Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = atmospheric aerosol optical and microphysical properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4545 KB  
Article
Characterization of Fresh and Aged Smoke Particles Simultaneously Observed with an ACTRIS Multi-Wavelength Raman Lidar in Potenza, Italy
by Benedetto De Rosa, Aldo Amodeo, Giuseppe D’Amico, Nikolaos Papagiannopoulos, Marco Rosoldi, Igor Veselovskii, Francesco Cardellicchio, Alfredo Falconieri, Pilar Gumà-Claramunt, Teresa Laurita, Michail Mytilinaios, Christina-Anna Papanikolaou, Davide Amodio, Canio Colangelo, Paolo Di Girolamo, Ilaria Gandolfi, Aldo Giunta, Emilio Lapenna, Fabrizio Marra, Rosa Maria Petracca Altieri, Ermann Ripepi, Donato Summa, Michele Volini, Alberto Arienzo and Lucia Monaadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(15), 2538; https://doi.org/10.3390/rs17152538 - 22 Jul 2025
Cited by 1 | Viewed by 927
Abstract
This study describes a quite special and interesting atmospheric event characterized by the simultaneous presence of fresh and aged smoke layers. These peculiar conditions occurred on 16 July 2024 at the CNR-IMAA atmospheric observatory (CIAO) in Potenza (Italy), and represent an ideal case [...] Read more.
This study describes a quite special and interesting atmospheric event characterized by the simultaneous presence of fresh and aged smoke layers. These peculiar conditions occurred on 16 July 2024 at the CNR-IMAA atmospheric observatory (CIAO) in Potenza (Italy), and represent an ideal case for the evaluation of the impact of aging and transport mechanisms on both the optical and microphysical properties of biomass burning aerosol. The fresh smoke was originated by a local wildfire about 2 km from the measurement site and observed about one hour after its ignition. The other smoke layer was due to a wide wildfire occurring in Canada that, according to backward trajectory analysis, traveled for about 5–6 days before reaching the observatory. Synergetic use of lidar, ceilometer, radar, and microwave radiometer measurements revealed that particles from the local wildfire, located at about 3 km a.s.l., acted as condensation nuclei for cloud formation as a result of high humidity concentrations at this altitude range. Optical characterization of the fresh smoke layer based on Raman lidar measurements provided lidar ratio (LR) values of 46 ± 4 sr and 34 ± 3 sr, at 355 and 532 nm, respectively. The particle linear depolarization ratio (PLDR) at 532 nm was 0.067 ± 0.002, while backscatter-related Ångström exponent (AEβ) values were 1.21 ± 0.03, 1.23 ± 0.03, and 1.22 ± 0.04 in the spectral ranges of 355–532 nm, 355–1064 nm and 532–1064 nm, respectively. Microphysical inversion caused by these intensive optical parameters indicates a low contribution of black carbon (BC) and, despite their small size, particles remained outside the ultrafine range. Moreover, a combined use of CIAO remote sensing and in situ instrumentation shows that the particle properties are affected by humidity variations, thus suggesting a marked particle hygroscopic behavior. In contrast, the smoke plume from the Canadian wildfire traveled at altitudes between 6 and 8 km a.s.l., remaining unaffected by local humidity. Absorption in this case was higher, and, as observed in other aged wildfires, the LR at 532 nm was larger than that at 355 nm. Specifically, the LR at 355 nm was 55 ± 2 sr, while at 532 nm it was 82 ± 3 sr. The AEβ values were 1.77 ± 0.13 and 1.41 ± 0.07 at 355–532 nm and 532–1064 nm, respectively and the PLDR at 532 nm was 0.040 ± 0.003. Microphysical analysis suggests the presence of larger, yet much more absorbent particles. This analysis indicates that both optical and microphysical properties of smoke can vary significantly depending on its origin, persistence, and transport in the atmosphere. These factors that must be carefully incorporated into future climate models, especially considering the frequent occurrences of fire events worldwide. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

