Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = autotaxin (ATX)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 516 KB  
Article
Effects of a Bioactive Vegetable-Enriched Diet on Autotaxin and Liver Fibrosis in MASLD with Evidence of Sex-Specific Responses: A Pilot Study
by Nicole Cerabino, Caterina Bonfiglio, Leonilde Bonfrate, Pasqua Letizia Pesole, Dolores Stabile, Endrit Shahini, Martina Di Chito, Giovanni De Pergola and Gianluigi Giannelli
Nutrients 2025, 17(23), 3676; https://doi.org/10.3390/nu17233676 - 24 Nov 2025
Viewed by 474
Abstract
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a frequent manifestation of obesity and other metabolic diseases. Autotaxin (ATX), an enzyme involved in the generation of lysophosphatidic acid (LPA), has recently emerged as a potential biomarker of metabolic inflammation and liver disease [...] Read more.
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a frequent manifestation of obesity and other metabolic diseases. Autotaxin (ATX), an enzyme involved in the generation of lysophosphatidic acid (LPA), has recently emerged as a potential biomarker of metabolic inflammation and liver disease progression. Vegetable-based dietary interventions have been shown to reduce liver steatosis, but evidence of the impact of this dietary approach on ATX levels remains limited. Objectives: To evaluate the short-term effects of a bioactive vegetable-enriched diet from the Brassicaceae and Asteraceae families on serum ATX levels and liver-related parameters in individuals with obesity and MASLD, with a specific focus on sex differences. Methods: In this two-month pilot study, 44 obese adults (BMI > 30 kg/m2) underwent clinical and instrumental assessments at baseline (T0) and after the dietary intervention (T1). Results: After the intervention, serum ATX levels significantly decreased (from 206.3 ± 52.8 to 191.7 ± 45.7 ng/mL, p < 0.001), and there were improvements in metabolic parameters (BMI, waist circumference, blood pressure, fat mass, insulin, HOMA-IR, triglycerides, total and LDL cholesterol) and liver indices (CAP, ALT, AST, γGT). The multivariate GEE model confirmed a significant reduction in ATX, independent of age, sex, FFM, LPA, LSM, Hemoglobin A1c, and PAI-1 (β = −9.87, p < 0.001). When stratified by sex, women exhibited a more pronounced reduction in ATX levels (β = −12.24; p = 0.005) compared to men (β = −9.43; p = 0.014). Conclusions: A short-term, vegetable-enriched dietary intervention can significantly reduce serum ATX levels and improve metabolic and liver-related parameters in individuals with MASLD. Sex-specific analysis reveals a greater ATX-lowering effect in women, suggesting potential sex-based differences in ATX metabolism or dietary responsiveness. These findings suggest that ATX may serve as a modifiable biomarker responsive to nutritional intervention and a potential therapeutic target in metabolic liver disease. Full article
(This article belongs to the Special Issue Nutritional and Metabolic Biomarkers in Obesity)
Show Figures

Figure 1

13 pages, 759 KB  
Article
Bone Marrow Mononuclear Cells Administration Restore Lysophosphatidic Acid (LPA) Levels and Cellular Signaling Axis in Rats Submitted to Renal Ischemia–Reperfusion
by Paula Mattos-Silva, Sabrina Ribeiro Gonsalez, Lucienne S. Lara and Marcelo Einicker-Lamas
Int. J. Mol. Sci. 2025, 26(18), 9186; https://doi.org/10.3390/ijms26189186 - 20 Sep 2025
Viewed by 697
Abstract
Bone marrow-derived mononuclear cells (BMMCs) have shown beneficial effects on tissue repair, largely attributed to the paracrine action of bioactive mediators such as lysophosphatidic acid (LPA). This study aimed to evaluate the effects of BMMC treatment in a rat model of renal ischemia/reperfusion [...] Read more.
Bone marrow-derived mononuclear cells (BMMCs) have shown beneficial effects on tissue repair, largely attributed to the paracrine action of bioactive mediators such as lysophosphatidic acid (LPA). This study aimed to evaluate the effects of BMMC treatment in a rat model of renal ischemia/reperfusion (I/R) injury, focusing on LPA-related molecular pathways. Male Wistar rats were divided into three groups: control; I/R, subjected to bilateral renal artery clamping for 30 min followed by 24 h of reperfusion; and I/R + BMMC, which received 1 × 106 BMMCs per kidney directly into the renal capsule post-ischemia. During reperfusion, the rats were placed in metabolic cages for urine collection, renal function and protein expression. BMMC treatment did not reverse the I/R-induced increase in urine volume or decrease in glomerular filtration rate, serum potassium, or filtered sodium load. However, it prevented proteinuria, increased blood urea nitrogen, and enhanced urinary potassium excretion. Mechanistically, BMMC treatment prevented I/R-induced upregulation of LPAR1, downregulated LPAR2 and LPAR3, restored plasma LPA levels, and reduced renal autotaxin content. These results suggest that BMMCs modulate harmful LPA-related signaling and may contribute to renal protection through paracrine mechanisms in the setting of acute I/R injury. Full article
(This article belongs to the Special Issue Bioactive Lipids and Their Derivatives in Biomedical Applications)
Show Figures

