Degradation of Hydroxychloroquine from Aqueous Solutions Under Fenton-Assisted Electron Beam Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analytical Techniques
2.3. Radiation Processing
3. Results and Discussion
3.1. Degradation of HCQ Under EB Irradiation
3.1.1. Dose Effects on the Degradation of HCQ
3.1.2. HCQ Degradation Under •OH, eaq−, H•, and Aerated Conditions
3.1.3. Effects of Inorganic Ions, H2O2, and Humic Acid
3.2. Degradation of HCQ by Fenton Oxidation
3.3. Degradation of HCQ by Fenton-Assisted EB Process
4. Degradation Evaluation of HCQ Under Fenton-Assisted EB Process
4.1. Changes in pH During HCQ Removal
4.2. Cl− Generation
4.3. Nitrogen
4.4. Chemical Oxygen Demand
4.5. Degradation Products of HCQ Degradation Under EB Irradiation
4.6. Degradation Mechanism for HCQ
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tarazona, J.V.; Martínez, M.; Martínez, M.A.; Anadón, A. Environmental impact assessment of COVID-19 therapeutic solutions. A prospective analysis. Sci. Total Environ. 2021, 778, 146257. [Google Scholar] [CrossRef]
- Kumar, S.; Pratap, B.; Dubey, D.; Kumar, A.; Shukla, S.; Dutta, V. Constructed wetlands for the removal of pharmaceuticals and personal care products (PPCPs) from wastewater: Origin, impacts, treatment methods, and SWOT analysis. Environ. Monit. Assess. 2022, 194, 1–16. [Google Scholar] [CrossRef]
- Merma Chacca, D.E.; Maldonado, I.; Vilca, F.Z. Environmental and ecotoxicological effects of drugs used for the treatment of COVID 19. Front. Environ. Sci. 2022, 10, 1287. [Google Scholar] [CrossRef]
- Monsef, R.; Salavati-Niasari, M. Electrochemical sensor based on a chitosan-molybdenum vanadate nanocomposite for detection of hydroxychloroquine in biological samples. J. Colloid. Interface Sci. 2022, 613, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pushpanjali, P.A.; Manjunatha, J.G.; Hareesha, N.; Girish, T.; Al-Kahtani, A.A.; Tighezza, A.M.; Ataollahi, N. Electrocatalytic Determination of Hydroxychloroquine Using Sodium Dodecyl Sulphate Modified Carbon Nanotube Paste Electrode. Top Catal. 2022, 1, 1–9. [Google Scholar] [CrossRef]
- Dabić, D.; Babić, S.; Škorić, I. The role of photodegradation in the environmental fate of hydroxychloroquine. Chemosphere 2019, 230, 268–277. [Google Scholar] [CrossRef]
- Sayed, A.E.D.H.; Hamed, M.; Soliman, H.A.M. Spirulina platensis Alleviated the Hemotoxicity, Oxidative Damage and Histopathological Alterations of Hydroxychloroquine in Catfish (Clarias gariepinus). Front. Physiol. 2021, 12, 881. [Google Scholar] [CrossRef] [PubMed]
- da Luz, T.M.; da Araújo, C.A.P.; Estrela, F.N.; Braz, H.L.B.; Jorge, R.J.B.; Charlie-Silva, I.; Malafaia, G. Can use of hydroxychloroquine and azithromycin as a treatment of COVID-19 affect aquatic wildlife? A study conducted with neotropical tadpole. Sci. Total Environ. 2021, 780, 146553. [Google Scholar] [CrossRef] [PubMed]
- Derendorf, H. Excessive lysosomal ion-trapping of hydroxychloroquine and azithromycin. Int. J. Antimicrob. Agents 2020, 55, 106007. [Google Scholar] [CrossRef]
- Alves da Silva, A.E.; de Abreu, P.M.B.; Geraldes, D.C.; de Oliveira Nascimento, L. Hydroxychloroquine: Pharmacological, physicochemical aspects and activity enhancement through experimental formulations. J. Drug. Deliv. Sci. Technol. 2021, 63, 102512. [Google Scholar] [CrossRef]
- Kabasa, S.; Sun, Y.; Bułka, S.; Chmielewski, A.G. Degradation of hydroxychloroquine in aqueous solutions under electron beam treatment. Nukleonika 2024, 69, 65–74. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Chen, C.; Hu, J.; He, S.; Zhou, Y.; Zhu, H.; Wang, X.; Hu, D.; Lin, J. Treatment of hospital wastewater by electron beam technology: Removal of COD, pathogenic bacteria and viruses. Chemosphere 2022, 308, 136265. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Chen, C.; He, S.; Hu, J.; Zhang, Y. First full-scale application of electron beam technology for treating dyeing wastewater (30,000 m3/d) in China. Radiat. Phys. Chem. 2022, 196, 110136. [Google Scholar] [CrossRef]