14 pages, 4382 KB  
Article
Investigations on Stubble-Burning Aerosols over a Rural Location Using Ground-Based, Model, and Spaceborne Data
by Katta Vijayakumar, Panuganti China Sattilingam Devara and Saurabh Yadav
Atmosphere 2024, 15(11), 1383; https://doi.org/10.3390/atmos15111383 - 17 Nov 2024
Cited by 1 | Viewed by 1539
Abstract
Agriculture crop residue burning has become a major environmental problem facing the Indo-Gangetic plain, as well as contributing to global warming. This paper reports the results of a comprehensive study, examining the variations in aerosol optical, microphysical, and radiative properties that occur during [...] Read more.
Agriculture crop residue burning has become a major environmental problem facing the Indo-Gangetic plain, as well as contributing to global warming. This paper reports the results of a comprehensive study, examining the variations in aerosol optical, microphysical, and radiative properties that occur during biomass-burning events at Amity University Haryana (AUH), at a rural station in Gurugram (Latitude: 28.31° N, Longitude: 76.90° E, 285 m AMSL), employing ground-based observations of AERONET and Aethalometer, as well as satellite and model simulations during 7–16 November 2021. The smoke emissions during the burning events enhanced the aerosol optical depth (AOD) and increased the Angstrom exponent (AE), suggesting the dominance of fine-mode aerosols. A smoke event that affected the study region on 11 November 2021 is simulated using the regional NAAPS model to assess the role of smoke in regional aerosol loading that caused an atmospheric forcing of 230.4 W/m2. The higher values of BC (black carbon) and BB (biomass burning), and lower values of AAE (absorption Angstrom exponent) are also observed during the peak intensity of the smoke-event period. A notable layer of smoke has been observed, extending from the surface up to an altitude of approximately 3 km. In addition, the observations gathered from CALIPSO regarding the vertical profiles of aerosols show a qualitative agreement with the values obtained from AERONET observations. Further, the smoke plumes that arose due to transport of a wide-spread agricultural crop residue burning are observed nationwide, as shown by MODIS imagery, and HYSPLIT back trajectories. Thus, the present study highlights that the smoke aerosol emissions during crop residue burning occasions play a critical role in the local/regional aerosol microphysical and radiation properties, and hence in the climate variability. Full article
Show Figures

Figure 1

24 pages, 6525 KB  
Article
Parameterization of Dust Emissions from Heaps and Excavations Based on Measurement Results and Mathematical Modelling
by Karol Szymankiewicz, Michał Posyniak, Piotr Markuszewski and Paweł Durka
Remote Sens. 2024, 16(13), 2447; https://doi.org/10.3390/rs16132447 - 3 Jul 2024
Cited by 1 | Viewed by 1441
Abstract
Assessment of the concentrations of dust pollution resulting from both measurements at reference stations and those determined using mathematical modelling requires accurate identification of the sources of emission. Although the concentration of dust results from several complex transport processes, as well as chemical [...] Read more.
Assessment of the concentrations of dust pollution resulting from both measurements at reference stations and those determined using mathematical modelling requires accurate identification of the sources of emission. Although the concentration of dust results from several complex transport processes, as well as chemical and microphysical transformations of aerosols, sources of emissions may have a significant impact on the local level of pollution. This pilot study aimed to use measurements of the concentrations of dust (with the specification of the PM10 and PM2.5 fractions) made over a heap/excavation and its surroundings using an airship equipped with equipment for testing the optical and microphysical properties of atmospheric aerosols, and a ground station located at the facility. On the basis of the measurements, the function of the source of emissions of dust was estimated. According to our study, the yearly emission of dust varies between 42,470 and 886,289 kg for PM10, and between 42,470 and 803,893 for PM2.5 (minimum and maximum values). A model of local air quality was also used, which allowed us to verify the parameterization of emissions of dust pollutants for the PM10 and PM2.5 fractions from heaps and excavations based on the modelling results. Full article
Show Figures

