1 includes galactose (Gal), glucose (Glu) and mannose (Man) in a molar ratio [...] Read more.
Objectives: This study investigated the properties of a neutral exopolysaccharide (EPS-LP1) with an average molecular weight of 55,637 Da, isolated from Lactiplantibacillus plantarum DMDL 9010 (LP9010). Results: The composition of EPS-LP1 includes galactose (Gal), glucose (Glu) and mannose (Man) in a molar ratio of 5.35:86.25:8.40. Notably, EPS-LP1 exhibits a smooth and rod-like surface along with thermal stability. Methylation combined with nuclear magnetic resonance analysis revealed that EPS-LP1 structured as t-Galp(1→, →6)-Glcp(1→, 4)-Glcp(1→ and →4,6)-Galp(1→), with relative molar ratio of 1.016:9.874:4.355:78.693:6.062, respectively. In the concentration range of 50 to 400 mg/mL, we observed the absence of cytotoxic effects from EPS-LP1 on RAW264.7 cells. Furthermore, EPS-LP1 demonstrated protective effects on RAW264.7 cells against oxidative damage by reducing the production of reactive oxygen species (ROS), malondialdehyde (MDA), and lactate dehydrogenase (LDH) release. Conversely, an increase in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and concentrations of glutathione (GSH) was observed. Immunoreactivity assays indicated that EPS-LP1 can effectively reduce the production of nitric oxide (NO) and inhibit the secretion of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Additionally, it inhibited the activation of the mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B gene binding (NF-kB) signaling pathway. Conclusions: This research provides a foundation basis for further investigations into the neutral exopolysaccharide derived from LP9010. Full article
(This article belongs to the Special Issue Effects of Dietary Polysaccharides and Their Molecular Mechanisms)
Show Figures

Figure 1

16 pages, 2065 KiB  
Article
Effects of Yeast Cultures on Growth Performance, Fiber Digestibility, Ruminal Dissolved Gases, Antioxidant Capacity and Immune Activity of Beef Cattle
by Siyu Yi, Xu Tian, Xianwu Qin, Yan Zhang, Shuang Guan, Zhongping Chen, Daliang Cai, Duanqin Wu, Rong Wang, Zhiyuan Ma, Min Wang and Xiumin Zhang
Animals 2025, 15(10), 1452; https://doi.org/10.3390/ani15101452 - 17 May 2025
Viewed by 566
Abstract
This study aimed to evaluate the effects of yeast culture (YC) supplementation on growth performance, dietary nutrient digestibility, ruminal fermentation characteristics, methane (CH4) synthesis potential, ruminal bacterial composition, antioxidant and immune capacities in beef cattle. Thirty-six finishing Simmental beef cattle were [...] Read more.
This study aimed to evaluate the effects of yeast culture (YC) supplementation on growth performance, dietary nutrient digestibility, ruminal fermentation characteristics, methane (CH4) synthesis potential, ruminal bacterial composition, antioxidant and immune capacities in beef cattle. Thirty-six finishing Simmental beef cattle were employed for this experiment. The experiment included three dietary treatments: the basal diet (CON), the basal diet supplemented with Diamon V XP (XP; 50 g/day per cattle), and the basal diet supplemented with Keliben (KLB; 50 g/day per cattle). Various metabolites, such as acetophenone (12.7%), ascorbic acid (10.3%), citric acid (7.25%), D-(+)-proline (6.42%), succinic acid (5.70%), betaine (5.65%) and DL-malic acid (2.62%) were abundant in XP; and ascorbic acid (14.0%), oleamide (9.23%), citric acid (6.03%), betaine (5.88%), succinic acid (4.42%), indole-3-acrylic acid (2.85%) and DL-malic acid (1.73%) were abundant in KLB. Supplementing YC to the cattle increased the apparent total-tract digestibility of DM, OM, NDF and ADF, and tended to increase average daily gain. The supplementation of YC to the cattle had no effect on the rumen fermentation pathway as reflected by the unaltered molar percentage of acetate or propionate. The supplementation of XP decreased the concentration of rumen dissolved CH4, although no effect on the concentration of dissolved hydrogen was observed. The supplementation of KLB to the cattle increased Paraprevotella relative abundance, while the supplementation of XP decreased Euryarchaeota relative abundance in the rumen. Supplementing XP to the cattle increased serum GSH-Px, catalase and T-AOC concentrations, and was accompanied by decreased MAD concentration, indicating improved antioxidant capacity. Supplementing XP to the cattle increased the concentrations of serum IgA, IgG, IL-2, IL-10, IFN-γ and C4, compared with the CON group, and the KLB group had higher concentrations of serum IgA, IgG, IgM, IL-10, IFN-γ, C3 and C4 compared with the CON and XP groups, which revealed that both XP and KLB can improve the immune function, and that KLB showed a stronger effect. Overall, the supplementation of YC is beneficial to the nutrient digestibility, growth performance and health of beef cattle. Furthermore, XP was more effective than KLB in improving antioxidant capacity and reducing CH4 production, while KLB was more effective in improving the immune capacity of beef cattle than XP. Full article
Show Figures

