Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = automotive Ethernet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3897 KB  
Article
Virtual ECU Based Video Streaming over SOME/IP: A Case Study
by Levent Bilal and Mustafa Engin
Appl. Sci. 2025, 15(23), 12413; https://doi.org/10.3390/app152312413 - 23 Nov 2025
Viewed by 856
Abstract
The integration of the Scalable Service-Oriented Middleware over IP (SOME/IP) within Automotive Ethernet enables efficient, service-oriented communication in vehicles. This study presents a video stream transmission library using SOME/IP to transfer pre-recorded video data between virtual Electronic Control Units (ECUs). Implemented with vsomeip, [...] Read more.
The integration of the Scalable Service-Oriented Middleware over IP (SOME/IP) within Automotive Ethernet enables efficient, service-oriented communication in vehicles. This study presents a video stream transmission library using SOME/IP to transfer pre-recorded video data between virtual Electronic Control Units (ECUs). Implemented with vsomeip, OpenCV, and Protocol Buffers, the system handles video serialization, Ethernet transmission, and reconstruction at the receiver side. Experimental evaluation with front and rear dashboard cameras (2560 × 1440 and 1920 × 1080 px) demonstrated that video resolution and file size directly affect processing duration. Optimized 1920 × 1080 videos achieved total processing times of about 400 ms, confirming the feasibility of near-real-time video transmission. A GUI application was also developed to simulate event-based communication by sending object detection updates after video transfer. The proposed framework provides a scalable and modular architecture that can be adapted to real ECU systems, establishing a foundation for future real-time video communication in automotive networks. Full article
Show Figures

Figure 1

20 pages, 5904 KB  
Article
Integration of Machine Vision and PLC-Based Control for Scalable Quality Inspection in Industry 4.0
by Maksymilian Maślanka, Daniel Jancarczyk and Jacek Rysinski
Sensors 2025, 25(20), 6383; https://doi.org/10.3390/s25206383 - 16 Oct 2025
Cited by 1 | Viewed by 2712
Abstract
The integration of machine vision systems with programmable logic controllers (PLCs) is increasingly crucial for automated quality assurance in Industry 4.0 environments. This paper presents an applied case study of vision–PLC integration, focusing on real-time synchronization, deterministic communication, and practical industrial deployment. The [...] Read more.
The integration of machine vision systems with programmable logic controllers (PLCs) is increasingly crucial for automated quality assurance in Industry 4.0 environments. This paper presents an applied case study of vision–PLC integration, focusing on real-time synchronization, deterministic communication, and practical industrial deployment. The proposed platform combines a Cognex In-Sight 2802C smart camera (Cognex Corporation, Natick, MA, USA) with an Allen-Bradley Compact GuardLogix PLC through Ethernet/IP implicit cyclic exchange. Three representative case studies were investigated: 3D-printed prototypes with controlled defects, automotive electrical connectors inspected using Cognex ViDi supervised learning tools, and fiber optic tubes evaluated via a custom fixture-based heuristic method. Across all scenarios, detection accuracy exceeded 95%, while PLC-level triple verification reduced false classifications by 28% compared to camera-only operation. The work highlights the benefits of PLC-driven inspection, including robustness, real-time performance, and dynamic tolerance adjustment via HMI interfaces. At the same time, several limitations were identified, including sensitivity to lighting variations, limited dataset size, and challenges in scaling to full production environments. These findings demonstrate a replicable integration framework that supports intelligent manufacturing. Future research will focus on hybrid AI–PLC architectures, extended validation on industrial production lines, and predictive maintenance enabled by edge computing. Full article
(This article belongs to the Special Issue Computer Vision and Sensors-Based Application for Intelligent Systems)
Show Figures