Figure 1

33 pages, 5439 KB  
Article
Assessing Lidar Ratio Impact on CALIPSO Retrievals Utilized for the Estimation of Aerosol SW Radiative Effects across North Africa, the Middle East, and Europe
by Anna Moustaka, Marios-Bruno Korras-Carraca, Kyriakoula Papachristopoulou, Michael Stamatis, Ilias Fountoulakis, Stelios Kazadzis, Emmanouil Proestakis, Vassilis Amiridis, Kleareti Tourpali, Thanasis Georgiou, Stavros Solomos, Christos Spyrou, Christos Zerefos and Antonis Gkikas
Remote Sens. 2024, 16(10), 1689; https://doi.org/10.3390/rs16101689 - 9 May 2024
Cited by 4 | Viewed by 2621
Abstract
North Africa, the Middle East, and Europe (NAMEE domain) host a variety of suspended particles characterized by different optical and microphysical properties. In the current study, we investigate the importance of the lidar ratio (LR) on Cloud-Aerosol Lidar with Orthogonal Polarization–Cloud-Aerosol Lidar and [...] Read more.
North Africa, the Middle East, and Europe (NAMEE domain) host a variety of suspended particles characterized by different optical and microphysical properties. In the current study, we investigate the importance of the lidar ratio (LR) on Cloud-Aerosol Lidar with Orthogonal Polarization–Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIOP-CALIPSO) aerosol retrievals towards assessing aerosols’ impact on the Earth-atmosphere radiation budget. A holistic approach has been adopted involving collocated Aerosol Robotic Network (AERONET) observations, Radiative Transfer Model (RTM) simulations, as well as reference radiation measurements acquired using spaceborne (Clouds and the Earth’s Radiant Energy System-CERES) and ground-based (Baseline Surface Radiation Network-BSRN) instruments. We are assessing the clear-sky shortwave (SW) direct radiative effects (DREs) on 550 atmospheric scenes, identified within the 2007–2020 period, in which the primary tropospheric aerosol species (dust, marine, polluted continental/smoke, elevated smoke, and clean continental) are probed using CALIPSO. RTM runs have been performed relying on CALIOP retrievals in which the default and the DeLiAn (Depolarization ratio, Lidar ratio, and Ångström exponent)-based aerosol-speciated LRs are considered. The simulated fields from both configurations are compared against those produced when AERONET AODs are applied. Overall, the DeLiAn LRs leads to better results mainly when mineral particles are either solely recorded or coexist with other aerosol species (e.g., sea-salt). In quantitative terms, the errors in DREs are reduced by ~26–27% at the surface (from 5.3 to 3.9 W/m2) and within the atmosphere (from −3.3 to −2.4 W/m2). The improvements become more significant (reaching up to ~35%) for moderate-to-high aerosol loads (AOD ≥ 0.2). Full article
Show Figures

Figure 1

18 pages, 4152 KB  
Article
Distinguishing Saharan Dust Plume Sources in the Tropical Atlantic Using Elemental Indicators
by Daniel E. Yeager and Vernon R. Morris
Atmosphere 2024, 15(5), 554; https://doi.org/10.3390/atmos15050554 - 30 Apr 2024
Viewed by 2675
Abstract
The Sahara Desert is the largest contributor of global atmospheric dust aerosols impacting regional climate, health, and ecosystems. The climate effects of these dust aerosols remain uncertain due, in part, to climate model uncertainty of Saharan source region contributions and aerosol microphysical properties. [...] Read more.
The Sahara Desert is the largest contributor of global atmospheric dust aerosols impacting regional climate, health, and ecosystems. The climate effects of these dust aerosols remain uncertain due, in part, to climate model uncertainty of Saharan source region contributions and aerosol microphysical properties. This study distinguishes source region elemental signatures of Saharan dust aerosols sampled during the 2015 Aerosols Ocean Sciences Expedition (AEROSE) in the tropical Atlantic. During the 4-week campaign, cascade impactors size-dependently collected airborne Saharan dust particulate upon glass microfiber filters. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis differentiated metal isotope concentrations within filter samples from various AEROSE dust sampling periods. Back-trajectory analysis and NOAA satellite aerosol optical depth retrievals confirmed source regions of AEROSE ’15 dust samples. Pearson correlational statistics of source region activity and dust isotope concentrations distinguished the elemental signatures of North African potential source areas (PSAs). This study confirmed that elemental indicators of these PSAs remain detectable within dust samples collected far into the marine boundary layer of the tropical Atlantic. Changes detected in dust elemental indicators occurred on sub-weekly timescales across relatively small sampling distances along the 23W parallel of the tropical Atlantic. PSA-2 emissions, covering the western coast of the Sahara, were very strongly correlated (R2 > 0.79) with Ca-44 isotope ratios in AEROSE dust samples; PSA-2.5 emissions, covering eastern Mauritania and western Mali, were very strongly correlated with K-39 ratios; PSA-3 emissions, spanning southwestern Algeria and eastern Mali, were very strongly correlated with Fe-57 and Ti-48 ratios. The abundance of Ca isotopes from PSA-2 was attributed to calcite minerals from dry lakebeds and phosphorous mining activities in Western Sahara, based on source region analysis. The correlation between K isotope ratios and PSA-2.5 was a likely indicator of illite minerals near the El Djouf Desert region, according to corroboration with mineral mapping studies. Fe and Ti ratio correlations with PSA-3 observed in this study were likely indicators of iron and titanium oxides from Sahelian sources still detectable in Atlantic Ocean observations. The rapid changes in isotope chemistry found in AEROSE dust samples provide a unique marker of Saharan source regions and their relative contributions to desert outflows in the Atlantic. These elemental indicators provide source region apportionments of Sahara Desert aerosol flux and deposition into the Atlantic Ocean, as well as a basis for model and satellite validation of Saharan dust emissions for regional climate assessments. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