Figure 1

26 pages, 329 KiB  
Article
Impact of Reduced Dietary Crude Protein and Propionic Acid Preservation on Intestinal Health and Growth Performance in Post-Weaned Pigs
by Kathryn Ruth Connolly, Torres Sweeney, Marion T. Ryan, Stafford Vigors and John V. O’Doherty
Animals 2025, 15(5), 702; https://doi.org/10.3390/ani15050702 - 27 Feb 2025
Cited by 1 | Viewed by 806
Abstract
This study investigated whether organic acid (OA)-preserved grain could mitigate the negative effects of low crude protein (CP) diets on growth performance, intestinal health, and the coefficient of total tract digestibility (CATTD) of nutrients in weaned piglets. The grain was either conventionally dried [...] Read more.
This study investigated whether organic acid (OA)-preserved grain could mitigate the negative effects of low crude protein (CP) diets on growth performance, intestinal health, and the coefficient of total tract digestibility (CATTD) of nutrients in weaned piglets. The grain was either conventionally dried or preserved post-harvest with 4 kg of OA per tonne. Ninety-six piglets (28 days old) were assigned to one of four diets in a 2 × 2 factorial design: (1) dried standard CP diet, (2) OA-preserved standard CP diet, (3) dried low CP diet, and (4) OA-preserved low CP diet. Standard and low CP diets contained 20% and 19% CP during the first 15 days, reduced to 19% and 17% CP from days 15–35 post-weaning. Faecal scores (FS) were assessed twice a day while microbial composition, inflammatory markers, colonic volatile fatty acid concentrations, and intestinal morphology were measured on the 8th day post-weaning. Performance metrics were measured over the 35-day experimental period. Low CP diets consistently reduced FS (p < 0.05) and increased colonic molar butyrate proportions (p < 0.01) but increased duodenal IL1B expression compared to standard CP diets (p < 0.05). The OA-preserved grain enhanced beneficial microbial populations (Lactobacillus, Roseburia) while lowering pro-inflammatory cytokines (IL1A, IL17) (p < 0.05). While dried grain with low CP diets reduced average daily gain (ADG), colonic short-chain fatty acids (SCFA) concentrations, and nitrogen digestibility, OA-preserved grain with low CP maintained these parameters and improved final body weight (p < 0.05). Overall, OA-preserved grain mitigated the performance decline associated with low CP diets by enhancing gut health and nutrient digestibility and reducing inflammation, thus presenting a promising alternative nutritional strategy for post-weaned piglets. Full article
(This article belongs to the Special Issue Crude Protein in Pig Diets)
15 pages, 832 KiB  
Article
Influence of Dietary Forage Neutral Detergent Fiber on Ruminal Fermentation, Chewing Activity, Nutrient Digestion, and Ruminal Microbiota of Hu Sheep
by Zhian Zhang, Fei Li, Fadi Li, Zongli Wang, Long Guo, Xiuxiu Weng, Xuchun Sun, Zhenhu He, Xianyu Meng, Zhaoqing Liang and Xiong Li
Animals 2025, 15(3), 314; https://doi.org/10.3390/ani15030314 - 23 Jan 2025
Viewed by 1089
Abstract
As the key components of dietary carbohydrates, ensuring a balance between forage-neutral detergent fiber (FNDF) and rumen-degradable starch (RDS) is essential for ruminant health. Eight male Hu sheep equipped with rumen cannulas were randomly divided into four groups based on dietary FNDF content: [...] Read more.
As the key components of dietary carbohydrates, ensuring a balance between forage-neutral detergent fiber (FNDF) and rumen-degradable starch (RDS) is essential for ruminant health. Eight male Hu sheep equipped with rumen cannulas were randomly divided into four groups based on dietary FNDF content: low FNDF (L-FNDF, 6.08%), middle low FNDF (ML-FNDF, 9.47%), middle high FNDF (MH-FNDF, 12.48%), and high FNDF (H-FNDF, 15.68%), while the RDS levels (15.65% of DM on average) were similar among the four groups. A replicated 4 × 4 Latin square design was employed in this study. The results indicated that mean and minimum ruminal pH increased linearly with increasing dietary FNDF content, while the duration and area of pH under 5.8 and 5.6, along with the acidosis index, reduced linearly (p ≤ 0.002). There were no differences between the MH-FNDF group and the H-FNDF group in these indicators (p > 0.05). The molar proportions of acetate, butyrate, isobutyrate, and isovalerate, as well as the acetate-to-propionate ratio, increased linearly, while propionate and valerate molar proportions and lactate concentration displayed a linear decrease with increasing FNDF content in the diet (p < 0.001). Increasing dietary FNDF content extended ruminating and chewing time while enhancing ruminal microbial diversity, promoting the proliferation of Fibrobacterota and Butyrivibrio in the rumen, and improving fiber degradability (p < 0.05). When the dietary FNDF content exceeded 12.48%, no effects of FNDF on acetate to propionate ratio and fiber utilization were observed (p > 0.05). The results suggest that augmenting FNDF content in the PTMR can reshape ruminal fermentation towards acetate production and promote rumination to enhance ruminal pH, thereby alleviating the risk of ruminal acidosis. When the RDS content in the PTMR was 15.57%, an FNDF content of 12.48% was optimal for maintaining stable ruminal function in sheep, and the recommended ratio of FNDF to RDS was 0.8. Full article
Show Figures