Figure 1

23 pages, 973 KB  
Review
Unraveling the Role of Autotaxin and Lysophosphatidic Acid in Alzheimer’s Disease: From Molecular Mechanisms to Therapeutic Potential
by Jesús García-de Soto, Mónica Castro-Mosquera, Jessica María Pouso-Diz, Alejandro Fernández-Cabrera, Mariña Rodríguez-Arrizabalaga, Manuel Debasa-Mouce, Javier Camino-Castiñeiras, Anxo Manuel Minguillón Pereiro, Marta Aramburu-Núñez, Daniel Romaus-Sanjurjo, José Manuel Aldrey, Robustiano Pego-Reigosa, Juan Manuel Pías-Peleteiro, Tomás Sobrino and Alberto Ouro
Int. J. Mol. Sci. 2025, 26(15), 7068; https://doi.org/10.3390/ijms26157068 - 23 Jul 2025
Viewed by 2112
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques, tau hyperphosphorylation, and chronic neuroinflammation. Emerging evidence suggests a crucial role of lipid signaling pathways in AD pathogenesis, particularly those mediated by autotaxin (ATX) and lysophosphatidic acid (LPA). [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques, tau hyperphosphorylation, and chronic neuroinflammation. Emerging evidence suggests a crucial role of lipid signaling pathways in AD pathogenesis, particularly those mediated by autotaxin (ATX) and lysophosphatidic acid (LPA). ATX, an enzyme responsible for LPA production, has been implicated in neuroinflammatory processes, blood–brain barrier dysfunction, and neuronal degeneration. LPA signaling, through its interaction with specific G-protein-coupled receptors, influences neuroinflammation, synaptic plasticity, and tau pathology, all of which contribute to AD progression. This review synthesizes recent findings on the ATX/LPA axis in AD, exploring its potential as a biomarker and therapeutic target. Understanding the mechanistic links between ATX, LPA, and AD pathology may open new avenues for disease-modifying strategies. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