17 pages, 7005 KB  
Article
Construction of Aerosol Model and Atmospheric Correction in the Coastal Area of Shandong Peninsula
by Kunyang Shan, Chaofei Ma, Jingning Lv, Dan Zhao and Qingjun Song
Remote Sens. 2024, 16(7), 1309; https://doi.org/10.3390/rs16071309 - 8 Apr 2024
Cited by 3 | Viewed by 2025
Abstract
Applying standard aerosol models for atmospheric correction in nearshore coastal waters introduces significant uncertainties due to their inability to accurately represent aerosol characteristics in these regions. To improve the accuracy of remote sensing reflectance (Rrs) products in the nearshore [...] Read more.
Applying standard aerosol models for atmospheric correction in nearshore coastal waters introduces significant uncertainties due to their inability to accurately represent aerosol characteristics in these regions. To improve the accuracy of remote sensing reflectance (Rrs) products in the nearshore waters of the Shandong Peninsula, this study develops an aerosol model based on aerosol data collected from the Mu Ping site in the coastal area of the Shandong Peninsula, enabling tailored atmospheric correction for this specific region. Given the pronounced seasonal variations in aerosol optical properties, monthly aerosol models were developed. The monthly aerosol model is derived using the average values of aerosol microphysical properties. Compared to the standard aerosol model, this model is more effective in characterizing the absorption and scattering characteristics of aerosols in the study area. Corresponding lookup tables for the aerosol model were created and integrated into the NIR-SWIR atmospheric correction algorithm. According to the accuracy evaluation indexes of RMSD, MAE, and UPD, it can be found that the atmospheric correction results of the aerosol model established in this paper are better than those of the standard aerosol model, especially in the 547 nm band. It demonstrates that the new aerosol model outperforms the standard model in atmospheric correction performance. With the increasing availability of aerosol observational data, the aerosol model is expected to become more accurate and applicable to other satellite missions. Full article
(This article belongs to the Special Issue Aerosol and Atmospheric Correction)
Show Figures

Graphical abstract

17 pages, 6147 KB  
Article
Upgraded Three-Wavelength Lidar for Real-Time Observations of Volcanic Aerosol Optical and Microphysical Properties at Etna (Italy): Calibration Procedures and Measurement Tests
by Matteo Manzo, Gianpiero Aiesi, Antonella Boselli, Salvatore Consoli, Riccardo Damiano, Guido Di Donfrancesco, Benedetto Saraceno and Simona Scollo
Sensors 2024, 24(6), 1762; https://doi.org/10.3390/s24061762 - 8 Mar 2024
Cited by 1 | Viewed by 1583
Abstract
An innovative mobile lidar device, developed to monitor volcanic plumes during explosive eruptions at Mt. Etna (Italy) and to analyse the optical properties of volcanic particles, was upgraded in October 2023 with the aim of improving volcanic plume retrievals. The new configuration of [...] Read more.
An innovative mobile lidar device, developed to monitor volcanic plumes during explosive eruptions at Mt. Etna (Italy) and to analyse the optical properties of volcanic particles, was upgraded in October 2023 with the aim of improving volcanic plume retrievals. The new configuration of the lidar allows it to obtain new data on both the optical and the microphysical properties of the atmospheric aerosol. In fact, after the upgrade, the lidar is able to measure three backscattering coefficients, two extinction coefficients and two depolarisation ratios in a configuration defined as “state-of-the-art lidar”, where properties such as particle size distribution and the refractive index can be derived. During the lidar implementation, we were able to test the system’s performance through specific calibration measurements. A comparison in an aerosol-free region (7.2–12 km) between lidar signals at 1064 nm, 532 nm and 355 nm and the corresponding pure molecular profiles showed a relative difference of <1% between them for all the wavelengths, highlighting the good dynamic of the signals. The overlap correction allowed us to reduce the underestimation of the backscattering coefficient from 50% to 10% below 450 m and 750 m at both 355 and 532 nm, respectively. The correct alignment between the laser beam and the receiver optical chain was tested using the signal received from the different quadrants of the telescope, and the relative differences between the four directions were comparable to zero, within the margin of error. Finally, the first measurement results are shown and compared with results obtained by other instruments, with the aim of proving the ability of the upgraded system to more precisely characterise aerosol optical and microphysical properties. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