Figure 1

10 pages, 3939 KiB  
Article
Optimizing the Morphology and Optical Properties of MoS2 Using Different Substrate Placement: Numerical Simulation and Experimental Verification
by Feng Liao, Yuhan Zeng, Qingqing Xie, Yupeng Yang, Shuangyi Linghu, Li Liang and Zewen Zuo
Crystals 2025, 15(1), 59; https://doi.org/10.3390/cryst15010059 - 8 Jan 2025
Viewed by 848
Abstract
The prerequisite for rapid and steady development of TMDC-based optoelectronic devices is high efficiency in materials preparation, which relies on a mature synthesis technique and optimized production conditions. Visualization based on numerical simulation, which illustrates the impact of growth parameters on deposited products, [...] Read more.
The prerequisite for rapid and steady development of TMDC-based optoelectronic devices is high efficiency in materials preparation, which relies on a mature synthesis technique and optimized production conditions. Visualization based on numerical simulation, which illustrates the impact of growth parameters on deposited products, is helpful to understand formation mechanisms and modify growth conditions. In this work, we construct two models with two different substrate placements, where the substrate is parallel or perpendicular to gas flow direction. The simulation results show more velocity distribution uniformity across a wider range from −1.4 cm to 1.4 cm for vertically placed (VP) compared to horizontally placed (HP) substrates. The calculated average velocities of 0.048, 0.053, 0.078, 0.137, and 0.391 cm/s along five different positions on the VP substrate are greater than the values of 0.027, 0.026, 0.025, 0.023, and 0.036 cm/s on the HP substrate. Comparing the precursor concentration distributions on both substrates, it is observed that the S molar concentration gradient on both substrates is negligible and the uniform Mo molar concentrations from z = −1.4 cm to 2.0 cm on the VP substrate ensure minimal change in the S/Mo ratio, which contributes to forming single-morphology domains. Furthermore, increasing the distance between the precursor inlets and the VP substrate decreases the amount of molecules on the substrate surface, achieving near-stoichiometry and promoting monolayer deposition. This is verified by the experimental result, which showed gentle morphological transformation on the VP substrate from a truncated triangle to a hexagon, and then back to a truncated triangle. By contrast, the multi-morphology and thickness of MoS2 on the HP substrate result from the complex Mo concentration along the flow direction. Moreover, PL intensities of the MoS2 domains deposited on the VP substrate are enhanced by 11.9-fold compared to the average intensity on the HP substrate. This result indicates the MoS2 grown on the VP substrate has less intrinsic defects than that grown on the HP substrate. The combination of numerical simulation with experimental methods facilitates the visualization of invisible growth conditions, which provides effective guidance for using simulation results for other TMDC materials. Full article
Show Figures