15 pages, 263 KB  
Article
Biomarkers of Calcification, Endothelial Injury, and Platelet-Endothelial Interaction in Patients with Aortic Valve Stenosis
by Paweł Bańka, Klaudia Męcka, Adrianna Berger-Kucza, Karolina Wrona-Kolasa, Anna Rybicka-Musialik, Beata Nowak, Marek Elżbieciak, Magdalena Mizia-Szubryt, Wojciech Wróbel, Tomasz Francuz, Michał Lelek, Agnieszka Kosowska, Wojciech Garczorz, Tomasz Bochenek, Andrzej Swinarew, Jarosław Paluch, Maciej Wybraniec and Katarzyna Mizia-Stec
Int. J. Mol. Sci. 2025, 26(10), 4873; https://doi.org/10.3390/ijms26104873 - 19 May 2025
Cited by 2 | Viewed by 1369
Abstract
Aortic stenosis (AS) is a progressive valvular heart disease characterized by fibrocalcific remodeling, inflammation, and hemodynamic disturbances. Serum biomarkers may indirectly reflect these processes. Autotaxin (ATX) and lysophosphatidic acid (LPA) have been implicated in osteogenic differentiation of valvular interstitial cells, while growth differentiation [...] Read more.
Aortic stenosis (AS) is a progressive valvular heart disease characterized by fibrocalcific remodeling, inflammation, and hemodynamic disturbances. Serum biomarkers may indirectly reflect these processes. Autotaxin (ATX) and lysophosphatidic acid (LPA) have been implicated in osteogenic differentiation of valvular interstitial cells, while growth differentiation factor-15 (GDF-15) reflects cellular stress and vascular changes. Thrombomodulin (TM) indicates endothelial injury and interacts with thrombin. This study aimed to evaluate biomarkers focusing on serum ATX, LPA, GDF-15, and TM levels and flow-mediated dilatation (FMD) in patients with AS. Overall, 149 patients were included in the study: 86 consecutive patients with AS hospitalized due to qualification for invasive treatment of AS and 63 controls. The clinical characteristics, echocardiographic data, FMD, and the following biomarkers—ATX, LPA, GDF-15, and TM—were included in the analysis. AS patients presented increased serum levels of ATX, GDF-15, and TM as compared to the controls. Differences in LPA levels were not statistically significant. FMD values were significantly lower in AS patients. The biomarkers mentioned above and FMD correlated with AS severity. There were no differences in both biomarkers’ serum levels and FMD regarding the hemodynamic AS phenotype. GDF-15 serum level was a risk factor for all-cause mortality and MACCE in the 12-month follow-up. Full article
(This article belongs to the Special Issue Cardiovascular Diseases: From Pathology to Therapeutics)
21 pages, 7426 KB  
Article
Structure-Based Discovery of MolPort-137: A Novel Autotaxin Inhibitor That Improves Paclitaxel Efficacy
by Prateek Rai, Christopher J. Clark, Vandana Kardam, Carl B. Womack, Joshua Thammathong, Derek D. Norman, Gábor J. Tigyi, Kevin Bicker, April M. Weissmiller, Kshatresh Dutta Dubey and Souvik Banerjee
Int. J. Mol. Sci. 2025, 26(2), 597; https://doi.org/10.3390/ijms26020597 - 12 Jan 2025
Viewed by 2925
Abstract
The autotaxin–lysophosphatidic acid receptor (ATX-LPAR) signaling axis is pivotal in various clinical conditions, including cancer and autoimmune disorders. This axis promotes tumorigenicity by interacting with the tumor microenvironment, facilitating metastasis, and conceding antitumor immunity, thereby fostering resistance to conventional cancer therapies. Recent studies [...] Read more.
The autotaxin–lysophosphatidic acid receptor (ATX-LPAR) signaling axis is pivotal in various clinical conditions, including cancer and autoimmune disorders. This axis promotes tumorigenicity by interacting with the tumor microenvironment, facilitating metastasis, and conceding antitumor immunity, thereby fostering resistance to conventional cancer therapies. Recent studies highlight the promise of ATX/LPAR inhibitors in combination with conventional chemotherapeutic drugs to overcome some forms of this resistance, representing a novel therapeutic strategy. In the current study, we employed structure-based virtual screening, integrating pharmacophore modeling and molecular docking, to identify MolPort-137 as a novel ATX inhibitor with an IC50 value of 1.6 ± 0.2 μM in an autotaxin enzyme inhibition assay. Molecular dynamics simulations and binding free energy calculations elucidated the binding mode of MolPort-137 and its critical amino acid interactions. Remarkably, MolPort-137 exhibited no cytotoxicity as a single agent but enhanced the effectiveness of paclitaxel in 4T1 murine breast carcinoma cells and resensitized taxol-resistant cells to paclitaxel treatment, which highlights its potential in combination therapy. Full article
Show Figures