24 pages, 4491 KB  
Article
Optical and Microphysical Properties of the Aerosols during a Rare Event of Biomass-Burning Mixed with Polluted Dust
by Marilena Gidarakou, Alexandros Papayannis, Panagiotis Kokkalis, Nikolaos Evangeliou, Stergios Vratolis, Emmanouella Remoundaki, Christine Groot Zwaaftink, Sabine Eckhardt, Igor Veselovskii, Maria Mylonaki, Athina Argyrouli, Konstantinos Eleftheriadis, Stavros Solomos and Maria I. Gini
Atmosphere 2024, 15(2), 190; https://doi.org/10.3390/atmos15020190 - 1 Feb 2024
Cited by 4 | Viewed by 2542
Abstract
A rare event of mixed biomass-burning and polluted dust aerosols was observed over Athens, Greece (37.9° N, 23.6° E), during 21–26 May 2014. This event was studied using a synergy of a 6-wavelength elastic-Raman-depolarization lidar measurements, a CIMEL sun photometer, and in situ [...] Read more.
A rare event of mixed biomass-burning and polluted dust aerosols was observed over Athens, Greece (37.9° N, 23.6° E), during 21–26 May 2014. This event was studied using a synergy of a 6-wavelength elastic-Raman-depolarization lidar measurements, a CIMEL sun photometer, and in situ instrumentation. The FLEXPART dispersion model was used to identify the aerosol sources and quantify the contribution of dust and black carbon particles to the mass concentration. The identified air masses were found to originate from Kazakhstan and Saharan deserts, under a rare atmospheric pressure system. The lidar ratio (LR) values retrieved from the Raman lidar ranged within 25–89 sr (355 nm) and 35–70 sr (532 nm). The particle linear depolarization ratio (δaer) ranged from 7 to 28% (532 nm), indicating mixing of dust with biomass-burning particles. The aerosol optical depth (AOD) values derived from the lidar ranged from 0.09–0.43 (355 nm) to 0.07–0.25 (532 nm). An inversion algorithm was used to derive the mean aerosol microphysical properties (mean effective radius (reff), single scattering albedo (SSA), and mean complex refractive index (m)) inside selected atmospheric layers. We found that reff was 0.12–0.51 (±0.04) µm, SSA was 0.94–0.98 (±0.19) (at 532 nm), while m ranged between 1.39 (±0.05) + 0.002 (±0.001)i and 1.63 (±0.05) + 0.008 (±0.004)i. The polarization lidar photometer networking (POLIPHON) algorithm was used to estimate the vertical profile of the mass concentration for the dust and non-dust components. A mean mass concentration of 15 ± 5 μg m−3 and 80 ± 29 μg m−3 for smoke and dust was estimated for selected days, respectively. Finally, the retrieved aerosol microphysical properties were compared with column-integrated sun photometer CIMEL data with good agreement. Full article
(This article belongs to the Special Issue Optical Characteristics of Aerosol Pollution)
Show Figures