- Zaouak, A.; Jebali, S.; Chouchane, H.; Jelassi, H. Impact of gamma-irradiation on the degradation and mineralization of hydroxychloroquine aqueous solutions. Int. J. Environ. Sci. Technol. 2022, 20, 6815–6824. [Google Scholar] [CrossRef]
- Boujelbane, F.; Nasr, K.; Sadaoui, H.; Bui, H.M.; Gantri, F.; Mzoughi, N. Decomposition mechanism of hydroxychloroquine in aqueous solution by gamma irradiation. Chem. Pap. 2022, 76, 1777–1787. Available online: https://link.springer.com/article/10.1007/s11696-021-01969-1 (accessed on 27 October 2022). [CrossRef] [PubMed]
- Bracamontes-Ruelas, A.R.; Reyes-Vidal, Y.; Irigoyen-Campuzano, J.R.; Reynoso-Cuevas, L. Simultaneous Oxidation of Emerging Pollutants in Real Wastewater by the Advanced Fenton Oxidation Process. Catalysts 2023, 13, 748. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J. Electron Beam Technology Coupled to Fenton Oxidation for Advanced Treatment of Dyeing Wastewater: From Laboratory to Full Application. ACS ES&T Water 2022, 2, 852–862. [Google Scholar] [CrossRef]
- Bensalah, N.; Midassi, S.; Ahmad, M.I.; Bedoui, A. Degradation of hydroxychloroquine by electrochemical advanced oxidation processes. Chem. Eng. J. 2020, 402, 126279. [Google Scholar] [CrossRef]
- Rath, M.C.; Keny, S.J.; Upadhyaya, H.P.; Adhikari, S. Free radical induced degradation and computational studies of hydroxychloroquine in aqueous solution. Radiat. Phys. Chem. 2023, 206, 110785. [Google Scholar] [CrossRef]
- Zhao, N.N.; Ding, L.; Bei, H.F.; Zheng, S.Y.; Han, B. The role of dissolved oxygen in Fenton system. IOP Conf. Ser. Earth Environ. Sci. 2018, 012084. [Google Scholar] [CrossRef]
- Bettoli, M.G.; Ravanelli, M.; Tositti, L.; Tubertini, O.; Guzzi, L.; Martinotti, W.; Queirazza, G.; Tamba, M. Radiation induced decomposition of halogenated organic compounds in water. Radiat. Phys. Chem. 1998, 52, 327–331. [Google Scholar] [CrossRef]
- Marussi, G.; Vione, D. Secondary formation of aromatic nitroderivatives of environmental concern: Photonitration processes triggered by the photolysis of nitrate and nitrite ions in aqueous solution. Molecules 2021, 26, 2550. [Google Scholar] [CrossRef]
- Wu, Y.; Bu, L.; Duan, X.; Zhu, S.; Kong, M.; Zhu, N.; Zhou, S. Mini review on the roles of nitrate/nitrite in advanced oxidation processes: Radicals transformation and products formation. J. Clean. Prod. 2020, 273, 123065. [Google Scholar] [CrossRef]
- Yamamoto, Y.I.; Suzuki, T. Ultrafast Dynamics of Water Radiolysis: Hydrated Electron Formation, Solvation, Recombination, and Scavenging. J. Phys. Chem. Lett. 2020, 11, 5510–5516. [Google Scholar] [CrossRef] [PubMed]
- Chappuis, F.; Grilj, V.; Tran, H.N.; Zein, S.A.; Bochud, F.; Bailat, C.; Incerti, S.; Desorgher, L. Modeling of scavenging systems in water radiolysis with Geant4-DNA. Phys. Medica 2023, 108, 102549. [Google Scholar] [CrossRef]
- Hiroki, A.; Pimblott, S.M.; Laverne, J.A. Hydrogen peroxide production in the radiolysis of water with high radical scavenger concentrations. J. Phys. Chem. A 2002, 106, 9352–9358. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, J.; Wang, J. Fe2+ enhancing sulfamethazine degradation in aqueous solution by gamma irradiation. Radiat. Phys. Chem. 2014, 96, 81–87. [Google Scholar] [CrossRef]