Graphical abstract

13 pages, 2241 KB  
Article
The Effect of Ionizing Irradiation on the Autotaxin-Lysophasphatidic Acid Axis and Interleukin-6/8 Secretion in Different Breast Cancer Cell Lines
by Theresa Promny, Isabell Scherrer, Sheetal Kadam, Rafael Schmid, Tina Jost, Luitpold V. Distel, Andreas Arkudas, Raymund E. Horch and Annika Kengelbach-Weigand
J. Pers. Med. 2024, 14(9), 968; https://doi.org/10.3390/jpm14090968 - 12 Sep 2024
Cited by 1 | Viewed by 1818
Abstract
Background: The Autotaxin (ATX)-lysophosphatidic acid (LPA) axis is involved in decreasing radiation sensitivity of breast tumor cells. This study aims to further elucidate the effect of irradiation on the ATX-LPA axis and cytokine secretion in different breast cancer cell lines to identify suitable [...] Read more.
Background: The Autotaxin (ATX)-lysophosphatidic acid (LPA) axis is involved in decreasing radiation sensitivity of breast tumor cells. This study aims to further elucidate the effect of irradiation on the ATX-LPA axis and cytokine secretion in different breast cancer cell lines to identify suitable breast cancer subtypes for targeted therapies. Methods: Different breast cancer cell lines (MCF-7 (luminal A), BT-474 (luminal B), SKBR-3 (HER2-positive), MDA-MB-231 and MDA-MB-468 (triple-negative)) and the breast epithelial cell line MCF-10A were irradiated. The influence of irradiation on LPA receptor (LPAR) expression, ATX expression, and Interleukin (IL)-6 and IL-8 secretion was analyzed. Further, the effect of IL-6 and IL-8 on ATX expression of adipose-derived stem cells (ADSC) was investigated. Results: Irradiation increased ATX and LPAR2 expression in MDA-MB-231 cells. Additionally, IL-6 secretion was enhanced in MDA-MB-231, and IL-8 secretion in MDA-MB-231 and MDA-MB-468. Stimulation of ADSC with IL-6 and IL-8 increased ATX expression in ADSC. Conclusions: Targeting ATX or its downstream signaling pathways might enhance the sensitivity of triple-negative breast cancer cells to radiation. Further exploration of the interplay between irradiation, the ATX-LPA axis, and inflammatory cytokines may elucidate novel pathways for overcoming radioresistance and improving individual treatment outcomes. Full article
Show Figures

Figure 1

22 pages, 6913 KB  
Article
Novel Autotaxin Inhibitor ATX-1d Significantly Enhances Potency of Paclitaxel—An In Silico and In Vitro Study
by Prateek Rai, Christopher J. Clark, Carl B. Womack, Curtis Dearing, Joshua Thammathong, Derek D. Norman, Gábor J. Tigyi, Subhabrata Sen, Kevin Bicker, April M. Weissmiller and Souvik Banerjee
Molecules 2024, 29(18), 4285; https://doi.org/10.3390/molecules29184285 - 10 Sep 2024
Viewed by 3322
Abstract
The development of drug resistance in cancer cells poses a significant challenge for treatment, with nearly 90% of cancer-related deaths attributed to it. Over 50% of ovarian cancer patients and 30–40% of breast cancer patients exhibit resistance to therapies such as Taxol. Previous [...] Read more.
The development of drug resistance in cancer cells poses a significant challenge for treatment, with nearly 90% of cancer-related deaths attributed to it. Over 50% of ovarian cancer patients and 30–40% of breast cancer patients exhibit resistance to therapies such as Taxol. Previous literature has shown that cytotoxic cancer therapies and ionizing radiation damage tumors, prompting cancer cells to exploit the autotaxin (ATX)–lysophosphatidic acid (LPA)–lysophosphatidic acid receptor (LPAR) signaling axis to enhance survival pathways, thus reducing treatment efficacy. Therefore, targeting this signaling axis has become a crucial strategy to overcome some forms of cancer resistance. Addressing this challenge, we identified and assessed ATX-1d, a novel compound targeting ATX, through computational methods and in vitro assays. ATX-1d exhibited an IC50 of 1.8 ± 0.3 μM for ATX inhibition and demonstrated a significant binding affinity for ATX, as confirmed by MM-GBSA, QM/MM-GBSA, and SAPT in silico methods. ATX-1d significantly amplified the potency of paclitaxel, increasing its effectiveness tenfold in 4T1 murine breast carcinoma cells and fourfold in A375 human melanoma cells without inducing cytotoxic effects as a single agent. Full article
Show Figures