Figure 1

30 pages, 4817 KB  
Article
A Robust Multi-Port Network Interface Architecture with Real-Time CRC-Based Fault Recovery for In-Vehicle Communication Networks
by Sungju Lee, Sungwook Yu and Taikyeong Jeong
Actuators 2025, 14(8), 391; https://doi.org/10.3390/act14080391 - 7 Aug 2025
Viewed by 1117
Abstract
As the automotive industry continues to evolve rapidly, there is a growing demand for high-throughput reliable communication systems within vehicles. This paper presents the implementation and verification of a fault-tolerant Ethernet-based communication protocol tailored for automotive applications operating at 1 Gbps and above. [...] Read more.
As the automotive industry continues to evolve rapidly, there is a growing demand for high-throughput reliable communication systems within vehicles. This paper presents the implementation and verification of a fault-tolerant Ethernet-based communication protocol tailored for automotive applications operating at 1 Gbps and above. The proposed system introduces a multi-port Network Interface Controller (NIC) architecture that supports real-time communication and robust fault handling. To ensure adaptability across various in-vehicle network (IVN) scenarios, the system allows for configurable packet sizes and transmission rates and supports diverse data formats. The architecture integrates cyclic redundancy check (CRC)-based error detection, real-time recovery mechanisms, and file-driven data injection techniques. Functional validation is performed using Verilog HDL simulations, demonstrating deterministic timing behavior, modular scalability, and resilience under fault injection. This paper presents a fault-tolerant Network Interface Controller (NIC), architecture incorporating CRC-based error detection, real-time recovery logic, and file-driven data injection. The system is verified through Verilog HDL simulation, demonstrating correct timing behavior, modular scalability, and robustness against injected transmission faults. Compared to conventional dual-port NICs, the proposed quad-port architecture demonstrates superior scalability and error tolerance under injected fault conditions. Experimental results confirm that the proposed NIC architecture achieves stable multi-port communication under embedded automotive environments. This study further introduces a novel quad-port NIC with an integrated fault injection algorithm and evaluates its performance in terms of error tolerance. Full article
Show Figures

Figure 1

25 pages, 760 KB  
Article
Scheduling the Exchange of Context Information for Time-Triggered Adaptive Systems
by Daniel Onwuchekwa, Omar Hekal and Roman Obermaisser
Algorithms 2025, 18(8), 456; https://doi.org/10.3390/a18080456 - 22 Jul 2025
Viewed by 803
Abstract
This paper presents a novel metascheduling algorithm to enhance communication efficiency in off-chip time-triggered multi-processor system-on-chip (MPSoC) platforms, particularly for safety-critical applications in aerospace and automotive domains. Time-triggered communication standards such as time-sensitive networking (TSN) and TTEthernet effectively enable deterministic and reliable communication [...] Read more.
This paper presents a novel metascheduling algorithm to enhance communication efficiency in off-chip time-triggered multi-processor system-on-chip (MPSoC) platforms, particularly for safety-critical applications in aerospace and automotive domains. Time-triggered communication standards such as time-sensitive networking (TSN) and TTEthernet effectively enable deterministic and reliable communication across distributed systems, including MPSoC-based platforms connected via Ethernet. However, their dependence on static resource allocation limits adaptability under dynamic operating conditions. To address this challenge, we propose an offline metascheduling framework that generates multiple precomputed schedules corresponding to different context events. The proposed algorithm introduces a selective communication strategy that synchronizes context information exchange with key decision points, thereby minimizing unnecessary communication while maintaining global consistency and system determinism. By leveraging knowledge of context event patterns, our method facilitates coordinated schedule transitions and significantly reduces communication overhead. Experimental results show that our approach outperforms conventional scheduling techniques, achieving a communication overhead reduction ranging from 9.89 to 32.98 times compared to a two-time-unit periodic sampling strategy. This work provides a practical and certifiable solution for introducing adaptability into Ethernet-based time-triggered MPSoC systems without compromising the predictability essential for safety certification. Full article
(This article belongs to the Special Issue Bio-Inspired Algorithms: 2nd Edition)
Show Figures