Figure 1

18 pages, 3436 KiB  
Article
Degradation of Hydroxychloroquine from Aqueous Solutions Under Fenton-Assisted Electron Beam Treatment
by Stephen Kabasa, Shizong Wang, Yongxia Sun, Jianlong Wang and Sylwester Bulka
Processes 2024, 12(12), 2860; https://doi.org/10.3390/pr12122860 - 13 Dec 2024
Cited by 4 | Viewed by 1021
Abstract
Challenges in the treatment and removal of recalcitrant emerging organic pollutants in wastewater prompt the development of advanced oxidative processes (AOPs). Hydroxyl radicals are non-specific and capable of reacting with a diverse range of pollutants of emerging concern. In this study, hydroxychloroquine (HCQ) [...] Read more.
Challenges in the treatment and removal of recalcitrant emerging organic pollutants in wastewater prompt the development of advanced oxidative processes (AOPs). Hydroxyl radicals are non-specific and capable of reacting with a diverse range of pollutants of emerging concern. In this study, hydroxychloroquine (HCQ) was removed from aqueous solutions with removal efficiencies between 80 and 90%. The presence of H2O2, humic acid, and other inorganic ions negatively influenced the degradation efficiency. However, the presence of S2O82− was found to increase the removal efficiency, which was attributed to the formation of SO4•− in addition to •OH radicals. Additionally, Fenton-assisted electron beam treatment showed an improved removal of 2.88 × 10−4 M of HCQ with an average improvement of ≈10% at doses between 0.5 to 2.0 kGy in addition to the total organic carbon and chemical oxygen demand reduction. The H2O2 concentration and molar ratio of H2O2: Fe2+ influenced the removal capacity of the Fenton-assisted electron beam process. A degradation mechanism for HCQ has been proposed based on the reactions of •OH radicals and eaq. Full article
Show Figures

Figure 1

17 pages, 2391 KiB  
Article
Elemental Distribution in Tissues of Shorthorn Sculpins (Myoxocephalus scorpius) from Kongsfjorden in Svalbard
by Francisco Ardini, Federico Moggia, Davide Di Blasi, Paola Rivaro, Marco Grotti and Laura Ghigliotti
J. Mar. Sci. Eng. 2024, 12(12), 2245; https://doi.org/10.3390/jmse12122245 - 6 Dec 2024
Cited by 1 | Viewed by 921
Abstract
The shorthorn sculpin (Myoxocephalus scorpius) is considered a suitable sentinel species for marine pollution in the Arctic due to its ecology and stationary habits. To evaluate its role as a bioindicator for potential natural and anthropic impacts on the marine ecosystem [...] Read more.
The shorthorn sculpin (Myoxocephalus scorpius) is considered a suitable sentinel species for marine pollution in the Arctic due to its ecology and stationary habits. To evaluate its role as a bioindicator for potential natural and anthropic impacts on the marine ecosystem of the Kongsfjorden (Svalbard, Norwegian Arctic), 33 female and male specimens of shorthorn sculpins were collected in July 2018 in proximity of the Ny-Ålesund international research facility and analyzed for the content of 25 major and trace elements and methylmercury (MeHg) in the muscle, liver, gonads, and gills by using spectroscopic techniques. Most elements had their maximum average concentrations in the gills (Al, Cr, Fe, Mn, Na, Ni, Pb, Se, Si, Sr, and V), while the livers featured higher contents of some toxic and heavy metals (As, Cd, Cu, Mo, and Zn). The muscle was characterized by high contents of Ca, K, and Mg, while Ba, Co, and P were mostly concentrated in the gonads. The gonads presented higher concentrations of Cr, K, Mg, Ni, P, and V for the males and Co, Cu, Fe, Mn, and Se for the females. Both the total Hg and MeHg concentrations in the muscle correlated with the fish size, indicating bioaccumulation, although high Se/Hg molar ratios (11.0 ± 2.2) suggested a low toxic potential of mercury. Full article
(This article belongs to the Special Issue Chemical Contamination on Coastal Ecosystems—Edition II)
Show Figures