Figure 1

26 pages, 2764 KB  
Review
Autotaxin–Lysophosphatidate Axis: Promoter of Cancer Development and Possible Therapeutic Implications
by Carmelo Laface, Angela Dalia Ricci, Simona Vallarelli, Carmela Ostuni, Alessandro Rizzo, Francesca Ambrogio, Matteo Centonze, Annalisa Schirizzi, Giampiero De Leonardis, Rosalba D’Alessandro, Claudio Lotesoriere and Gianluigi Giannelli
Int. J. Mol. Sci. 2024, 25(14), 7737; https://doi.org/10.3390/ijms25147737 - 15 Jul 2024
Cited by 12 | Viewed by 4554
Abstract
Autotaxin (ATX) is a member of the ectonucleotide pyrophosphate/phosphodiesterase (ENPP) family; it is encoded by the ENPP2 gene. ATX is a secreted glycoprotein and catalyzes the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is responsible for the transduction of various [...] Read more.
Autotaxin (ATX) is a member of the ectonucleotide pyrophosphate/phosphodiesterase (ENPP) family; it is encoded by the ENPP2 gene. ATX is a secreted glycoprotein and catalyzes the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is responsible for the transduction of various signal pathways through the interaction with at least six G protein-coupled receptors, LPA Receptors 1 to 6 (LPAR1–6). The ATX–LPA axis is involved in various physiological and pathological processes, such as angiogenesis, embryonic development, inflammation, fibrosis, and obesity. However, significant research also reported its connection to carcinogenesis, immune escape, metastasis, tumor microenvironment, cancer stem cells, and therapeutic resistance. Moreover, several studies suggested ATX and LPA as relevant biomarkers and/or therapeutic targets. In this review of the literature, we aimed to deepen knowledge about the role of the ATX–LPA axis as a promoter of cancer development, progression and invasion, and therapeutic resistance. Finally, we explored its potential application as a prognostic/predictive biomarker and therapeutic target for tumor treatment. Full article
(This article belongs to the Special Issue Molecular Mechanism of Anti-cancer Drugs)
Show Figures

Figure 1

11 pages, 1182 KB  
Review
Linking the Autotaxin-LPA Axis to Medicinal Cannabis and the Endocannabinoid System
by Mathias C. Eymery, Ahcène Boumendjel, Andrew A. McCarthy and Jens Hausmann
Int. J. Mol. Sci. 2024, 25(6), 3212; https://doi.org/10.3390/ijms25063212 - 12 Mar 2024
Cited by 1 | Viewed by 2470
Abstract
Over the past few decades, many current uses for cannabinoids have been described, ranging from controlling epilepsy to neuropathic pain and anxiety treatment. Medicines containing cannabinoids have been approved by both the FDA and the EMA for the control of specific diseases for [...] Read more.
Over the past few decades, many current uses for cannabinoids have been described, ranging from controlling epilepsy to neuropathic pain and anxiety treatment. Medicines containing cannabinoids have been approved by both the FDA and the EMA for the control of specific diseases for which there are few alternatives. However, the molecular-level mechanism of action of cannabinoids is still poorly understood. Recently, cannabinoids have been shown to interact with autotaxin (ATX), a secreted lysophospholipase D enzyme responsible for catalyzing lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a pleiotropic growth factor that interacts with LPA receptors. In addition, a high-resolution structure of ATX in complex with THC has recently been published, accompanied by biochemical studies investigating this interaction. Due to their LPA-like structure, endocannabinoids have been shown to interact with ATX in a less potent manner. This finding opens new areas of research regarding cannabinoids and endocannabinoids, as it could establish the effect of these compounds at the molecular level, particularly in relation to inflammation, which cannot be explained by the interaction with CB1 and CB2 receptors alone. Further research is needed to elucidate the mechanism behind the interaction between cannabinoids and endocannabinoids in humans and to fully explore the therapeutic potential of such approaches. Full article
Show Figures