- Vione, D.; Falletti, G.; Maurino, V.; Minero, C.; Pelizzetti, E.; Malandrino, M.; Ajassa, R.; Olariu, R.I.; Arsene, C. Sources and sinks of hydroxyl radicals upon irradiation of natural water samples. Environ. Sci. Technol. 2006, 40, 3775–3781. [Google Scholar] [CrossRef]
- Khan, J.A.; Shah, N.S.; Khan, H.M. Decomposition of atrazine by ionizing radiation: Kinetics, degradation pathways and influence of radical scavengers. Sep. Purif. Technol. 2015, 156, 140–147. [Google Scholar] [CrossRef]
- Zhuan, R.; Wang, J. Degradation of diclofenac in aqueous solution by ionizing radiation in the presence of humic acid. Sep. Purif. Technol. 2020, 234, 116079. [Google Scholar] [CrossRef]
- Wang, N.; Zheng, T.; Zhang, G.; Wang, P. A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng. 2016, 4, 762–787. [Google Scholar] [CrossRef]
- Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes—A review. Chemosphere 2017, 174, 665–688. [Google Scholar] [CrossRef] [PubMed]
- Bojanowska-Czajka, A. Application of radiation technology in removing endocrine micropollutants from waters and wastewaters—A review. Appl. Sci. 2021, 11, 12032. [Google Scholar] [CrossRef]
- Bojanowska-Czajka, A. Decomposition of diclofenac in sewage from municipal wastewater treatment plant using ionizing radiation. Nukleonika 2021, 66, 201–206. [Google Scholar] [CrossRef]
- Kovács, K.; He, S.; Mile, V.; Csay, T.; Takács, E. Wojnárovits, Ionizing radiation induced degradation of diuron in dilute aqueous solution. Chem. Cent. J. 2015, 9, 1–10. [Google Scholar] [CrossRef]
- Jung, Y.S.; Lim, W.T.; Park, J.Y.; Kim, Y.H. Effect of pH on Fenton and Fenton-like oxidation. Environ. Technol. 2009, 30, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, K.; Kopinke, F.D.; Remmler, M. Reductive destruction of halogenated hydrocarbons in liquids and solids with solvated electrons. Chemosphere 1996, 33, 1495–1513. [Google Scholar] [CrossRef]
- Wu, M.; Shi, W.; Wang, Y.; Jiao, Z.; Wang, J.; Ding, G.; Fu, J. Degradation of halogenated benzenes in solution by electron beam irradiation method. Environ. Technol. 2009, 30, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Perrone, L.; Prati, L.; Rossi, M. Removal of chlorinated organic compounds from water by catalytic dehydrohalogenation. Appl. Catal. B 1998, 15, 241–246. [Google Scholar] [CrossRef]
- Makarov, I.E.; Ponomarev, A.V. Radiation-Induced Degradation of Organic Compounds and Radiation Technologies for Purification of Aqueous Systems. Ioniz. Radiat. Eff. Appl. 2018, 83–112. [Google Scholar] [CrossRef]
- Babić, S.; Dabić, D.; Ćurković, L. Fate of hydroxychloroquine in the aquatic environment. In Proceedings of the 15th International Conference on Environmental Science and Technology, Rhodes, Greece, 31 August–2 September 2017; pp. 1–5. [Google Scholar]
- Santos-Juanes, L.; Sánchez, J.L.G.; López, J.L.C.; Oller, I.; Malato, S.; Pérez, J.A.S. Dissolved oxygen concentration: A key parameter in monitoring the photo-Fenton process. Appl. Catal. B 2011, 104, 316–323. [Google Scholar] [CrossRef]
- Saim, S.; Behira, B. Impact of Chloroquine as treatment of pandemic COVID-19 on environment. Mater. Biomater. Sci. 2021, 4, 100–105. [Google Scholar]
- Saini, B.; Bansal, G. Characterization of four new photodegradation products of hydroxychloroquine through LC-PDA, ESI-MSn and LC-MS-TOF studies. J. Pharm. Biomed. Anal. 2013, 84, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Tønnesen, H.H.; Grislingaas, A.L.; Woo, S.O.; Karlsen, J. Photochemical stability of antimalarial. I. Hydroxychloroquine. Int. J. Pharm. 1988, 43, 215–219. [Google Scholar] [CrossRef]
