Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = audiogenic epilepsy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 5006 KiB  
Article
Changes in the Proteomic Profile After Audiogenic Kindling in the Inferior Colliculus of the GASH/Sal Model of Epilepsy
by Laura Zeballos, Carlos García-Peral, Martín M. Ledesma, Jerónimo Auzmendi, Alberto Lazarowski and Dolores E. López
Int. J. Mol. Sci. 2025, 26(5), 2331; https://doi.org/10.3390/ijms26052331 - 5 Mar 2025
Viewed by 1309
Abstract
Epilepsy is a multifaceted neurological disorder characterized by recurrent seizures and associated with molecular and immune alterations in key brain regions. The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca), a genetic model for audiogenic epilepsy, provides a powerful tool to study seizure mechanisms and [...] Read more.
Epilepsy is a multifaceted neurological disorder characterized by recurrent seizures and associated with molecular and immune alterations in key brain regions. The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca), a genetic model for audiogenic epilepsy, provides a powerful tool to study seizure mechanisms and resistance in predisposed individuals. This study investigates the proteomic and immune responses triggered by audiogenic kindling in the inferior colliculus, comparing non-responder animals exhibiting reduced seizure severity following repeated stimulation versus GASH/Sal naïve hamsters. To assess auditory pathway functionality, Auditory Brainstem Responses (ABRs) were recorded, revealing reduced neuronal activity in the auditory nerve of non-responders, while central auditory processing remained unaffected. Cytokine profiling demonstrated increased levels of proinflammatory markers, including IL-1 alpha (Interleukin-1 alpha), IL-10 (Interleukin-10), and TGF-beta (Transforming Growth Factor beta), alongside decreased IGF-1 (Insulin-like Growth Factor 1) levels, highlighting systemic inflammation and its interplay with neuroprotection. Building on these findings, a proteomic analysis identified 159 differentially expressed proteins (DEPs). Additionally, bioinformatic approaches, including Gene Set Enrichment Analysis (GSEA) and Weighted Gene Co-expression Network Analysis (WGCNA), revealed disrupted pathways related to metabolic and inflammatory epileptic processes and a module potentially linked to a rise in the threshold of seizures, respectively. Differentially expressed genes, identified through bioinformatic and statistical analyses, were validated by RT-qPCR. This confirmed the upregulation of six genes (Gpc1—Glypican-1; Sdc3—Syndecan-3; Vgf—Nerve Growth Factor Inducible; Cpne5—Copine 5; Agap2—Arf-GAP with GTPase domain, ANK repeat, and PH domain-containing protein 2; and Dpp8—Dipeptidyl Peptidase 8) and the downregulation of two (Ralb—RAS-like proto-oncogene B—and S100b—S100 calcium-binding protein B), aligning with reduced seizure severity. This study may uncover key proteomic and immune mechanisms underlying seizure susceptibility, providing possible novel therapeutic targets for refractory epilepsy. Full article
(This article belongs to the Special Issue Neuroproteomics: Focus on Nervous System Function and Disease)
Show Figures

