Thermodynamic Modeling and Optimization of Biomass and Bio-Renewable Organic Source Gasification in Supercritical Water Using Gibbs Free Energy Minimization
Abstract
:1. Introduction
2. Thermodynamic Models and Methods
Chemical Equilibrium
3. Validation of the Model
4. Results and Discussion
4.1. SCWG of Glycerol
4.1.1. Effect of Temperature on the Gas Yields
4.1.2. Effect of Concentration of Solution on the Gas Yields
Temperature T (°C) | Glycerol Concentration (wt.%) | H2 Yield a (mol gas/mol Glycerol) | H2 Yield— This Work (mol gas/mol Glycerol) | ARD b % | Temperature T (°C) | Glycerol Concentration (wt.%) | H2 Yield a (mol gas/mol Glycerol) | H2 Yield— This Work (mol gas/mol Glycerol) | ARD b % |
---|---|---|---|---|---|---|---|---|---|
800 | 5 | 6.5 | 6.46 | 0.6 | 750 | 2.5 | 5.8 | 5.79 | 0.1 |
800 | 15 | 4.1 | 4.16 | 1.4 | 750 | 5 | 6.10 | 6.02 | 1.3 |
800 | 20 | 3.9 | 3.87 | 0.7 | 750 | 15 | 4.40 | 4.30 | 2.2 |
800 | 30 | 2.9 | 2.86 | 1.3 | 750 | 30 | 2.60 | 2.48 | 4.6 |
800 | 35 | 2.6 | 2.53 | 2.6 | --- | --- | --- | --- | --- |
800 | 40 | 2.2 | 2.14 | 2.7 | --- | --- | --- | --- | --- |
AARD c | 1.6 | AARD c | 2.0 |
Temperature T (°C) | Glycerol Concentration (wt.%) | H2 Yield a (mol gas/mol Glycerol) | H2 Yield— This Work (mol gas/mol Glycerol) | ARD b % | Temperature T (°C) | Glycerol Concentration (wt.%) | H2 Yield a (mol gas/mol Glycerol) | H2 Yield— This Work (mol gas/mol Glycerol) | ARD b % |
---|---|---|---|---|---|---|---|---|---|
800 | 5 | 6.52 | 6.49 | 0.4 | 600 | 5 | 3.27 | 3.27 | 0.0 |
800 | 10 | 5.27 | 5.08 | 3.6 | 600 | 10 | 2.02 | 2.01 | 0.4 |
800 | 20 | 3.36 | 3.11 | 7.4 | 600 | 20 | 1.08 | 1.07 | 0.9 |
800 | 30 | 2.37 | 2.15 | 9.2 | 600 | 30 | 0.77 | 0.72 | 6.4 |
AARD c | 5.1 | AARD c | 1.9 |
4.2. Comparison of the Optimization Methods
4.3. SCWG of Lignin
4.4. SCWG of Humic Acid
Effect of Temperature on the Gas Yields
4.5. SCWG of Ethylene Glycol
Effect of Concentration of Solution on the Gas Yields
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadrul Islam, A.; Ahiduzzaman, M. Biomass energy: Sustainable solution for greenhouse gas emission. AIP Conf. Proc. 2012, 1440, 23–32. [Google Scholar]
- Ramli, A.N.; Jamek, S.; Azelee, N.I.; Manas, N.H.; Munir, N.; Patil, R. Agriculture Biomass Characterization and Exploitation. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Rasouli, J.; Zandifar, A.; Rasouli, K.; Sabbaghi, S.; Esmaeilzadeh, F.; Shah, M.; Ansari, K.B. High-efficiency ternary CeO2/WO3/AC photocatalyst supported by biomass waste-derived activated carbon for efficient doxycycline photodegradation: Optimization of synthesis conditions and operational parameters. Mater. Res. Bull. 2024, 178, 112874. [Google Scholar] [CrossRef]
- Moravvej, Z.; Makarem, M.A.; Rahimpour, M.R. The fourth generation of biofuel. In Second and Third Generation of Feedstocks; Elsevier: Amsterdam, The Netherlands, 2019; pp. 557–597. [Google Scholar]
- Moravvej, Z.; Soroush, E.; Makarem, M.A.; Rahimpour, M.R. Thermochemical routes for hydrogen production from biomass. In Advances in Bioenergy and Microfluidic Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 193–208. [Google Scholar]