Figure 1

18 pages, 3474 KB  
Article
Infliximab, a Monoclonal Antibody against TNF-α, Inhibits NF-κB Activation, Autotaxin Expression and Breast Cancer Metastasis to Lungs
by Anjali Shinde, Xiaoyun Tang, Rajesh Singh and David N. Brindley
Cancers 2024, 16(1), 52; https://doi.org/10.3390/cancers16010052 - 21 Dec 2023
Cited by 10 | Viewed by 3271
Abstract
An inflammatory milieu in the tumor microenvironment leads to immune evasion, resistance to cell death, metastasis and poor prognosis in breast cancer patients. TNF-α is a proinflammatory cytokine that regulates multiple aspects of tumor biology from initiation to progression. TNF-α-induced NF-κB activation initiates [...] Read more.
An inflammatory milieu in the tumor microenvironment leads to immune evasion, resistance to cell death, metastasis and poor prognosis in breast cancer patients. TNF-α is a proinflammatory cytokine that regulates multiple aspects of tumor biology from initiation to progression. TNF-α-induced NF-κB activation initiates inflammatory pathways, which determine cell survival, death and tumor progression. One candidate pathway involves the increased secretion of autotaxin, which produces lysophosphatidate that signals through six G-protein-coupled receptors. Significantly, autotaxin is one of the 40–50 most upregulated genes in metastatic tumors. In this study, we investigated the effects of TNF-α by blocking its action with a monoclonal antibody, Infliximab, and studied the effects on autotaxin secretion and tumor progression. Infliximab had little effect on tumor growth, but it decreased lung metastasis by 60% in a syngeneic BALB/c mouse model using 4T1 breast cancer cells. Infliximab-treated mice also showed a decrease in proliferation and metastatic markers like Ki-67 and vimentin in tumors. This was accompanied by decreases in NF-κB activation, autotaxin expression and the concentrations of plasma and tumor cytokines/chemokines which are involved in metastasis. We also demonstrated a positive correlation of TNF-α -NF-κB and ATX expression in breast cancer patients using cancer databases. Studies in vitro showed that TNF-α-induced NF-κB activation increases autotaxin expression and the clone forming ability of 4T1 breast cancer cells. This report highlights the potential role of Infliximab as an additional approach to attenuate signaling through the autotaxin–lysophosphatidate–inflammatory cycle and decrease mortality from metastatic cancer. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

10 pages, 3154 KB  
Article
The Effect of Anti-Autotaxin Aptamers on the Development of Proliferative Vitreoretinopathy
by Hirotsugu Hanazaki, Harumasa Yokota, Satoru Yamagami, Yoshikazu Nakamura and Taiji Nagaoka
Int. J. Mol. Sci. 2023, 24(21), 15926; https://doi.org/10.3390/ijms242115926 - 3 Nov 2023
Cited by 3 | Viewed by 1979
Abstract
This study investigated the effect of anti-autotaxin (ATX) aptamers on the development of proliferative vitreoretinopathy (PVR) in both in vivo and in vitro PVR swine models. For the in vitro study, primary retinal pigment epithelial (RPE) cells were obtained from porcine eyes and [...] Read more.
This study investigated the effect of anti-autotaxin (ATX) aptamers on the development of proliferative vitreoretinopathy (PVR) in both in vivo and in vitro PVR swine models. For the in vitro study, primary retinal pigment epithelial (RPE) cells were obtained from porcine eyes and cultured for cell proliferation and migration assays. For the in vivo study, a swine PVR model was established by inducing retinal detachment and injecting cultured RPE cells (2.0 × 106). Concurrently, 1 week after RPE cell injection, the anti-ATX aptamer, RBM-006 (10 mg/mL, 0.1 mL), was injected twice into the vitreous cavity. Post-injection effects of the anti-ATX aptamer on PVR development in the in vivo swine PVR model were investigated. For the in vitro evaluation, the cultured RPE cell proliferation and migration were significantly reduced at anti-ATX aptamer concentrations of 0.5–0.05 mg and at only 0.5 mg, respectively. Intravitreal administration of the anti-ATX aptamer also prevented tractional retinal detachment caused by PVR in the in vivo PVR model. We observed that the anti-ATX aptamer, RBM-006, inhibited PVR-related RPE cell proliferation and migration in vitro and inhibited the progression of PVR in the in vivo model, suggesting that the anti-ATX aptamer may be effective in preventing PVR. Full article
Show Figures