Figure 1

18 pages, 6122 KiB  
Article
GABAA Receptors Are Involved in the Seizure Blockage Prompted by a Polyphenol-Rich Extract of White Grape Juice in Rodents
by Alessandro Maugeri, Rita Citraro, Antonio Leo, Caterina Russo, Michele Navarra and Giovambattista De Sarro
Pharmaceuticals 2025, 18(2), 186; https://doi.org/10.3390/ph18020186 - 30 Jan 2025
Cited by 1 | Viewed by 1001
Abstract
Background/Objectives: Polyphenols have been suggested to possess anticonvulsant properties, which can be exploited as tools in novel strategies against epilepsy. Along that line, the aim of this study was to investigate the effects of a polyphenol-rich extract of white grape juice (WGJe) in [...] Read more.
Background/Objectives: Polyphenols have been suggested to possess anticonvulsant properties, which can be exploited as tools in novel strategies against epilepsy. Along that line, the aim of this study was to investigate the effects of a polyphenol-rich extract of white grape juice (WGJe) in different rodent models of epilepsy, exploring its putative mechanism of action. Methods: In this study, we employed pentylenetetrazole (PTZ)-injected ICR-CD1 mice, audiogenic seizure (AGS)-susceptible DBA/2 mice and WAG/Rij rats. Seizures were monitored and scored, while absence was assessed by electroencephalogram. The open-field test was employed to assess the anxiolytic effects of WGJe. In order to assess the involvement of the GABAA receptor, we used the antagonist flumazenil in AGS-susceptible DBA/2 mice. Computational analyses were employed to evaluate the interaction of the main polyphenols of WGJe and GABAA receptors. Results: Our results showed that the intraperitoneal injection of WGJe hindered tonic seizures in PTZ-injected ICR-CD1 mice. In WAG/Rij rats, WGJe did not elicit any significant effects on spike-wave discharges compared to untreated rats. In AGS-susceptible DBA/2 mice, WGJe significantly hampered both clonic and tonic seizures, as well as induced anxiolytic effects. Interestingly, when administering WGJe with flumazenil to DBA/2 mice, we noted that the observed effects were mediated by the GABAA receptor. Moreover, docking simulations confirmed that the main polyphenols of WGJe are able to interact with the benzodiazepine sites located in both extracellular and transmembrane domains in the GABAA receptor. Conclusions: This study outlines the mechanism underlying the anti-epileptic activity of WGJe, thus supporting its potential role in the management of epilepsy. Full article
Show Figures

Figure 1

29 pages, 6683 KiB  
Article
Generation and Characterization of Three Novel Mouse Mutant Strains Susceptible to Audiogenic Seizures
by Elena G. Varlamova, Vera P. Kuldaeva, Natalia N. Mitina, Maria S. Gavrish, Elena V. Kondakova, Victor S. Tarabykin, Alexei A. Babaev and Egor A. Turovsky
Cells 2024, 13(21), 1747; https://doi.org/10.3390/cells13211747 - 22 Oct 2024
Viewed by 1566
Abstract
The mechanisms of epileptogenesis after brain injury, ischemic stroke, or brain tumors have been extensively studied. As a result, many effective antiseizure drugs have been developed. However, there are still many patients who are resistant to therapy. The molecular and genetic bases regarding [...] Read more.
The mechanisms of epileptogenesis after brain injury, ischemic stroke, or brain tumors have been extensively studied. As a result, many effective antiseizure drugs have been developed. However, there are still many patients who are resistant to therapy. The molecular and genetic bases regarding such drug-resistant seizures have been poorly elucidated. In many cases, heavy seizures are instigated by brain development malformations and often caused by gene mutations. Such malformations can be demonstrated in mouse models by generating mutant strains. One of the most potent mutagens is ENU (N-ethyl-N-nitrosourea). In the present study, we describe three novel mutant strains generated by ENU-directed mutagenesis. Two of these strains present a very strong epileptic phenotype triggered by audiogenic stimuli (G9-1 and S5-1 strains). The third mouse strain is characterized by behavioral disorders and hyperexcitation of neuronal networks. We identified changes in the expression of those genes encoding neurotransmission proteins in the cerebral cortexes of these mice. It turned out that the G9-1 strain demonstrated the strongest disruptions in the expression of those genes encoding plasma membrane channels, excitatory glutamate receptors, and protein kinases. On the other hand, the number of GABAergic neurons was also affected by the mutation. All three lines are characterized by increased anxiety, excitability, and suppressed motor and orientational–exploratory activities. On the other hand, the strains with an epileptic phenotype—G9-1 and S5-1ave reduced learning ability, and the A9-2 mice line retains high learning ability. Full article
(This article belongs to the Special Issue Renewing Reasons to Believe in Gene Therapies for Epilepsy)
Show Figures