- Moravvej, Z.; Tabrizi, F.F.; Rahimpour, M.; Vakylabad, A.B. Exploiting the potential of cobalt molybdenum catalyst in elevated hydrodeoxygenation of furfural to 2-methyl furan. Fuel 2023, 332, 126193. [Google Scholar] [CrossRef]
- Bakhtyari, A.; Sakhayi, A.; Moravvej, Z.; Rahimpour, M.R. Converting cyclohexanone to liquid fuel-grade products: A characterization and comparison study of hydrotreating molybdenum catalysts. Catal. Lett. 2021, 151, 3343–3360. [Google Scholar] [CrossRef]
- Makarem, M.A.; Moravvej, Z.; Rahimpour, M.R.; Vakylabad, A.B. Biofuel production from microalgae and process enhancement by metabolic engineering and ultrasound. In Advances in Bioenergy and Microfluidic Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 209–230. [Google Scholar]
- Mansoorsamaei, Z.; Mowla, D.; Esmaeilzadeh, F.; Dashtian, K. Sustainable biodiesel production from waste cooking oil using banana peel biochar-Fe2O3/Fe2K6O5 magnetic catalyst. Fuel 2024, 357, 129821. [Google Scholar] [CrossRef]
- Matsumura, Y.; Minowa, T.; Potic, B.; Kersten, S.R.; Prins, W.; van Swaaij, W.P.; van de Beld, B.; Elliott, D.C.; Neuenschwander, G.G.; Kruse, A. Biomass gasification in near-and super-critical water: Status and prospects. Biomass Bioenergy 2005, 29, 269–292. [Google Scholar] [CrossRef]
- Kruse, A.; Gawlik, A. Biomass conversion in water at 330−410 C and 30− 50 MPa. Identification of key compounds for indicating different chemical reaction pathways. Ind. Eng. Chem. Res. 2003, 42, 267–279. [Google Scholar] [CrossRef]
- Zandifar, A.; Esmaeilzadeh, F.; Rodríguez-Mirasol, J. Hydrogen-rich gas production via supercritical water gasification (SCWG) of oily sludge over waste tire-derived activated carbon impregnated with Ni: Characterization and optimization of activated carbon production. Environ. Pollut. 2024, 342, 123078. [Google Scholar] [CrossRef] [PubMed]
- Savage, P.E. Organic chemical reactions in supercritical water. Chem. Rev. 1999, 99, 603–622. [Google Scholar] [CrossRef]
- de Oliveira, J.F.; Corazza, M.L.; Voll, F.A. Thermodynamic Analysis of Municipal Solid Waste Gasification under Isothermal and Adiabatic Conditions by a Gibbs Free Energy Minimization Model. Waste Biomass Valorization 2018, 10, 1383–1393. [Google Scholar] [CrossRef]
- Shaw, R.W. Supercritical water a medium for chemistry. Chem. Eng. News 1991, 69, 26–39. [Google Scholar]
- Ghasemi, M.N.; Esmaeilzadeh, F.; Mowla, D.; Elhambakhsh, A. Treatment of methyldiethanolamine wastewater using subcritical and supercritical water oxidation: Parameters study, process optimization and degradation mechanism. Environ. Sci. Pollut. Res. 2022, 29, 57688–57702. [Google Scholar] [CrossRef] [PubMed]
- Ramezanzadeh, S.; Esmaeilzadeh, F.; Mowla, D.; Elhambakhsh, A.; Kanani, M. Insight into the application of supercritical water oxidation for dichlorvos degradation: Experimental and simulation aspects. Environ. Technol. 2023, 44, 4113–4122. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Matsugami, M.; Harano, Y.; Nishikawa, K.; Hirata, F. Structure and properties of supercritical water: Experimental and theoretical characterizations. J 2021, 4, 698–726. [Google Scholar] [CrossRef]