Figure 1

11 pages, 1053 KB  
Article
Lipoprotein(a) As a Potential Predictive Factor for Earlier Aortic Valve Replacement in Patients with Bicuspid Aortic Valve
by Aleksandra Krzesińska, Maria Nowak, Agnieszka Mickiewicz, Gabriela Chyła-Danił, Agnieszka Ćwiklińska, Olga M. Koper-Lenkiewicz, Joanna Kamińska, Joanna Matowicka-Karna, Marcin Gruchała, Maciej Jankowski, Marcin Fijałkowski and Agnieszka Kuchta
Biomedicines 2023, 11(7), 1823; https://doi.org/10.3390/biomedicines11071823 - 25 Jun 2023
Cited by 3 | Viewed by 2290
Abstract
Bicuspid aortic valve (BAV) affects 0.5–2% of the general population and constitutes the major cause of severe aortic valve stenosis (AVS) in individuals ≤70 years. The aim of the present study was to evaluate the parameters that may provide information about the risk [...] Read more.
Bicuspid aortic valve (BAV) affects 0.5–2% of the general population and constitutes the major cause of severe aortic valve stenosis (AVS) in individuals ≤70 years. The aim of the present study was to evaluate the parameters that may provide information about the risk of AVS developing in BAV patients, with particular emphasis on lipoprotein(a) (Lp(a)), which is a well-recognized risk factor for stenosis in the general population. We also analyzed the impact of autotaxin (ATX) and interleukin-6 (IL-6) as parameters potentially related to the pathomechanism of Lp(a) action. We found that high Lp(a) levels (>50 mg/dL) occurred significantly more frequently in patients with AVS than in patients without AVS, both in the group below and above 45 years of age (p = 0.036 and p = 0.033, respectively). Elevated Lp(a) levels were also strictly associated with the need for aortic valve replacement (AVR) at a younger age (p = 0.016). However, the Lp(a) concentration did not differ significantly between patients with and without AVS. Similarly, we observed no differences in ATX between the analyzed patient groups, and both ATX activity and concentration correlated significantly with Lp(a) level (R = 0.465, p < 0.001 and R = 0.599, p < 0.001, respectively). We revealed a significantly higher concentration of IL-6 in young patients with AVS. However, this observation was not confirmed in the group of patients over 45 years of age. We also did not observe a significant correlation between IL-6 and Lp(a) or between CRP and Lp(a) in any of the analyzed groups of BAV patients. Our results demonstrate that a high level of Lp(a), greater than 50 mg/dL, may be a significant predictive factor for earlier AVR. Lp(a)-related parameters, such as ATX and IL-6, may be valuable in providing information about the additional cardiovascular risks associated with developing AVS. Full article
(This article belongs to the Special Issue Lipid and Lipoprotein Metabolism in Human Health and Diseases)
Show Figures

Figure 1

15 pages, 4190 KB  
Article
Autotaxin Inhibition with IOA-289 Decreases Breast Tumor Growth in Mice Whereas Knockout of Autotaxin in Adipocytes Does Not
by Xiaoyun Tang, Andrew J. Morris, Marcel A. Deken and David N. Brindley
Cancers 2023, 15(11), 2937; https://doi.org/10.3390/cancers15112937 - 26 May 2023
Cited by 10 | Viewed by 3199
Abstract
Breast cancer cells produce negligible quantities of autotaxin. Instead, previous work indicated that adipocytes in the inflamed adipose tissue adjacent to breast tumors are a major source of autotaxin secretion that drives breast tumor growth, metastasis, and the loss of efficacy for chemotherapy [...] Read more.
Breast cancer cells produce negligible quantities of autotaxin. Instead, previous work indicated that adipocytes in the inflamed adipose tissue adjacent to breast tumors are a major source of autotaxin secretion that drives breast tumor growth, metastasis, and the loss of efficacy for chemotherapy and radiotherapy. To test this hypothesis, we used mice with an adipocyte-specific knock out of autotaxin. The lack of autotaxin secretion from adipocytes failed to decrease the growth of orthotopic E0771 breast tumors in syngeneic C57BL/6 mice and the growth and lung metastasis of spontaneous breast tumors in MMTV-PyMT mice. However, the inhibition of autotaxin with IOA-289 decreased the growth of E0771 tumors, indicating that another source of autotaxin is responsible for tumor growth. Tumor-associated fibroblasts and leukocytes produce the majority of autotoxin transcripts in the E0771 breast tumors, and we hypothesize that they are the main sources of ATX that drive breast tumor growth. Autotaxin inhibition with IOA-289 increased the numbers of CD8α+-T-cells in the tumors. This was accompanied by decreases in the concentrations of CXCL10, CCL2, and CXCL9 in the plasma and LIF, TGFβ1, TGFβ2, and prolactin in the tumors. Bioinformatics analysis of human breast tumor databases showed that autotaxin (ENPP2) is expressed mainly in endothelial cells and fibroblasts. Autotaxin expression correlated significantly with increases in IL-6 cytokine receptor ligand interactions, signaling by LIF, TGFβ, and prolactin. This confirms the relevance of results from autotaxin inhibition in the mouse model. We propose that inhibiting autotaxin activity that is derived from cells presenting breast tumors such as fibroblasts, leukocytes, or endothelial cells changes the tumor micro-environment in such a way as to inhibit tumor growth. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