Figure 1

15 pages, 4067 KiB  
Article
Assessing the Effectiveness of Eslicarbazepine Acetate in Reducing Audiogenic Reflex Seizures in the GASH/Sal Model of Epilepsy
by Jaime Gonçalves-Sánchez, Thomas Ramírez-Santos, Dolores E. López, Jesús M. Gonçalves-Estella and Consuelo Sancho
Biomedicines 2024, 12(5), 1121; https://doi.org/10.3390/biomedicines12051121 - 18 May 2024
Viewed by 1673
Abstract
Eslicarbazepine acetate (ESL) is a third-generation antiepileptic drug indicated as monotherapy for adults with newly diagnosed epilepsy and as adjunctive therapy for the treatment of partial seizures. Our aim was to assess the effectiveness and safety of both acute and repeated ESL administration [...] Read more.
Eslicarbazepine acetate (ESL) is a third-generation antiepileptic drug indicated as monotherapy for adults with newly diagnosed epilepsy and as adjunctive therapy for the treatment of partial seizures. Our aim was to assess the effectiveness and safety of both acute and repeated ESL administration against reflex audiogenic seizures, as shown by the Genetic Audiogenic Seizures Hamster from Salamanca (GASH/Sal). Animals were subject to the intraperitoneal administration of ESL, applying doses of 100, 150 and 200 mg/kg for the acute study, whereas a daily dose of 100 mg/kg was selected for the subchronic study, which lasted 14 days. In both studies, the anticonvulsant effect of the therapy was evaluated using neuroethological methods. To assess the safety of the treatment, behavioral tests were performed, hematological and biochemical liver profiles were obtained, and body weight was monitored. In addition, the ESL levels in blood were measured after the acute administration of a 200 mg/kg dose. Treatment with ESL caused a reduction in seizure severity. No statistically significant differences were detected between the selected doses or between the acute or repeated administration of the drug. To summarize, the intraperitoneal administration of ESL is safe and shows an anticonvulsant effect in the GASH/Sal. Full article
(This article belongs to the Special Issue Advances in Antiepileptic Drugs)
Show Figures

Graphical abstract

16 pages, 4816 KiB  
Article
Wireless EEG Recording of Audiogenic Seizure Activity in Freely Moving Krushinsky-Molodkina Rats
by Sergey Krivopalov, Boris Yushkov and Alexey Sarapultsev
Biomedicines 2024, 12(5), 946; https://doi.org/10.3390/biomedicines12050946 - 24 Apr 2024
Cited by 1 | Viewed by 1798
Abstract
This study investigates audiogenic epilepsy in Krushinsky-Molodkina (KM) rats, questioning the efficacy of conventional EEG techniques in capturing seizures during animal restraint. Using a wireless EEG system that allows unrestricted movement, our aim was to gather ecologically valid data. Nine male KM rats, [...] Read more.
This study investigates audiogenic epilepsy in Krushinsky-Molodkina (KM) rats, questioning the efficacy of conventional EEG techniques in capturing seizures during animal restraint. Using a wireless EEG system that allows unrestricted movement, our aim was to gather ecologically valid data. Nine male KM rats, prone to audiogenic seizures, received implants of wireless EEG transmitters that target specific seizure-related brain regions. These regions included the inferior colliculus (IC), pontine reticular nucleus, oral part (PnO), ventrolateral periaqueductal gray (VLPAG), dorsal area of the secondary auditory cortex (AuD), and motor cortex (M1), facilitating seizure observation without movement constraints. Our findings indicate that targeted neural intervention via electrode implantation significantly reduced convulsive seizures in approximately half of the subjects, suggesting therapeutic potential. Furthermore, the amplitude of brain activity in the IC, PnO, and AuD upon audiogenic stimulus onset significantly influenced seizure severity and nature, highlighting these areas as pivotal for epileptic propagation. Severe cases exhibited dual waves of seizure generalization, indicative of intricate neural network interactions. Distinctive interplay between specific brain regions, disrupted during convulsive activity, suggests neural circuit reconfiguration in response to escalating seizure intensity. These discoveries challenge conventional methodologies, opening avenues for novel approaches in epilepsy research and therapeutic interventions. Full article
Show Figures