- Aghamohammadi, N.; Esmaeilzadeh, F.; Mowla, D.; Elhambakhsh, A. Oxidation of 2, 6-dimethyl phenol in supercritical water: Experimental and molecular dynamics simulation study. Int. J. Environ. Sci. Technol. 2023, 20, 551–564. [Google Scholar] [CrossRef]
- Elliott, D.C.; Phelps, M.; Sealock, L.J.; Baker, E.G. Chemical processing in high-pressure aqueous environments. 4. Continuous-flow reactor process development experiments for organics destruction. Ind. Eng. Chem. Res. 1994, 33, 566–574. [Google Scholar] [CrossRef]
- Lu, Y.; Guo, L.; Zhang, X.; Yan, Q. Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water. Chem. Eng. J. 2007, 131, 233–244. [Google Scholar] [CrossRef]
- Williams, P.T.; Onwudili, J. Composition of products from the supercritical water gasification of glucose: A model biomass compound. Ind. Eng. Chem. Res. 2005, 44, 8739–8749. [Google Scholar] [CrossRef]
- Barba, D.; Prisciandaro, M.; Salladini, A.; Di Celso, G.M. The gibbs free energy gradient method for RDF gasification modelling. Fuel 2011, 90, 1402–1407. [Google Scholar] [CrossRef]
- Kangas, P.; Hannula, I.; Koukkari, P.; Hupa, M. Modelling super-equilibrium in biomass gasification with the constrained Gibbs energy method. Fuel 2014, 129, 86–94. [Google Scholar] [CrossRef]
- Begum, S.; Rasul, M.; Akbar, D.; Ramzan, N. Performance analysis of an integrated fixed bed gasifier model for different biomass feedstocks. Energies 2013, 6, 6508–6524. [Google Scholar] [CrossRef]
- Yan, Q.; Guo, L.; Lu, Y. Thermodynamic analysis of hydrogen production from biomass gasification in supercritical water. Energy Convers. Manag. 2006, 47, 1515–1528. [Google Scholar] [CrossRef]
- Fiaschi, D.; Michelini, M. A two-phase one-dimensional biomass gasification kinetics model. Biomass Bioenergy 2001, 21, 121–132. [Google Scholar] [CrossRef]
- Giltrap, D.; McKibbin, R.; Barnes, G. A steady state model of gas-char reactions in a downdraft biomass gasifier. Sol. Energy 2003, 74, 85–91. [Google Scholar] [CrossRef]
- Di Blasi, C. Dynamic behaviour of stratified downdraft gasifiers. Chem. Eng. Sci. 2000, 55, 2931–2944. [Google Scholar] [CrossRef]
- Bacon, D.; Downie, J.; Hsu, J.; Peters, J. Modelling of fluidized bed wood gasifiers. In Fundamentals of Thermochemical Biomass Conversion; Springer: Berlin/Heidelberg, Germany, 1985; pp. 717–732. [Google Scholar]
- Double, J.; Smith, E. Computer Modelling of Fluidised Gasification in Pyrolysis and Gasification; Ferraro, G.L., Maniatis, K., Buekens, A., Bridgwater, A.V., Eds.; Elsevier Applied Science: London, UK, 1989. [Google Scholar]
- Jarungthammachote, S.; Dutta, A. Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy 2007, 32, 1660–1669. [Google Scholar] [CrossRef]
- Jarungthammachote, S.; Dutta, A. Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers. Energy Convers. Manag. 2008, 49, 1345–1356. [Google Scholar] [CrossRef]
- Brown, D.; Fuchino, T.; Maréchal, F. Solid fuel decomposition modelling for the design of biomass gasification systems. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2006; Volume 21, pp. 1661–1666. [Google Scholar]
- Guo, B.; Li, D.; Cheng, C.; Lü, Z.-A.; Shen, Y. Simulation of biomass gasification with a hybrid neural network model. Bioresour. Technol. 2001, 76, 77–83. [Google Scholar] [CrossRef]
- Aspen Plus, version 2006; Aspen Technology Inc.: Cambridge, MA, USA, 2006.