Figure 1

26 pages, 793 KB  
Article
Holistic Approach for Automated Reverse Engineering of Unified Diagnostics Service Data
by Nico Rosenberger, Nikolai Hoffmann, Alexander Mitscherlich and Markus Lienkamp
World Electr. Veh. J. 2025, 16(7), 384; https://doi.org/10.3390/wevj16070384 - 8 Jul 2025
Cited by 1 | Viewed by 1854
Abstract
Reverse engineering of internal vehicle communication is a crucial discipline in vehicle benchmarking. The process presents a time-consuming procedure associated with high manual effort. Car manufacturers use unique signal addresses and encodings for their internal data. Accessing this data requires either expensive tools [...] Read more.
Reverse engineering of internal vehicle communication is a crucial discipline in vehicle benchmarking. The process presents a time-consuming procedure associated with high manual effort. Car manufacturers use unique signal addresses and encodings for their internal data. Accessing this data requires either expensive tools suitable for the respective vehicles or experienced engineers who have developed individual approaches to identify specific signals. Access to the internal data enables reading the vehicle’s status, and thus, reducing the need for additional test equipment. This results in vehicles closer to their production status and does not require manipulating the vehicle under study, which prevents affecting future test results. The main focus of this approach is to reduce the cost of such analysis and design a more efficient benchmarking process. In this work, we present a methodology that identifies signals without physically manipulating the vehicle. Our equipment is connected to the vehicle via the On-Board Diagnostics (OBD)-II port and uses the Unified Diagnostics Service (UDS) protocol to communicate with the vehicle. We access, capture, and analyze the vehicle’s signals for future analysis. This is a holistic approach, which, in addition to decoding the signals, also grants access to the vehicle’s data, which allows researchers to utilize state-of-the-art methodologies to analyze their vehicles under study by greatly reducing necessary experience, time, and cost. Full article
Show Figures

Figure 1

17 pages, 6714 KB  
Article
Development of Deterministic Communication for In-Vehicle Networks Based on Software-Defined Time-Sensitive Networking
by Binqi Li, Yuan Zhu, Qin Liu and Xiangxi Yao
Machines 2024, 12(11), 816; https://doi.org/10.3390/machines12110816 - 15 Nov 2024
Cited by 5 | Viewed by 3081
Abstract
To support more advanced functionality in vehicles, there is the challenge of deterministic and reliable transmission of sensor data and control signals. Time-sensitive networking (TSN) is the most promising candidate to meet this demand by leveraging IEEE 802.1 ethernet standards, which include time [...] Read more.
To support more advanced functionality in vehicles, there is the challenge of deterministic and reliable transmission of sensor data and control signals. Time-sensitive networking (TSN) is the most promising candidate to meet this demand by leveraging IEEE 802.1 ethernet standards, which include time synchronization, traffic shaping, and low-latency forwarding mechanisms. To explore the implementation of TSN for in-vehicle networks (IVN), this paper proposes a robust integer linear programming (ILP)-based scheduling model for time-sensitive data streams to mitigate the vulnerabilities of the time-aware shaper (TAS) mechanism in practice. Furthermore, we integrate this scheduling model into a software-defined time-sensitive networking (SD-TSN) architecture to automate the scheduling computations and configurations in the design phase. This SD-TSN architecture can offer a flexible and programmable approach to network management, enabling precise control over timing constraints and quality-of-service (QoS) parameters for time-sensitive traffic. Firstly, data transmission requirements are gathered by the centralized user configuration (CUC) module to acquire traffic information. Subsequently, the CNC module transfers the computed results of routing and scheduling to the YANG model for configuration delivery. Finally, automotive TSN switches can complete local configuration by parsing the received configuration messages. Through an experimental validation based on a physical platform, this study demonstrates the effectiveness of the scheduling algorithm and SD-TSN architecture in enhancing deterministic communication for in-vehicle networks. Full article
(This article belongs to the Special Issue Intelligent Control and Active Safety Techniques for Road Vehicles)
Show Figures