Figure 1

22 pages, 4571 KiB  
Article
D1-Like and D2-Like Dopamine Receptors in the Rat Prefrontal Cortex: Impacts of Genetic Generalized Epilepsies and Social Behavioral Deficits
by Lidia M. Birioukova, Gilles van Luijtelaar and Inna S. Midzyanovskaya
Receptors 2024, 3(1), 36-57; https://doi.org/10.3390/receptors3010004 - 20 Feb 2024
Cited by 3 | Viewed by 1974
Abstract
The involvement of the prefrontal cortical dopaminergic system in the psychopathology of epilepsies and comorbid conditions such as autism spectrum disorder (ASD) still needs to be explored. We used autoradiography to study the D1-like (D1DR) and D2-like (D2DR) receptor binding density in the [...] Read more.
The involvement of the prefrontal cortical dopaminergic system in the psychopathology of epilepsies and comorbid conditions such as autism spectrum disorder (ASD) still needs to be explored. We used autoradiography to study the D1-like (D1DR) and D2-like (D2DR) receptor binding density in the prefrontal cortex of normal Wistar rats and Wistar-derived strains with generalized convulsive and/or non-convulsive epilepsy. WAG/Rij rats served as a model for non-convulsive absence epilepsy, WAG/Rij-AGS as a model of mixed convulsive/non-convulsive form, and KM strain was a model for convulsive epilepsy comorbid with an ASD-like behavioral phenotype. The prefrontal cortex of rats with any epileptic pathology studied demonstrated profound decreases in binding densities to both D1DR and D2DR; the effects were localized in the primary and secondary anterior cingulate cortices, and adjacent regions. The local decreased D1DR and D2DR binding densities were independent of (not correlated with) each other. The particular group of epileptic rats with an ASD-like phenotype (KM strain) displayed changes in the lateral prefrontal cortex: D1DR were lowered, whereas D2DR were elevated, in the dysgranular insular cortex and adjacent regions. Thus, epilepsy-related changes in the dopaminergic system of the rat archeocortex were localized in the medial prefrontal regions, whereas ASD-related changes were seen in the lateral prefrontal aspects. The findings point to putative local dopaminergic dysfunctions, associated with generalized epilepsies and/or ASD. Full article
Show Figures

Figure 1

20 pages, 5745 KiB  
Article
Effect of Vagus Nerve Stimulation on the GASH/Sal Audiogenic-Seizure-Prone Hamster
by Jaime Gonçalves-Sánchez, Consuelo Sancho, Dolores E. López, Orlando Castellano, Begoña García-Cenador, Gabriel Servilha-Menezes, Juan M. Corchado, Norberto García-Cairasco and Jesús M. Gonçalves-Estella
Int. J. Mol. Sci. 2024, 25(1), 91; https://doi.org/10.3390/ijms25010091 - 20 Dec 2023
Cited by 1 | Viewed by 2180
Abstract
Vagus nerve stimulation (VNS) is an adjuvant neuromodulation therapy for the treatment of refractory epilepsy. However, the mechanisms behind its effectiveness are not fully understood. Our aim was to develop a VNS protocol for the Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal) in [...] Read more.
Vagus nerve stimulation (VNS) is an adjuvant neuromodulation therapy for the treatment of refractory epilepsy. However, the mechanisms behind its effectiveness are not fully understood. Our aim was to develop a VNS protocol for the Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal) in order to evaluate the mechanisms of action of the therapy. The rodents were subject to VNS for 14 days using clinical stimulation parameters by implanting a clinically available neurostimulation device or our own prototype for laboratory animals. The neuroethological assessment of seizures and general behavior were performed before surgery, and after 7, 10, and 14 days of VNS. Moreover, potential side effects were examined. Finally, the expression of 23 inflammatory markers in plasma and the left-brain hemisphere was evaluated. VNS significantly reduced seizure severity in GASH/Sal without side effects. No differences were observed between the neurostimulation devices. GASH/Sal treated with VNS showed statistically significant reduced levels of interleukin IL-1β, monocyte chemoattractant protein MCP-1, matrix metalloproteinases (MMP-2, MMP-3), and tumor necrosis factor TNF-α in the brain. The described experimental design allows for the study of VNS effects and mechanisms of action using an implantable device. This was achieved in a model of convulsive seizures in which VNS is effective and shows an anti-inflammatory effect. Full article
(This article belongs to the Special Issue Epilepsy: From Molecular Basis to Therapy)
Show Figures