- Li, X.; Grace, J.; Watkinson, A.; Lim, C.; Ergüdenler, A. Equilibrium modeling of gasification: A free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel 2001, 80, 195–207. [Google Scholar] [CrossRef]
- Li, X.; Grace, J.; Lim, C.; Watkinson, A.; Chen, H.; Kim, J. Biomass gasification in a circulating fluidized bed. Biomass Bioenergy 2004, 26, 171–193. [Google Scholar] [CrossRef]
- Schuster, G.; Löffler, G.; Weigl, K.; Hofbauer, H. Biomass steam gasification–an extensive parametric modeling study. Bioresour. Technol. 2001, 77, 71–79. [Google Scholar] [CrossRef]
- Mozafari, A.; Tabrizi, F.F.; Farsi, M.; Mousavi, S.A.H.S. Thermodynamic modeling and optimization of thermolysis and air gasification of waste tire. J. Anal. Appl. Pyrolysis 2017, 126, 415–422. [Google Scholar] [CrossRef]
- Edgar, T.F.; Himmelblau, D.M.; Lasdon, L.S. Optimization of Chemical Processes. 2001. Available online: https://cir.nii.ac.jp/crid/1130282270768160896 (accessed on 12 June 2024).
- Tang, H.; Kitagawa, K. Supercritical water gasification of biomass: Thermodynamic analysis with direct Gibbs free energy minimization. Chem. Eng. J. 2005, 106, 261–267. [Google Scholar] [CrossRef]
- Voll, F.; Rossi, C.; Silva, C.; Guirardello, R.; Souza, R.; Cabral, V.; Cardozo-Filho, L. Thermodynamic analysis of supercritical water gasification of methanol, ethanol, glycerol, glucose and cellulose. Int. J. Hydrog. Energy 2009, 34, 9737–9744. [Google Scholar] [CrossRef]
- Poling, B.E.; Prausnitz, J.M.; O’connell, J.P. The Properties of Gases and Liquids; Mcgraw-Hill: New York, NY, USA, 2001; Volume 5. [Google Scholar]
- Byrd, A.J.; Pant, K.; Gupta, R.B. Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst. Fuel 2008, 87, 2956–2960. [Google Scholar] [CrossRef]
- Ortiz, F.G.; Campanario, F.; Aguilera, P.; Ollero, P. Hydrogen production from supercritical water reforming of glycerol over Ni/Al2O3–SiO2 catalyst. Energy 2015, 84, 634–642. [Google Scholar] [CrossRef]
- Furusawa, T.; Sato, T.; Sugito, H.; Miura, Y.; Ishiyama, Y.; Sato, M.; Itoh, N.; Suzuki, N. Hydrogen production from the gasification of lignin with nickel catalysts in supercritical water. Int. J. Hydrogen Energy 2007, 32, 699–704. [Google Scholar] [CrossRef]
- Gong, M.; Nanda, S.; Romero, M.J.; Zhu, W.; Kozinski, J.A. Subcritical and supercritical water gasification of humic acid as a model compound of humic substances in sewage sludge. J. Supercrit. Fluids 2017, 119, 130–138. [Google Scholar] [CrossRef]
- De Vlieger, D.; Chakinala, A.; Lefferts, L.; Kersten, S.R.; Seshan, K.; Brilman, D.W.F. Hydrogen from ethylene glycol by supercritical water reforming using noble and base metal catalysts. Appl. Catal. B Environ. 2012, 111, 536–544. [Google Scholar] [CrossRef]
- Aleosfoor, A.; Rahimpour, M.R. Highly dispersed copper on biochar carbon as a promising catalyst for reverse water gas shift reaction. J. Energy Inst. 2024, 115, 101680. [Google Scholar] [CrossRef]