10 pages, 272 KB  
Editorial
The Role of Autotaxin and LPA Signaling in Embryonic Development, Pathophysiology and Cancer
by Christiana Magkrioti, Eleanna Kaffe and Vassilis Aidinis
Int. J. Mol. Sci. 2023, 24(9), 8325; https://doi.org/10.3390/ijms24098325 - 5 May 2023
Cited by 8 | Viewed by 3198
Abstract
Autotaxin (ATX) or Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2) is a secreted enzyme with lysophospholipase D activity, with its primary function being the extracellular hydrolysis of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a bioactive lipid [...] Full article
18 pages, 1354 KB  
Review
COVID-19, Blood Lipid Changes, and Thrombosis
by Akhlaq A. Farooqui, Tahira Farooqui, Grace Y. Sun, Teng-Nan Lin, Daniel B. L. Teh and Wei-Yi Ong
Biomedicines 2023, 11(4), 1181; https://doi.org/10.3390/biomedicines11041181 - 15 Apr 2023
Cited by 18 | Viewed by 5976
Abstract
Although there is increasing evidence that oxidative stress and inflammation induced by COVID-19 may contribute to increased risk and severity of thromboses, the underlying mechanism(s) remain to be understood. The purpose of this review is to highlight the role of blood lipids in [...] Read more.
Although there is increasing evidence that oxidative stress and inflammation induced by COVID-19 may contribute to increased risk and severity of thromboses, the underlying mechanism(s) remain to be understood. The purpose of this review is to highlight the role of blood lipids in association with thrombosis events observed in COVID-19 patients. Among different types of phospholipases A2 that target cell membrane phospholipids, there is increasing focus on the inflammatory secretory phospholipase A2 IIA (sPLA2-IIA), which is associated with the severity of COVID-19. Analysis indicates increased sPLA2-IIA levels together with eicosanoids in the sera of COVID patients. sPLA2 could metabolise phospholipids in platelets, erythrocytes, and endothelial cells to produce arachidonic acid (ARA) and lysophospholipids. Arachidonic acid in platelets is metabolised to prostaglandin H2 and thromboxane A2, known for their pro-coagulation and vasoconstrictive properties. Lysophospholipids, such as lysophosphatidylcholine, could be metabolised by autotaxin (ATX) and further converted to lysophosphatidic acid (LPA). Increased ATX has been found in the serum of patients with COVID-19, and LPA has recently been found to induce NETosis, a clotting mechanism triggered by the release of extracellular fibres from neutrophils and a key feature of the COVID-19 hypercoagulable state. PLA2 could also catalyse the formation of platelet activating factor (PAF) from membrane ether phospholipids. Many of the above lipid mediators are increased in the blood of patients with COVID-19. Together, findings from analyses of blood lipids in COVID-19 patients suggest an important role for metabolites of sPLA2-IIA in COVID-19-associated coagulopathy (CAC). Full article
(This article belongs to the Special Issue Emerging Trends in Pathophysiology and Therapy of COVID-19)
Show Figures

Figure 1

Back to TopTop