Figure 1

28 pages, 6173 KiB  
Article
Socrates: A Novel N-Ethyl-N-nitrosourea-Induced Mouse Mutant with Audiogenic Epilepsy
by Elena G. Varlamova, Ekaterina V. Borisova, Yuliya A. Evstratova, Andrew G. Newman, Vera P. Kuldaeva, Maria S. Gavrish, Elena V. Kondakova, Victor S. Tarabykin, Alexey A. Babaev and Egor A. Turovsky
Int. J. Mol. Sci. 2023, 24(23), 17104; https://doi.org/10.3390/ijms242317104 - 4 Dec 2023
Cited by 3 | Viewed by 2255
Abstract
Epilepsy is one of the common neurological diseases that affects not only adults but also infants and children. Because epilepsy has been studied for a long time, there are several pharmacologically effective anticonvulsants, which, however, are not suitable as therapy for all patients. [...] Read more.
Epilepsy is one of the common neurological diseases that affects not only adults but also infants and children. Because epilepsy has been studied for a long time, there are several pharmacologically effective anticonvulsants, which, however, are not suitable as therapy for all patients. The genesis of epilepsy has been extensively investigated in terms of its occurrence after injury and as a concomitant disease with various brain diseases, such as tumors, ischemic events, etc. However, in the last decades, there are multiple reports that both genetic and epigenetic factors play an important role in epileptogenesis. Therefore, there is a need for further identification of genes and loci that can be associated with higher susceptibility to epileptic seizures. Use of mouse knockout models of epileptogenesis is very informative, but it has its limitations. One of them is due to the fact that complete deletion of a gene is not, in many cases, similar to human epilepsy-associated syndromes. Another approach to generating mouse models of epilepsy is N-Ethyl-N-nitrosourea (ENU)-directed mutagenesis. Recently, using this approach, we generated a novel mouse strain, soc (socrates, formerly s8-3), with epileptiform activity. Using molecular biology methods, calcium neuroimaging, and immunocytochemistry, we were able to characterize the strain. Neurons isolated from soc mutant brains retain the ability to differentiate in vitro and form a network. However, soc mutant neurons are characterized by increased spontaneous excitation activity. They also demonstrate a high degree of Ca2+ activity compared to WT neurons. Additionally, they show increased expression of NMDA receptors, decreased expression of the Ca2+-conducting GluA2 subunit of AMPA receptors, suppressed expression of phosphoinositol 3-kinase, and BK channels of the cytoplasmic membrane involved in protection against epileptogenesis. During embryonic and postnatal development, the expression of several genes encoding ion channels is downregulated in vivo, as well. Our data indicate that soc mutation causes a disruption of the excitation–inhibition balance in the brain, and it can serve as a mouse model of epilepsy. Full article
(This article belongs to the Special Issue Research of Neuronal Cell in Nervous System Development and Disease)
Show Figures

Figure 1

17 pages, 6392 KiB  
Article
Enhanced Membrane Incorporation of H289Y Mutant GluK1 Receptors from the Audiogenic Seizure-Prone GASH/Sal Model: Functional and Morphological Impacts on Xenopus Oocytes
by Sandra M. Díaz-Rodríguez, Isabel Ivorra, Javier Espinosa, Celia Vegar, M. Javier Herrero-Turrión, Dolores E. López, Ricardo Gómez-Nieto and Armando Alberola-Die
Int. J. Mol. Sci. 2023, 24(23), 16852; https://doi.org/10.3390/ijms242316852 - 28 Nov 2023
Cited by 1 | Viewed by 2406
Abstract
Epilepsy is a neurological disorder characterized by abnormal neuronal excitability, with glutamate playing a key role as the predominant excitatory neurotransmitter involved in seizures. Animal models of epilepsy are crucial in advancing epilepsy research by faithfully replicating the diverse symptoms of this disorder. [...] Read more.
Epilepsy is a neurological disorder characterized by abnormal neuronal excitability, with glutamate playing a key role as the predominant excitatory neurotransmitter involved in seizures. Animal models of epilepsy are crucial in advancing epilepsy research by faithfully replicating the diverse symptoms of this disorder. In particular, the GASH/Sal (genetically audiogenic seizure-prone hamster from Salamanca) model exhibits seizures resembling human generalized tonic-clonic convulsions. A single nucleotide polymorphism (SNP; C9586732T, p.His289Tyr) in the Grik1 gene (which encodes the kainate receptor GluK1) has been previously identified in this strain. The H289Y mutation affects the amino-terminal domain of GluK1, which is related to the subunit assembly and trafficking. We used confocal microscopy in Xenopus oocytes to investigate how the H289Y mutation, compared to the wild type (WT), affects the expression and cell-surface trafficking of GluK1 receptors. Additionally, we employed the two-electrode voltage-clamp technique to examine the functional effects of the H289Y mutation. Our results indicate that this mutation increases the expression and incorporation of GluK1 receptors into an oocyte’s membrane, enhancing kainate-evoked currents, without affecting their functional properties. Although further research is needed to fully understand the molecular mechanisms responsible for this epilepsy, the H289Y mutation in GluK1 may be part of the molecular basis underlying the seizure-prone circuitry in the GASH/Sal model. Full article
(This article belongs to the Special Issue Epilepsy: From Molecular Basis to Therapy)
Show Figures