- Kiani, M.R.; Kamandi, R.; Nozarian, K.; Rahimpour, M.R. Introducing a novel catalyst for efficient conversion of CO2 into syngas through reverse-water-gas-shift (RWGS) reactions based on highly mesoporous structures MCM-41: Influence of the Fe incorporation. Energy Convers. Manag. 2024, 304, 118247. [Google Scholar] [CrossRef]
- Mohandessi, M.; Rahimpour, M.R. Bio-template fabrication of nanoporous Ni@ Al2O3: Durable catalyst for biogas reforming reaction. Ceram. Int. 2023, 49, 7476–7488. [Google Scholar] [CrossRef]
- Mohandessi, M.; Tavakolian, M.; Rahimpour, M.R. Cadmium as a robust and novel promoter over Ni@ γ-Al2O3 catalysts in dry methane reforming. ACS Appl. Energy Mater. 2023, 6, 8209–8220. [Google Scholar] [CrossRef]
- Mohandessi, M.; Kiani, M.R.; Yousefi, S.; Rahimpour, M.R. Tuning the basicity of the Ni@ MCM-41 catalyst via alkaline earth metal oxide promoters for CO 2 reforming of CH 4. React. Chem. Eng. 2023, 8, 1349–1361. [Google Scholar] [CrossRef]
- Xue, E.; O’Keeffe, M.; Ross, J. Water-gas shift conversion using a feed with a low steam to carbon monoxide ratio and containing sulphur. Catal. Today 1996, 30, 107–118. [Google Scholar] [CrossRef]
- Castello, D.; Fiori, L. Supercritical water gasification of biomass: Thermodynamic constraints. Bioresour. Technol. 2011, 102, 7574–7582. [Google Scholar] [CrossRef] [PubMed]
- Sannigrahi, P.; Pu, Y.; Ragauskas, A. Cellulosic biorefineries—Unleashing lignin opportunities. Curr. Opin. Environ. Sustain. 2010, 2, 383–393. [Google Scholar] [CrossRef]
- Brix, K.V.; Esbaugh, A.J.; Grosell, M. The toxicity and physiological effects of copper on the freshwater pulmonate snail, Lymnaea stagnalis. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2011, 154, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Yong, E.; Brucal, S.G.; Samaniego, L.; Peruda, S.; Reyes, J.C.D.; Dulfo, P.C.; Gecale, G.M.; Mabborang, E.A. Development of an Incubator System for Polyethylene plastic-eating Wax Worm in Tropical Weather Condition. In Proceedings of the 2022 IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Boracay, Philippines, 1–4 December 2022; pp. 1–6. [Google Scholar]
Feed Concentration | Experimental Mole Fraction a % | Lagrange Method b | ARD c % | Penalty Method | ARD c % |
---|---|---|---|---|---|
5 | 70.00 | 69.04 | 1.6 | 69.88 | 0.4 |
15 | 57.90 | 60.74 | 5.0 | 58.20 | 0.6 |
20 | 53.50 | 55.73 | 3.9 | 53.24 | 0.6 |
30 | 47.20 | 47.05 | 0.4 | 46.88 | 0.7 |
35 | 46.50 | 43.19 | 7.0 | 45.91 | 1.2 |
40 | 42.20 | 39.72 | 5.9 | 41.58 | 1.5 |
AARD d | 4.0 | 0.8 |
Feed Concentration | Experimental Mole Fraction a % | Lagrange Method b | ARD c % | Penalty Method | ARD c % |
---|---|---|---|---|---|
5 | 1.10 | 0.21 | 80.9 | 0.74 | 32.7 |
15 | 0.60 | 0.52 | 13.3 | 1.54 | 15.6 |
20 | 2.20 | 0.58 | 73.6 | 1.91 | 13.1 |
30 | 3.20 | 0.71 | 77.8 | 2.59 | 23.5 |
35 | 3.80 | 0.75 | 80.2 | 2.74 | 27.8 |