Figure 1

20 pages, 4386 KiB  
Article
Effect of Dietary Concentrate-to-Forage Ratios During the Cold Season on Slaughter Performance, Meat Quality, Rumen Fermentation and Gut Microbiota of Tibetan Sheep
by Shijia Wang, Wenhui Tang, Ting Jiang, Ru Wang, Ruoxi Zhang, Jingyu Ou, Qiangjun Wang, Xiao Cheng, Chunhuan Ren, Jiahong Chen, Yafeng Huang and Zijun Zhang
Animals 2024, 14(22), 3305; https://doi.org/10.3390/ani14223305 - 17 Nov 2024
Cited by 3 | Viewed by 1495
Abstract
This study aimed to investigate the effects of different dietary concentrate-to-forage ratios on slaughter performance, meat quality, rumen fermentation, rumen microbiota and fecal microbiota in Tibetan sheep. A total of sixty male Tibetan sheep were equally allocated into three dietary groups based on [...] Read more.
This study aimed to investigate the effects of different dietary concentrate-to-forage ratios on slaughter performance, meat quality, rumen fermentation, rumen microbiota and fecal microbiota in Tibetan sheep. A total of sixty male Tibetan sheep were equally allocated into three dietary groups based on concentrate-to-forage ratios, i.e., 30:70 (C30), 50:50 (C50), and 70:30 (C70). Compared with the C30 group, sheep fed the C70 diet resulted in a higher (p < 0.05) slaughter live weight (SLW), hot carcass weight (HCW), dressing percentage (DP), eye muscle area, average daily gain (ADG), and ruminal total volatile fatty acids concentration and propionate molar proportion and lower (p < 0.05) shear force and cooking loss of meat, and ruminal acetate molar proportion and acetate:propionate ratio. Sheep in the C50 group exhibited a higher (p < 0.05) SLW, HCW, ADG, and ruminal propionate molar proportion and lower (p < 0.05) shear force and cooking loss of meat, and ruminal acetate molar proportion and acetate: propionate ratio compared with the C30 group. In rumen fluid, the relative abundance of Butyrivibrio was lower (p = 0.031) in the C30 group, and that of Ruminococcus was higher (p = 0.003) in the C70 group compared with the C50 group. In feces, genus Monoglobus and UCG_002 were the most abundant in the C30 group (p < 0.05), and the relative abundance of Prevotella was significantly higher in the C70 group than in other groups (p = 0.013). Correlation analysis revealed possible links between slaughter performance and meat quality and altered microbiota composition in the rumen and feces of Tibetan sheep. Overall, feeding a C70 diet resulted in superior carcass characteristics and meat quality in Tibetan sheep, thus laying a theoretical basis for the application of short-term remote feeding during the cold season. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

19 pages, 2015 KiB  
Article
A Comparison of Growth Performance, Blood Parameters, Rumen Fermentation, and Bacterial Community of Tibetan Sheep When Fattened by Pasture Grazing versus Stall Feeding
by Huiying Ji, Lili Chen, Yi Ma, Abraham Allan Degen, Zhengrong Yuan, Hualong Chen and Jianwei Zhou
Microorganisms 2024, 12(10), 1967; https://doi.org/10.3390/microorganisms12101967 - 28 Sep 2024
Cited by 2 | Viewed by 1500
Abstract
Traditionally, Tibetan sheep only graze pastures without any supplementary feed. However, in recent years, feedlots are being used for fattening Tibetan sheep. The present study compared the growth rates, blood parameters, rumen fermentation, and bacterial communities in Tibetan sheep fattened by pasture grazing [...] Read more.
Traditionally, Tibetan sheep only graze pastures without any supplementary feed. However, in recent years, feedlots are being used for fattening Tibetan sheep. The present study compared the growth rates, blood parameters, rumen fermentation, and bacterial communities in Tibetan sheep fattened by pasture grazing (PG) versus those fattened by stall feeding (SF). Twenty 18-month-old Tibetan sheep wethers (42.6 ± 2.11 kg) were divided randomly into PG (n = 10) and SF (n = 10) groups. The PG sheep grazed the grasslands without any supplementary feed, while the SF sheep were offered a commercial total mixed ration (TMR) at a crude protein content of 16.2% DM and an ME of 10.59 MJ/kg. The sheep were on their treatments for 70 days, which included 10 days for adaptation and 60 days for measurements. The average daily gain, white blood cell and lymphocyte counts were greater (p < 0.05), while the platelet count was lower (p < 0.05) in the SF group than in the PG group. The serum glutathione peroxidase activity, and concentrations of total proteins and albumin were greater (p < 0.05), while glucose was lower (p < 0.01) in the PG group compared to the SF group. The concentrations of ruminal ammonia–N and total volatile fatty acids (VFAs) were greater (p < 0.05), while the pH was lower (p < 0.05) in the SF group compared to the PG group. The molar proportion of acetate and the ratio of acetate to propionate were greater (p < 0.01) in the PG sheep than in the SF sheep, but the molar proportion of propionate and iso-VFAs did not differ (p > 0.05) between the groups. Based on the PCoA, the ruminal bacterial communities were distinct between groups, and the alpha diversity was greater (p < 0.001) in the PG sheep than in the SF sheep. The dominant phyla of the rumen bacteria were Firmicutes and Bacteroidetes, while the Firmicutes to Bacteroidetes ratio was greater (p < 0.001) in the SF group than in the PG group. At the genus level, the relative abundance of Ruminococcus was greater (p < 0.05) in the SF group, while the abundances of Prevotella, the Rikenellaceae_RC9_gut_group, Butyrivibrio, and unclassified_f_Lachnospiraceae were greater (p < 0.05) in the PG group. It was concluded that the Tibetan sheep adopted a short-term intensive fattening strategy when stall fed which altered the rumen bacterial community and blood parameters, enhanced rumen fermentation, and, ultimately, improved their average daily gain. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