Figure 1

21 pages, 1143 KiB  
Review
Animal Models of Hypertension (ISIAH Rats), Catatonia (GC Rats), and Audiogenic Epilepsy (PM Rats) Developed by Breeding
by Marina A. Ryazanova, Vladislava S. Plekanchuk, Olga I. Prokudina, Yulia V. Makovka, Tatiana A. Alekhina, Olga E. Redina and Arcady L. Markel
Biomedicines 2023, 11(7), 1814; https://doi.org/10.3390/biomedicines11071814 - 24 Jun 2023
Cited by 6 | Viewed by 2397
Abstract
Research into genetic and physiological mechanisms of widespread disorders such as arterial hypertension as well as neuropsychiatric and other human diseases is urgently needed in academic and practical medicine and in the field of biology. Nevertheless, such studies have many limitations and pose [...] Read more.
Research into genetic and physiological mechanisms of widespread disorders such as arterial hypertension as well as neuropsychiatric and other human diseases is urgently needed in academic and practical medicine and in the field of biology. Nevertheless, such studies have many limitations and pose difficulties that can be overcome by using animal models. To date, for the purposes of creating animal models of human pathologies, several approaches have been used: pharmacological/chemical intervention; surgical procedures; genetic technologies for creating transgenic animals, knockouts, or knockdowns; and breeding. Although some of these approaches are good for certain research aims, they have many drawbacks, the greatest being a strong perturbation (in a biological system) that, along with the expected effect, exerts side effects in the study. Therefore, for investigating the pathogenesis of a disease, models obtained using genetic selection for a target trait are of high value as this approach allows for the creation of a model with a “natural” manifestation of the pathology. In this review, three rat models are described: ISIAH rats (arterial hypertension), GC rats (catatonia), and PM rats (audiogenic epilepsy), which are developed by breeding in the Laboratory of Evolutionary Genetics at the Institute of Cytology and Genetics (the Siberian Branch of the Russian Academy of Sciences). Full article
Show Figures

Figure 1

28 pages, 3665 KiB  
Article
Proteomic and Bioinformatic Tools to Identify Potential Hub Proteins in the Audiogenic Seizure-Prone Hamster GASH/Sal
by Carlos García-Peral, Martín M. Ledesma, M. Javier Herrero-Turrión, Ricardo Gómez-Nieto, Orlando Castellano and Dolores E. López
Diagnostics 2023, 13(6), 1048; https://doi.org/10.3390/diagnostics13061048 - 9 Mar 2023
Cited by 6 | Viewed by 2936
Abstract
The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca) is a model of audiogenic seizures with the epileptogenic focus localized in the inferior colliculus (IC). The sound-induced seizures exhibit a short latency (7–9 s), which implies innate protein disturbances in the IC as a basis [...] Read more.
The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca) is a model of audiogenic seizures with the epileptogenic focus localized in the inferior colliculus (IC). The sound-induced seizures exhibit a short latency (7–9 s), which implies innate protein disturbances in the IC as a basis for seizure susceptibility and generation. Here, we aim to study the protein profile in the GASH/Sal IC in comparison to controls. Protein samples from the IC were processed for enzymatic digestion and then analyzed by mass spectrometry in Data-Independent Acquisition mode. After identifying the proteins using the UniProt database, we selected those with differential expression and performed ontological analyses, as well as gene-protein interaction studies using bioinformatics tools. We identified 5254 proteins; among them, 184 were differentially expressed proteins (DEPs), with 126 upregulated and 58 downregulated proteins, and 10 of the DEPs directly related to epilepsy. Moreover, 12 and 7 proteins were uniquely found in the GASH/Sal or the control. The results indicated a protein profile alteration in the epileptogenic nucleus that might underlie the inborn occurring audiogenic seizures in the GASH/Sal model. In summary, this study supports the use of bioinformatics methods in proteomics to delve into the relationship between molecular-level protein mechanisms and the pathobiology of rodent models of audiogenic seizures. Full article
(This article belongs to the Special Issue State-of-the-Art Research on Epilepsy)
Show Figures