40 | 4.30 | 0.79 | 81.6 | 3.28 | 23.7 |
AARD d | 67.9 | 22.7 |
Feed Concentration | Experimental Mole Fraction a % | Lagrange Method b | ARD c % | Penalty Method | ARD c % |
---|---|---|---|---|---|
5 | 3.70 | 0.19 | 95.0 | 3.92 | 6.0 |
15 | 10.70 | 6.75 | 37.0 | 10.11 | 6.0 |
20 | 11.50 | 10.41 | 9.0 | 11.70 | 2.0 |
30 | 15.60 | 17.55 | 12.0 | 16.01 | 3.0 |
35 | 16.80 | 20.44 | 22.0 | 17.54 | 4.0 |
40 | 18.90 | 23.14 | 22.0 | 19.63 | 4.0 |
AARD d | 33.0 | 4.0 |
Feed Concentration | Experimental Mole Fraction a % | Lagrange Method b | ARD c % | Penalty Method | ARD c % |
---|---|---|---|---|---|
5 | 25.20 | 28.54 | 13.2 | 25.45 | 0.9 |
15 | 30.90 | 27.96 | 9.5 | 30.15 | 2.4 |
20 | 32.90 | 28.15 | 14.4 | 33.15 | 0.7 |
30 | 34.00 | 28.73 | 15.4 | 34.53 | 1.5 |
35 | 32.90 | 28.73 | 12.6 | 33.81 | 2.7 |
40 | 34.60 | 29.12 | 15.8 | 35.50 | 2.6 |
AARD d | 13.5 | 1.8 |
Temperature T (°C) | H2 Yield a (mol gas/mol Lignin) | H2 Yield—This Work (mol gas/mol Lignin) | ARD b % |
---|---|---|---|
600 | 5.46 × 10−5 | 1.36 × 10−5 | 74.8 |
700 | 0.00047 | 0.00049 | 4.2 |
800 | 0.00019 | 0.0002 | 5.2 |
900 | 0.000092 | 0.00011 | 19.5 |
AARD c | 25.9 |
Temperature T (°C) | H2 Yield a (mol gas/mol Humic Acid) | H2 Yield—This Work (mol gas/mol Humic Acid) | ARD b % |
---|---|---|---|
375 | 0.0424 | 0.0266 | 37.1 |
400 | 0.0894 | 0.0887 | 0.7 |
500 | 0.2541 | 0.2533 | 0.3 |
600 | 0.4235 | 0.452 | 6.7 |
AARD c | 11.2 |
Ethylene Glycol Con Centration (wt.%) | H2 Yield a (mol gas/mol Ethylene Glycol) | H2 Yield—This Work (mol gas/mol Ethylene Glycol) | ARD b % |
---|---|---|---|
5 | 0.6828 | 0.6831 | 0.0 |
10 | 0.3646 | 0.3649 | 0.0 |
15 | 0.2453 | 0.2456 | 0.1 |
20 | 0.179 | 0.1794 | 0.2 |
25 | 0.1525 | 0.1529 | 0.2 |
30 | 0.1127 | 0.1131 | 0.3 |
AARD c | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moravvej, Z.; Bazargani, Z.; Esmaeilzadeh, F. Thermodynamic Modeling and Optimization of Biomass and Bio-Renewable Organic Source Gasification in Supercritical Water Using Gibbs Free Energy Minimization. Water 2024, 16, 2123. https://doi.org/10.3390/w16152123
Moravvej Z, Bazargani Z, Esmaeilzadeh F. Thermodynamic Modeling and Optimization of Biomass and Bio-Renewable Organic Source Gasification in Supercritical Water Using Gibbs Free Energy Minimization. Water. 2024; 16(15):2123. https://doi.org/10.3390/w16152123
Chicago/Turabian StyleMoravvej, Zohre, Zohreh Bazargani, and Feridun Esmaeilzadeh. 2024. "Thermodynamic Modeling and Optimization of Biomass and Bio-Renewable Organic Source Gasification in Supercritical Water Using Gibbs Free Energy Minimization" Water 16, no. 15: 2123. https://doi.org/10.3390/w16152123
APA StyleMoravvej, Z., Bazargani, Z., & Esmaeilzadeh, F. (2024). Thermodynamic Modeling and Optimization of Biomass and Bio-Renewable Organic Source Gasification in Supercritical Water Using Gibbs Free Energy Minimization. Water, 16(15), 2123. https://doi.org/10.3390/w16152123