20 pages, 3351 KiB  
Article
Potential Bioactivities, Chemical Composition, and Conformation Studies of Exopolysaccharide-Derived Aspergillus sp. Strain GAD7
by Mohamed I. A. Ibrahim, Hassan A. H. Ibrahim, Tatsuki Haga, Atsuhiko Ishida, Tatsuo Nehira, Koichi Matsuo and Ahmed M. Gad
J. Fungi 2024, 10(9), 659; https://doi.org/10.3390/jof10090659 - 19 Sep 2024
Cited by 2 | Viewed by 1514
Abstract
This research identified a marine fungal isolate, Aspergillus sp. strain GAD7, which produces an acidic and sulfated extracellular polysaccharide (EPS) with notable anticoagulant and antioxidant properties. Six fungal strains from the Egyptian Mediterranean Sea were screened for EPS production, with Aspergillus sp. strain [...] Read more.
This research identified a marine fungal isolate, Aspergillus sp. strain GAD7, which produces an acidic and sulfated extracellular polysaccharide (EPS) with notable anticoagulant and antioxidant properties. Six fungal strains from the Egyptian Mediterranean Sea were screened for EPS production, with Aspergillus sp. strain GAD7 (EPS-AG7) being the most potent, yielding ~5.19 ± 0.017 g/L. EPS-AG7 was characterized using UV-Vis and FTIR analyses, revealing high carbohydrate (87.5%) and sulfate (24%) contents. HPLC and GC-MS analyses determined that EPS-AG7 is a heterogeneous acidic polysaccharide with an average molecular weight (Mw¯) of ~7.34 × 103 Da, composed of mannose, glucose, arabinose, galacturonic acid, galactose, and lyxose in a molar ratio of 6.6:3.9:1.8:1.3:1.1:1.0, linked through α- and β-glycosidic linkages as confirmed by NMR analysis. EPS-AG7 adopted a triple helix-like conformation, as evidenced by UV-Vis (Congo Red experiment) and circular dichroism (CD) studies. This helical arrangement demonstrated stability under various experimental conditions, including concentration, ionic strength, temperature, and lipid interactions. EPS-AG7 exhibited significant anticoagulant activity, doubling blood coagulation time at a concentration of 3.0 mg/mL, and showed significant antioxidant activity, with scavenging activities reaching up to 85.90% and 58.64% in DPPH and ABTS+ assays at 5.0 mg/mL, and EC50 values of 1.40 mg/mL and 3.80 mg/mL, respectively. These findings highlight the potential of EPS-AG7 for therapeutic applications due to its potent biological activities. Full article
Show Figures

Figure 1

14 pages, 4219 KiB  
Article
Comparative Analysis of Heavy Metal Content in Impacted Third Molars from Industrial and Non-Industrial Areas and Its Effect on the Isolation, Culture, and Proliferation of Dental Stem Cells (DSCs)
by Benita Wiatrak, Sadri Rayad, Tomasz Gębarowski, Jakub Hadzik, Marzena Styczyńska, Tomasz Gedrange, Maciej Dobrzyński, Ewa Barg and Marzena Dominiak
J. Clin. Med. 2024, 13(18), 5465; https://doi.org/10.3390/jcm13185465 - 14 Sep 2024
Cited by 1 | Viewed by 1481
Abstract
Background: This study investigates the impact of environmental pollution on the quality and viability of dental stem cells (DSCs) from impacted third molars. By comparing DSCs from patients in industrial areas with high air pollution and those from non-industrial regions, the research [...] Read more.
Background: This study investigates the impact of environmental pollution on the quality and viability of dental stem cells (DSCs) from impacted third molars. By comparing DSCs from patients in industrial areas with high air pollution and those from non-industrial regions, the research assesses the adverse effects of heavy metals on stem cell proliferation. Methods: Impacted lower third molars were collected from 28 patients—10 from industrial and 18 from non-industrial areas. Patients were divided into two age groups: 18–27 years and 28–38 years old. Dental pulp was extracted under sterile conditions, and DSCs were isolated and cultured. Heavy metal concentrations in dental tissues were measured using atomic absorption/emission spectrometry. Results: The study found significantly higher concentrations of copper and lead in the dental tissues of patients in industrial areas. Cell viability was lower in samples from these areas, with a statistically significant difference in average doubling time and the number of cells obtained after the first passage. There was no significant impact of gender on heavy metal content, except for higher iron levels in men. Conclusions: Exposure to industrial pollutants negatively affects the viability and proliferation of DSCs, but there are no differences in differentiation in the osteogenic medium regarding cell mineralization. These studies highlight the importance of environmental factors for oral health, suggesting that residents of polluted areas may face greater difficulties in dental and regenerative treatments. Further research is needed to develop strategies to mitigate the effects and improve clinical outcomes for affected populations. Full article
(This article belongs to the Special Issue Clinical Research of Novel Therapeutic Approaches in Dentistry)
Show Figures