Figure 1

21 pages, 1254 KB  
Article
HP-LSTM: Hawkes Process–LSTM-Based Detection of DDoS Attack for In-Vehicle Network
by Xingyu Li, Ruifeng Li and Yanchen Liu
Future Internet 2024, 16(6), 185; https://doi.org/10.3390/fi16060185 - 23 May 2024
Cited by 4 | Viewed by 2239
Abstract
Connected and autonomous vehicles (CAVs) are advancing at a fast speed with the improvement of the automotive industry, which opens up new possibilities for different attacks. A Distributed Denial-of-Service (DDoS) attacker floods the in-vehicle network with fake messages, resulting in the failure of [...] Read more.
Connected and autonomous vehicles (CAVs) are advancing at a fast speed with the improvement of the automotive industry, which opens up new possibilities for different attacks. A Distributed Denial-of-Service (DDoS) attacker floods the in-vehicle network with fake messages, resulting in the failure of driving assistance systems and impairment of vehicle control functionalities, seriously disrupting the normal operation of the vehicle. In this paper, we propose a novel DDoS attack detection method for in-vehicle Ethernet Scalable service-Oriented Middleware over IP (SOME/IP), which integrates the Hawkes process with Long Short-Term Memory networks (LSTMs) to capture the dynamic behavioral features of the attacker. Specifically, we employ the Hawkes process to capture features of the DDoS attack, with its parameters reflecting the dynamism and self-exciting properties of the attack events. Subsequently, we propose a novel deep learning network structure, an HP-LSTM block, inspired by the Hawkes process, while employing a residual attention block to enhance the model’s detection efficiency and accuracy. Additionally, due to the scarcity of publicly available datasets for SOME/IP, we employed a mature SOME/IP generator to create a dataset for evaluating the validity of the proposed detection model. Finally, extensive experiments were conducted to demonstrate the effectiveness of the proposed DDoS attack detection method. Full article
(This article belongs to the Special Issue Security for Vehicular Ad Hoc Networks)
Show Figures

Figure 1

22 pages, 4102 KB  
Article
A Microservices-Based Control Plane for Time-Sensitive Networking
by Anna Agustí-Torra, Marc Ferré-Mancebo, Gabriel David Orozco-Urrutia, David Rincón-Rivera and David Remondo
Future Internet 2024, 16(4), 120; https://doi.org/10.3390/fi16040120 - 1 Apr 2024
Cited by 4 | Viewed by 3105
Abstract
Time-Sensitive Networking (TSN) aims to provide deterministic communications over Ethernet. The main characteristics of TSN are bounded latency and very high reliability, thus complying with the strict requirements of industrial communications or automotive applications, to name a couple of examples. In order to [...] Read more.
Time-Sensitive Networking (TSN) aims to provide deterministic communications over Ethernet. The main characteristics of TSN are bounded latency and very high reliability, thus complying with the strict requirements of industrial communications or automotive applications, to name a couple of examples. In order to achieve this goal, TSN defines several scheduling algorithms, among them the Time-Aware Shaper (TAS), which is based on time slots and Gate Control Lists (GCLs). The configuration of network elements to allocate time slots, paths, and GCLs is laborious, and has to be updated promptly and in a dynamic way, as new data flows arrive or disappear. The IEEE 802.1Qcc standard provides the basis to design a TSN control plane to face these challenges, following the Software-Defined Networking (SDN) paradigm. However, most of the current SDN/TSN control plane solutions are monolithic applications designed to run on dedicated servers, and do not provide the required flexibility to escalate when facing increasing service requests. This work presents μTSN-CP, an SDN/TSN microservices-based control plane, based on the 802.1Qcc standard. Our architecture leverages the advantages of microservices, enabling the control plane to scale up or down in response to varying workloads dynamically. We achieve enhanced flexibility and resilience by breaking down the control plane into smaller, independent microservices. The performance of μTSN-CP is evaluated in a real environment with TSN switches, and various integer linear problem solvers, running over different computing platforms. Full article
(This article belongs to the Section Network Virtualization and Edge/Fog Computing)
Show Figures