Figure 1

14 pages, 5149 KiB  
Article
Striatal Patchwork of D1-like and D2-like Receptors Binding Densities in Rats with Genetic Audiogenic and Absence Epilepsies
by Evgeniya T. Tsyba, Inna S. Midzyanovskaya, Lidia M. Birioukova, Leena M. Tuomisto, Gilles van Luijtelaar and Kenul R. Abbasova
Diagnostics 2023, 13(4), 587; https://doi.org/10.3390/diagnostics13040587 - 5 Feb 2023
Cited by 8 | Viewed by 1955
Abstract
Binding densities to dopamine D1-like and D2-like receptors (D1DR and D2DR) were studied in brain regions of animals with genetic generalized audiogenic (AGS) and/or absence (AbS) epilepsy (KM, WAG/Rij-AGS, and WAG/Rij rats, respectively) as compared to non-epileptic Wistar (WS) rats. Convulsive epilepsy (AGS) [...] Read more.
Binding densities to dopamine D1-like and D2-like receptors (D1DR and D2DR) were studied in brain regions of animals with genetic generalized audiogenic (AGS) and/or absence (AbS) epilepsy (KM, WAG/Rij-AGS, and WAG/Rij rats, respectively) as compared to non-epileptic Wistar (WS) rats. Convulsive epilepsy (AGS) exerted a major effect on the striatal subregional binding densities for D1DR and D2DR. An increased binding density to D1DR was found in the dorsal striatal subregions of AGS-prone rats. Similar changes were seen for D2DR in the central and dorsal striatal territories. Subregions of the nucleus accumbens demonstrated consistent subregional decreases in the binding densities of D1DR and D2DR in epileptic animals, irrespective of epilepsy types. This was seen for D1DR in the dorsal core, dorsal, and ventrolateral shell; and for D2DR in the dorsal, dorsolateral, and ventrolateral shell. An increased density of D2DR was found in the motor cortex of AGS-prone rats. An AGS-related increase in binding densities to D1DR and D2DR in the dorsal striatum and motor cortex, areas responsible for motor activity, possibly reflects the activation of brain anticonvulsive loops. General epilepsy-related decreases in binding densities to D1DR and D2DR in the accumbal subregions might contribute to behavioral comorbidities of epilepsy. Full article
(This article belongs to the Special Issue State-of-the-Art Research on Epilepsy)
Show Figures

Figure 1

9 pages, 2299 KiB  
Communication
Social Behavioral Deficits in Krushinsky-Molodkina Rats, an Animal Model of Audiogenic Epilepsy
by Anastasiya A. Rebik, Vyacheslav D. Riga, Kirill S. Smirnov, Olga V. Sysoeva and Inna S. Midzyanovskaya
J. Pers. Med. 2022, 12(12), 2062; https://doi.org/10.3390/jpm12122062 - 14 Dec 2022
Cited by 10 | Viewed by 2117
Abstract
In clinical practice, epilepsy is often comorbid with the autism spectrum disorders (ASDs). This warrants a search of animal models to uncover putative overlapping neuronal mechanisms. The Krushinsky-Molodkina (KM) rat strain is one of the oldest inbred animal models for human convulsive epilepsies. [...] Read more.
In clinical practice, epilepsy is often comorbid with the autism spectrum disorders (ASDs). This warrants a search of animal models to uncover putative overlapping neuronal mechanisms. The Krushinsky-Molodkina (KM) rat strain is one of the oldest inbred animal models for human convulsive epilepsies. We analyzed the behavioral response of adult seizure-naive KM males in three-chambered tests for social preference. We found that a presence of social stimuli (encaged unfamiliar Wistar rats of the same age and sex) evoked a reduced or reversed exploratory response in freely moving KM individuals. The epilepsy-prone rats demonstrated remarkably shortened bouts of social contacts and displayed less locomotion around the stranger rat-containing boxes, together with a pronounced freezing response. The decrease in social preference was not due to a general decrease in activity, since relative measures of activity, the index of sociability, were decreased, too. The susceptibility to audiogenic seizures was verified in the KM cohort but not seen in the control Wistar group. We propose the KM rat strain as a new animal model for comorbid ASD and epilepsy. Full article
(This article belongs to the Special Issue Innovative Approaches to Neurodevelopmental Disorders)
Show Figures