- Xu, D.; Pan, F.; Ruan, H.; Sun, N. A study of impurities in the repurposed COVID-19 drug hydroxychloroquine sulfate using ultra-high-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry and liquid chromatography-solid-phase extraction-nuclear magnetic resonance. Rapid Commun. Mass Spectrom. 2022, 36, e9358. [Google Scholar] [CrossRef] [PubMed]
- Reuschenbach, P.; Silvani, M.; Dammann, M.; Warnecke, D.; Knacker, T. ECOSAR model performance with a large test set of industrial chemicals. Chemosphere 2008, 71, 1986–1995. [Google Scholar] [CrossRef]
- Sanches-Neto, F.O.; Coutinho, N.D.; Aquilanti, V.; Silva, W.A.; Carvalho-Silva, V.H. Mechanism and Kinetics of the Degradation of Nitazoxanide and Hydroxychloroquine Drugs by Hydroxyl Radicals: Theoretical Approach to Ecotoxicity. J. Braz. Chem. Soc. 2023, 34, 1119–1129. [Google Scholar] [CrossRef]
- Nicolaescu, A.R.; Wiest, O.; Kamat, P.V. Radical-induced oxidative transformation of quinoline. J. Phys. Chem. A 2003, 107, 427–433. [Google Scholar] [CrossRef]
- Han, B.; Kim, J.; Kim, Y.; Choi, J.S.; Makarov, I.E.; Ponomarev, A.V. Electron beam treatment of textile dyeing wastewater: Operation of pilot plant and industrial plant construction. Water Sci. Technol. 2005, 52, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Kim, J.K.; Kim, Y.; Choi, J.S.; Jeong, K.Y. Operation of industrial-scale electron beam wastewater treatment plant. Radiat. Phys. Chem. 2012, 81, 1475–1478. [Google Scholar] [CrossRef]
- Kurucz, C.N.; Waite, T.D.; Cooper, W.J. The Miami Electron Beam Research Facility: A large scale wastewater treatment application. Radiat. Phys. Chem. 1995, 45, 299–308. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, S.; Chen, W.; Lin, J.; Yu, X.; Feng, M.; Wan, K. Removal of Per-and Polyfluoroalkyl Substances by Electron Beam and Plasma Irradiation: A Mini-Review. Water 2022, 14, 1684. [Google Scholar] [CrossRef]
Dose (kGy) | NO3− (mg/L) | NH4+ (mg/L) | TKN (mg/L) | TOC (mg/L) | COD (mg/L) | |||||
---|---|---|---|---|---|---|---|---|---|---|
EB | EB-F | EB | EB-F | EB | EB-F | EB | EB-F | EB | EB-F | |
0 | 0 | 0 | 0 | 0 | 11.08 | 11.9 | 73.50 | 73.50 | 149.00 | 149.00 |
0.5 | 5.99 | 0.82 | 0.24 | 2.04 | 5.70 | 6.64 | 69.75 | 64.00 | 145.67 | 112.00 |
1 | 6.79 | 8.36 | 0.42 | 2.66 | 5.17 | 3.76 | 69 | 62.33 | 144.67 | 107.67 |
2 | 7.68 | 8.4 | 0.65 | 2.84 | 4.04 | 4.16 | 66.25 | 59.88 | 136 | 106.67 |
4 | 8.16 | 8.88 | 0.65 | 2.81 | 3.36 | 4.16 | 68.9 | 59.60 | 136.67 | 105.67 |
7 | 8.48 | 9.22 | 1.05 | 2.79 | 2.65 | 3.66 | 68.67 | 59.42 | 136.67 | 103.33 |
m/z | Chemical Formula | Fragment | Retention Time (min) |
---|---|---|---|
336 | C18H26ClN3O | [M+H]+ | 1.41 |
370 | C18H26ClN3O3 | M + 2OH | 1.1 |
352 | C18H27ClN3O2 | M + OH | 8.39 |
334 | C18H26N3O3 | M + 2OH − Cl | 1.36 |
308 | C16H21ClN3O | M − CH2CH3 | 1.87 |
175 | C₉H21N2O | M − C₉H8NCl | 1.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabasa, S.; Wang, S.; Sun, Y.; Wang, J.; Bulka, S. Degradation of Hydroxychloroquine from Aqueous Solutions Under Fenton-Assisted Electron Beam Treatment. Processes 2024, 12, 2860. https://doi.org/10.3390/pr12122860
Kabasa S, Wang S, Sun Y, Wang J, Bulka S. Degradation of Hydroxychloroquine from Aqueous Solutions Under Fenton-Assisted Electron Beam Treatment. Processes. 2024; 12(12):2860. https://doi.org/10.3390/pr12122860
Chicago/Turabian StyleKabasa, Stephen, Shizong Wang, Yongxia Sun, Jianlong Wang, and Sylwester Bulka. 2024. "Degradation of Hydroxychloroquine from Aqueous Solutions Under Fenton-Assisted Electron Beam Treatment" Processes 12, no. 12: 2860. https://doi.org/10.3390/pr12122860
APA StyleKabasa, S., Wang, S., Sun, Y., Wang, J., & Bulka, S. (2024). Degradation of Hydroxychloroquine from Aqueous Solutions Under Fenton-Assisted Electron Beam Treatment. Processes, 12(12), 2860. https://doi.org/10.3390/pr12122860