Figure 1

16 pages, 12583 KB  
Article
A Zero False Positive Rate of IDS Based on Swin Transformer for Hybrid Automotive In-Vehicle Networks
by Shanshan Wang, Hainan Zhou, Haihang Zhao, Yi Wang, Anyu Cheng and Jin Wu
Electronics 2024, 13(7), 1317; https://doi.org/10.3390/electronics13071317 - 31 Mar 2024
Cited by 11 | Viewed by 2323
Abstract
Software-defined vehicles (SDVs) make automotive systems more intelligent and adaptable, and this transformation relies on hybrid automotive in-vehicle networks that refer to multiple protocols using automotive Ethernet (AE) or a controller area network (CAN). Numerous researchers have developed specific intrusion-detection systems (IDSs) based [...] Read more.
Software-defined vehicles (SDVs) make automotive systems more intelligent and adaptable, and this transformation relies on hybrid automotive in-vehicle networks that refer to multiple protocols using automotive Ethernet (AE) or a controller area network (CAN). Numerous researchers have developed specific intrusion-detection systems (IDSs) based on ResNet18, VGG16, and Inception for AE or CANs, to improve confidentiality and integrity. Although these IDSs can be extended to hybrid automotive in-vehicle networks, these methods often overlook the requirements of real-time processing and minimizing of the false positive rate (FPR), which can lead to safety and reliability issues. Therefore, we introduced an IDS based on the Swin Transformer to bolster hybrid automotive in-vehicle network reliability and security. First, multiple messages from the traffic assembly are transformed into images and compressed via two-dimensional wavelet discrete transform (2D DWT) to minimize parameters. Second, the Swin Transformer is deployed to extract spatial and sequential features to identify anomalous patterns with its attention mechanism. To compare fairly, we re-implemented up-to-date conventional network models, including ResNet18, VGG16, and Inception. The results showed that our method could detect attacks with 99.82% accuracy and 0 FPR, which saved 14.32% in time costs and improved the accuracy by 1.60% compared to VGG16 when processing 512 messages. Full article
Show Figures

Figure 1

40 pages, 2095 KB  
Review
TSN Network Scheduling—Challenges and Approaches
by Hamza Chahed and Andreas Kassler
Network 2023, 3(4), 585-624; https://doi.org/10.3390/network3040026 - 16 Dec 2023
Cited by 22 | Viewed by 8142
Abstract
Time-Sensitive Networking (TSN) is a set of Ethernet standards aimed to improve determinism in packet delivery for converged networks. The main goal is to provide mechanisms that enable low and predictable transmission latency and high availability for demanding applications such as real-time audio/video [...] Read more.
Time-Sensitive Networking (TSN) is a set of Ethernet standards aimed to improve determinism in packet delivery for converged networks. The main goal is to provide mechanisms that enable low and predictable transmission latency and high availability for demanding applications such as real-time audio/video streaming, automotive, and industrial control. To provide the required guarantees, TSN integrates different traffic shaping mechanisms including 802.1Qbv, 802.1Qch, and 802.1Qcr, allowing for the coexistence of different traffic classes with different priorities on the same network. Achieving the required quality of service (QoS) level needs proper selection and configuration of shaping mechanisms, which is difficult due to the diversity in the requirements of the coexisting streams under the presence of potential end-system-induced jitter. This paper discusses the suitability of the TSN traffic shaping mechanisms for the different traffic types, analyzes the TSN network configuration problem, i.e., finds the optimal path and shaper configurations for all TSN elements in the network to provide the required QoS, discusses the goals, constraints, and challenges of time-aware scheduling, and elaborates on the evaluation criteria of both the network-wide schedules and the scheduling algorithms that derive the configurations to present a common ground for comparison between the different approaches. Finally, we analyze the evolution of the scheduling task, identify shortcomings, and suggest future research directions. Full article
Show Figures