Figure 1

20 pages, 2549 KiB  
Article
Autocatalytic Acetylation of Crude Glycerol Using Acetic Acid: A Kinetic Model
by Federico M. Perez, Francisco Pompeo, Gerardo F. Santori and Martín N. Gatti
Reactions 2024, 5(3), 472-491; https://doi.org/10.3390/reactions5030025 - 9 Aug 2024
Cited by 2 | Viewed by 2113
Abstract
The aim of this work was to develop a kinetic model based on the power law to describe the evolution of glycerol conversion and product distribution in the crude glycerol (G) acetylation reaction with acetic acid (AA) without the use of a catalyst. [...] Read more.
The aim of this work was to develop a kinetic model based on the power law to describe the evolution of glycerol conversion and product distribution in the crude glycerol (G) acetylation reaction with acetic acid (AA) without the use of a catalyst. For this purpose, experimental tests were carried out with analytical glycerol under different reaction conditions (T = 80–160 °C, AA/G = 1–9 molar ratio, t = 0.25–2 h). The results showed the formation of mono- (MAG), di- (DAG) and tri- (TAG) acetylglycerols, liquid products with multiple applications in the chemical industry. From these results, a kinetic model based on the power law was implemented, which could acceptably estimate the experimental concentrations with an average relative error of 14.9%. Then, crude glycerol samples from different biodiesel industries were characterized by identifying and quantifying the impurities present in them (H2O, CH3OH, NaOH, NaCOOH, MONG and NaCl), and employed as reactants in the reaction tests. Given the significant differences observed in the glycerol conversion values compared to those obtained with analytical glycerol, further reaction tests were conducted to elucidate the effect of each impurity over the glycerol conversion. In these tests, the different impurities were added individually, maintaining the same concentration range as that of the crude glycerol samples. From the results obtained, global activity factors were introduced, which allowed us to modify the kinetic model to estimate glycerol conversions in the crude glycerol samples with an average relative error of 7%. It is hoped that this kinetic model will be a powerful tool useful for designing reactors on an industrial scale. Full article
Show Figures

Figure 1

15 pages, 6830 KiB  
Article
High-Sensitivity Differential Sensor for Characterizing Complex Permittivity of Liquids Based on LC Resonators
by Zhongjun Li, Shuang Tian, Jiaxin Tang, Weichao Yang, Tao Hong and Huacheng Zhu
Sensors 2024, 24(15), 4877; https://doi.org/10.3390/s24154877 - 27 Jul 2024
Cited by 1 | Viewed by 1342
Abstract
This paper proposes a high-sensitivity microstrip differential sensor for measuring the complex permittivity of liquids. The prototype of the differential sensor was formed by cascading two LC resonators on a microstrip transmission line based on stepped impedance. A strong electric field was found [...] Read more.
This paper proposes a high-sensitivity microstrip differential sensor for measuring the complex permittivity of liquids. The prototype of the differential sensor was formed by cascading two LC resonators on a microstrip transmission line based on stepped impedance. A strong electric field was found to be distributed in the circular patch of the LC resonator; therefore, a cylindrical micropore was set in the center of the circular LC resonator to measure the dielectric sample, which maximized the disturbance of the dielectric sample on the sensor. By optimizing the size of the circular LC resonator, a high-sensitivity sensor circuit was designed and manufactured. The complex permittivity of the test sample was calculated by measuring the transmission coefficient of different molar concentrations of ethanol–water solutions. The experimental results show that the designed differential sensor can accurately measure the complex permittivity of liquid materials with an average sensitivity of 0.76%. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