Figure 1

33 pages, 1039 KiB  
Review
Rodent Models of Audiogenic Epilepsy: Genetic Aspects, Advantages, Current Problems and Perspectives
by David G. Garbuz, Artem A. Davletshin, Svetlana A. Litvinova, Irina B. Fedotova, Natalya M. Surina and Inga I. Poletaeva
Biomedicines 2022, 10(11), 2934; https://doi.org/10.3390/biomedicines10112934 - 15 Nov 2022
Cited by 16 | Viewed by 3426
Abstract
Animal models of epilepsy are of great importance in epileptology. They are used to study the mechanisms of epileptogenesis, and search for new genes and regulatory pathways involved in the development of epilepsy as well as screening new antiepileptic drugs. Today, many methods [...] Read more.
Animal models of epilepsy are of great importance in epileptology. They are used to study the mechanisms of epileptogenesis, and search for new genes and regulatory pathways involved in the development of epilepsy as well as screening new antiepileptic drugs. Today, many methods of modeling epilepsy in animals are used, including electroconvulsive, pharmacological in intact animals, and genetic, with the predisposition for spontaneous or refractory epileptic seizures. Due to the simplicity of manipulation and universality, genetic models of audiogenic epilepsy in rodents stand out among this diversity. We tried to combine data on the genetics of audiogenic epilepsy in rodents, the relevance of various models of audiogenic epilepsy to certain epileptic syndromes in humans, and the advantages of using of rodent strains predisposed to audiogenic epilepsy in current epileptology. Full article
(This article belongs to the Special Issue Animal Models of Neurological Disorders: Where Are We Now?)
Show Figures

Figure 1

11 pages, 2247 KiB  
Article
The Influence of Neurotrophic Factors BDNF and GDNF Overexpression on the Functional State of Mice and Their Adaptation to Audiogenic Seizures
by Angelina O. Kustova, Maria S. Gavrish, Marina A. Sergeeva, Daria A. Avlasenko, Anna O. Kiseleva, Ekaterina A. Epifanova, Alexey A. Babaev, Tatiana A. Mishchenko and Maria V. Vedunova
Brain Sci. 2022, 12(8), 1039; https://doi.org/10.3390/brainsci12081039 - 4 Aug 2022
Cited by 6 | Viewed by 3039
Abstract
The high prevalence of diagnosed cases of severe neurological disorders, a significant proportion of which are epilepsy, contributes to a high level of mortality and disability in the population. Neurotrophic factors BDNF and GNDF are considered promising agents aimed at increasing the central [...] Read more.
The high prevalence of diagnosed cases of severe neurological disorders, a significant proportion of which are epilepsy, contributes to a high level of mortality and disability in the population. Neurotrophic factors BDNF and GNDF are considered promising agents aimed at increasing the central nervous system’s adaptive potential for the development of the epileptiform activity. Despite the pronounced neuroprotective and anticonvulsant potential, an appropriate way to stimulate these endogenous signaling molecules with minimal risk of side effects remains an open question. Herein, we assessed the safety of gene therapy using original adeno-associated viral constructs carrying the genes of neurotrophic factors BDNF and GDNF in the early postnatal period of development of experimental animals. The intraventricular injection of AAV-Syn-BDNF-eGFP and AAV-Syn-GDNF-eGFP viral constructs into newborn mice was found to provide persistent overexpression of target genes in the hippocampus and cerebral cortex in vivo for four weeks after injection. The application of viral constructs has a multidirectional effect on the weight and body length characteristics of mice in the early postnatal period; however, it ensures the animals’ resistance to the development of seizure activity under audiogenic stimulation in the late postnatal period and preserves basic behavioral reactions, emotional status, as well as the mnestic and cognitive abilities of mice after simulated stress. Our results demonstrated the safety of using the AAV-Syn-BDNF-eGFP and AAV-Syn-GDNF-eGFP viral constructs in vivo, which indicates the expediency of further testing the constructs as therapeutic anticonvulsants. Full article
(This article belongs to the Section Nutritional Neuroscience)
Show Figures

Figure 1

Back to TopTop