Figure 1

23 pages, 617 KB  
Review
A Survey on Time-Sensitive Networking Standards and Applications for Intelligent Driving
by Yanli Xu and Jinhui Huang
Processes 2023, 11(7), 2211; https://doi.org/10.3390/pr11072211 - 22 Jul 2023
Cited by 13 | Viewed by 7597
Abstract
Stimulated by the increase in user demands and the development of intelligent driving, the automotive industry is pursuing high-bandwidth techniques, low-cost network deployment and deterministic data transmission. Time-sensitive networking (TSN) based on Ethernet provides a possible solution to these targets, which is arousing [...] Read more.
Stimulated by the increase in user demands and the development of intelligent driving, the automotive industry is pursuing high-bandwidth techniques, low-cost network deployment and deterministic data transmission. Time-sensitive networking (TSN) based on Ethernet provides a possible solution to these targets, which is arousing extensive attention from both academia and industry. We review TSN-related academic research papers published by major academic publishers and analyze research trends in TSN. This paper provides an up-to-date comprehensive survey of TSN-related standards, from the perspective of the physical layer, data link layer, network layer and protocol test. Then we classify intelligent driving products with TSN characteristics. With the consideration of more of the latest specified TSN protocols, we further analyze the minimum complete set of specifications and give the corresponding demo setup for the realization of TSN on automobiles. Open issues to be solved and trends of TSN are identified and analyzed, followed by possible solutions. Therefore, this paper can be an investigating basis and reference of TSN, especially for the TSN on automotive applications. Full article
(This article belongs to the Special Issue Smart Internet of Things for Industry and Manufacturing Processes)
Show Figures

Figure 1

19 pages, 3463 KB  
Article
Protecting SOME/IP Communication via Authentication Ticket
by Seulhui Lee, Wonsuk Choi and Dong Hoon Lee
Sensors 2023, 23(14), 6293; https://doi.org/10.3390/s23146293 - 11 Jul 2023
Cited by 5 | Viewed by 3762
Abstract
Designed using vehicle requirements, Scalable service-Oriented MiddlewarE over IP (SOME/IP) has been adopted and used as one of the Ethernet communication standard protocols in the AUTomotive Open System Architecture (AUTOSAR). However, SOME/IP was designed without considering security, and its vulnerabilities have been demonstrated [...] Read more.
Designed using vehicle requirements, Scalable service-Oriented MiddlewarE over IP (SOME/IP) has been adopted and used as one of the Ethernet communication standard protocols in the AUTomotive Open System Architecture (AUTOSAR). However, SOME/IP was designed without considering security, and its vulnerabilities have been demonstrated through research. In this paper, we propose a SOME/IP communication protection method using an authentication server (AS) and tickets to mitigate the infamous SOME/IP man-in-the-middle (MITM) attack. Reliable communication between the service-providing node and the node using SOME/IP communication is possible through the ticket issued from the authentication server. This method is relatively light in operation at each node, has good scalability for changes such as node addition, guarantees freshness, and provides interoperability with the existing SOME/IP protocol. Full article
Show Figures

Figure 1

17 pages, 3354 KB  
Article
Performance Enhancement of CAN/Ethernet Automotive Gateway with a CAN Data Reduction Algorithm
by Sung Bhin Oh, Young Soo Do, Min Jeong Lee, Jin Ho Kim and Jae Wook Jeon
Electronics 2023, 12(13), 2777; https://doi.org/10.3390/electronics12132777 - 22 Jun 2023
Cited by 3 | Viewed by 4178
Abstract
Data reduction (DR) techniques for the controller area network (CAN) are being developed to reduce the increased bus load caused by the growing number of electronic control units (ECUs) and automotive software complexity in modern automobiles. DR techniques enable the transmission of the [...] Read more.
Data reduction (DR) techniques for the controller area network (CAN) are being developed to reduce the increased bus load caused by the growing number of electronic control units (ECUs) and automotive software complexity in modern automobiles. DR techniques enable the transmission of the same information with less bandwidth, effectively reducing the busload in CAN-based networks. Modern vehicles are composed of various in-vehicle network (IVN) protocols, such as CAN, local interconnect network (LIN), and Ethernet. However, existing DR techniques only consider the communication between CAN nodes. The application of DR techniques to a CAN bus may lead to compatibility issues when communicating with heterogeneous IVN protocols. This paper proposed a CAN/Ethernet gateway system for seamless communication with CAN DR. The proposed gateway system was implemented on a TC275-based embedded system, and its performance was evaluated and analyzed. The experimental results revealed that CAN DR compression effectively improves both the CAN bus load and end-to-end processing time of the gateway system. The CAN bus load was reduced by up to 33.68%, and the average end-to-end processing time was reduced to 336 μs. Full article
(This article belongs to the Special Issue Ubiquitous Sensor Networks, 2nd Edition)
Show Figures