17 pages, 2649 KiB  
Article
Thermodynamic Modeling and Optimization of Biomass and Bio-Renewable Organic Source Gasification in Supercritical Water Using Gibbs Free Energy Minimization
by Zohre Moravvej, Zohreh Bazargani and Feridun Esmaeilzadeh
Water 2024, 16(15), 2123; https://doi.org/10.3390/w16152123 - 26 Jul 2024
Cited by 2 | Viewed by 1707
Abstract
The supercritical water gasification (SCWG) of different kinds of feed including glycerol, lignin, humic acid, and ethylene glycol is investigated to predict product gas yields using a non-stoichiometric thermodynamic model. This model employs Gibbs free energy minimization, coupled with the penalty method as [...] Read more.
The supercritical water gasification (SCWG) of different kinds of feed including glycerol, lignin, humic acid, and ethylene glycol is investigated to predict product gas yields using a non-stoichiometric thermodynamic model. This model employs Gibbs free energy minimization, coupled with the penalty method as an optimization method. The results demonstrate excellent prediction accuracy for hydrogen yield, with average absolute relative deviations (AARDs) of 2.70%, 11.23%, and 0.17% for glycerol, humic acid, and ethylene glycol, respectively. Lignin prediction showed a higher AARD of 25.95%. Furthermore, the penalty method exhibited superior performance compared to the Lagrange method, achieving a reduction in error ranging from 66% to 88%. Moreover, the effect of reaction temperature and feed concentration on the molar gas yields was elucidated. This study establishes that the penalty method within the thermodynamic model effectively predicts product gas yields from biomass and bio-renewable feedstocks, with deviations below 10%. The developed thermodynamic model provides a reliable method for optimizing gasification processes, potentially improving the efficiency and accuracy of hydrogen production from diverse biomass and bio-renewable resources. This advancement supports the reduction in greenhouse gas emissions and promotes the use of sustainable energy sources. Full article
Show Figures

Figure 1

19 pages, 9277 KiB  
Article
Bioactivity and Antibacterial Analysis of Plasticized PLA Electrospun Fibers Reinforced with MgO and Mg(OH)2 Nanoparticles
by Adrián Leonés, Valentina Salaris, Laura Peponi, Marcela Lieblich, Alexandra Muñoz-Bonilla, Marta Fernández-García and Daniel López
Polymers 2024, 16(12), 1727; https://doi.org/10.3390/polym16121727 - 18 Jun 2024
Cited by 7 | Viewed by 1608
Abstract
In this work, we focused on the bioactivity and antibacterial behavior of PLA-based electrospun fibers, efibers, reinforced with both MgO and Mg(OH)2 nanoparticles, NPs. The evolution of PLA-based efibers was followed in terms of morphology, FTIR, XRD, and visual appearance. The bioactivity [...] Read more.
In this work, we focused on the bioactivity and antibacterial behavior of PLA-based electrospun fibers, efibers, reinforced with both MgO and Mg(OH)2 nanoparticles, NPs. The evolution of PLA-based efibers was followed in terms of morphology, FTIR, XRD, and visual appearance. The bioactivity was discussed in terms of hydroxyapatite growth after 28 days, considered as T28, of immersion in simulated body fluid, SBF. In particular, the biomineralization process evidenced after immersion in SBF started at T14 in both systems. The number of precipitated crystals increased by increasing the amount of both NPs. The chemical composition of the precipitated crystals was also characterized in terms of the Ca/P molar ratio after T28 of immersion in SBF, indicating the presence of hydroxyapatite on the surface of both reinforced efibers. Moreover, a reduction in the average diameter of the PLA-based efibers was observed, reaching a maximum reduction of 46 and 60% in the average diameter of neat PLA and PLA:OLA efibers, respectively, after 28 days of immersion in SBF. The antibacterial behavior of the MgO and Mg(OH)2 NPs in the PLA-based electrospun fibers was tested against Escherichia coli, E. coli, as the Gram-negative bacteria, and Staphylococcus aureus, S. aureus, as the Gram-positive bacteria, obtaining the best antibacterial activity against the Gram-negative bacteria E. coli of 21 ± 2% and 34 ± 6% for the highest concentration of MgO and Mg(OH)2 NPs, respectively. Full article
(This article belongs to the Special Issue Organic-Inorganic Hybrid Materials III)
Show Figures

Figure 1

Back to TopTop