Figure 1

23 pages, 25892 KB  
Article
A Multi-Layer Intrusion Detection System for SOME/IP-Based In-Vehicle Network
by Feng Luo, Zhenyu Yang, Zhaojing Zhang, Zitong Wang, Bowen Wang and Mingzhi Wu
Sensors 2023, 23(9), 4376; https://doi.org/10.3390/s23094376 - 28 Apr 2023
Cited by 18 | Viewed by 6313
Abstract
The automotive Ethernet is gradually replacing the traditional controller area network (CAN) as the backbone network of the vehicle. As an essential protocol to solve service-based communication, Scalable service-Oriented MiddlewarE over IP (SOME/IP) is expected to be applied to an in-vehicle network (IVN). [...] Read more.
The automotive Ethernet is gradually replacing the traditional controller area network (CAN) as the backbone network of the vehicle. As an essential protocol to solve service-based communication, Scalable service-Oriented MiddlewarE over IP (SOME/IP) is expected to be applied to an in-vehicle network (IVN). The increasing number of external attack interfaces and the protocol’s vulnerability makes SOME/IP in-vehicle networks vulnerable to intrusion. This paper proposes a multi-layer intrusion detection system (IDS) architecture, including rule-based and artificial intelligence (AI)-based modules. The rule-based module is used to detect the SOME/IP header, SOME/IP-SD message, message interval, and communication process. The AI-based module acts on the payload. We propose a SOME/IP dataset establishment method to evaluate the performance of the proposed multi-layer IDS. Experiments are carried out on a Jetson Xavier NX, showing that the accuracy of AI-based detection reached 99.7761% and that of rule-based detection was 100%. The average detection time per packet is 0.3958 ms with graphics processing unit (GPU) acceleration and 0.6669 ms with only a central processing unit (CPU). After vehicle-level real-time analyses, the proposed IDS can be deployed for distributed or select critical advanced driving assistance system (ADAS) traffic for detection in a centralized layout. Full article
(This article belongs to the Special Issue Anomaly Detection and Monitoring for Networks and IoT Systems)
Show Figures

Figure 1

16 pages, 446 KB  
Article
Comparative Analysis of Traffic-Reduction Techniques for Seamless CAN-Based In-Vehicle Network Systems
by Duc N. M. Hoang, Sang Yoon Park and Jong Myung Rhee
Electronics 2023, 12(4), 998; https://doi.org/10.3390/electronics12040998 - 17 Feb 2023
Viewed by 1955
Abstract
Due to the benefits of better bandwidth and reliability, the automotive industry is moving towards Ethernet-based in-vehicle network (IVN) systems as the number of onboard electronic control units has increased. Considering that before long the well-known controller area network (CAN) will still be [...] Read more.
Due to the benefits of better bandwidth and reliability, the automotive industry is moving towards Ethernet-based in-vehicle network (IVN) systems as the number of onboard electronic control units has increased. Considering that before long the well-known controller area network (CAN) will still be considered a standard protocol, our earlier work introduced a high-availability seamless redundancy (HSR)-based Ethernet network architecture that provides IVNs with fault tolerance, called seamless CAN. However, HSR is known for its redundant traffic generated for fault tolerance, which is a disadvantage in bandwidth-limited IVN systems. Therefore, in this paper, we propose a traffic-effective architecture for seamless CAN-based networks. We compared the proficiency of different traffic-reduction approaches as they were applied to our proposed architecture. Extensive simulation results showed that our proposed solution could reduce up to 54% of the total network traffic compared to a conventional architecture while still being able to guarantee a high level of fault tolerance. Full article
Show Figures

Figure 1

Back to TopTop