Figure 1

16 pages, 3257 KB  
Article
Lidar Optical and Microphysical Characterization of Tropospheric and Stratospheric Fire Smoke Layers Due to Canadian Wildfires Passing over Naples (Italy)
by Riccardo Damiano, Salvatore Amoruso, Alessia Sannino and Antonella Boselli
Remote Sens. 2024, 16(3), 538; https://doi.org/10.3390/rs16030538 - 31 Jan 2024
Cited by 6 | Viewed by 2244
Abstract
In the summer of 2017, huge wildfires in the British Columbia region (Canada) led to the injection of a remarkably high concentration of biomass burning aerosol in the atmosphere. These aerosol masses reached the city of Naples, Italy, at the end of August [...] Read more.
In the summer of 2017, huge wildfires in the British Columbia region (Canada) led to the injection of a remarkably high concentration of biomass burning aerosol in the atmosphere. These aerosol masses reached the city of Naples, Italy, at the end of August 2017, where they were characterized by means of a multiwavelength lidar and a sun–sky–lunar photometer. Here we report on the optical and microphysical properties of this aerosol in an intriguing condition, occurring on 4 September 2017, which is characterized by an interesting multi-layered vertical distribution of the aerosol. The Lidar profiles highlighted the presence of four aerosol layers, with two located in the lower troposphere and the other two at stratospheric altitudes. A rather thorough characterization of the biomass burning aerosol was carried out. The aerosol depolarization ratio showed an increasing dependence on the altitude with averaged values of 2–4% for the tropospheric layers, which are indicative of almost spherical smoke particles, and larger values in the stratospheric layers, suggestive of aspheric particles. Lidar-derived size distributions were retrieved for the first three aerosol layers, highlighting a higher particle concentration in the fine-mode fraction for the layers observed at higher altitudes. A dominance of fine particles in the atmosphere (fine-mode fraction > 0.8) with low absorption properties (absorption AOD < 0.0025 and SSA > 0.97) was also observed over the whole atmospheric column by sun photometer data. The space-resolved results provided by the lidar data are consistent with the columnar features retrieved by the AERONET sun photometer, thus evidencing the reliability and capability of lidar characterization of atmospheric aerosol in a very interesting condition of multiple aerosol layers originating from Canadian fires overpassing the observation station. Full article
(This article belongs to the Special Issue Advances in Remote Sensing and Atmospheric Optics)
Show Figures

Graphical abstract

21 pages, 15680 KB  
Article
Relationship between El Niño-Southern Oscillation and Atmospheric Aerosols in the Legal Amazon
by Augusto G. C. Pereira, Rafael Palácios, Paula C. R. Santos, Raimundo Vitor S. Pereira, Glauber Cirino and Breno Imbiriba
Climate 2024, 12(2), 13; https://doi.org/10.3390/cli12020013 - 23 Jan 2024
Cited by 1 | Viewed by 4188
Abstract
The El Niño-Southern Oscillation (ENSO) stands out as the most significant tropical phenomenon in terms of climatic magnitude resulting from ocean–atmosphere interaction. Due to its atmospheric teleconnection mechanism, ENSO influences various environmental variables across distinct atmospheric scales, potentially impacting the spatiotemporal distribution of [...] Read more.
The El Niño-Southern Oscillation (ENSO) stands out as the most significant tropical phenomenon in terms of climatic magnitude resulting from ocean–atmosphere interaction. Due to its atmospheric teleconnection mechanism, ENSO influences various environmental variables across distinct atmospheric scales, potentially impacting the spatiotemporal distribution of atmospheric aerosols. Within this context, this study aims to evaluate the relationship between ENSO and atmospheric aerosols across the entire Legal Amazon during the period from 2006 to 2011. Over this five-year span, four ENSO events were identified. Concurrently, an analysis of the spatiotemporal variability of aerosol optical depth (AOD) and Black Carbon radiation extinction (EAOD-BC) was conducted alongside these ENSO events, utilizing data derived from the Aerosol Robotic Network (AERONET), MERRA-2 model, and ERSSTV5. Employing the Windowed Cross-Correlation (WCC) approach, statistically significant phase lags of up to 4 to 6 months between ENSO indicators and atmospheric aerosols were observed. There was an approximate 100% increase in AOD immediately after El Niño periods, particularly during intervals encompassing the La Niña phase. The analysis of specific humidity anomaly (QA) revealed that, contrary to expectations, positive values were observed throughout most of the El Niño period. This result suggests that while there is a suppression of precipitation events during El Niño due to the subsidence of drier air masses in the Amazon, the region still exhibits positive specific humidity (Q) conditions. The interaction between aerosols and humidity is intricate. However, Q can exert influence over the microphysical and optical properties of aerosols, in addition to affecting their chemical composition and aerosol load. This influence primarily occurs through water absorption, leading to substantial alterations in radiation scattering characteristics, and thus affecting the extinction of solar radiation. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

17 pages, 5859 KB  
Article
Characteristics of Absorbing Aerosols in Mexico City: A Study of Morphology and Columnar Microphysical Properties
by Giovanni Carabali, Faustino Juárez-Sánchez, Rafael N. Liñan-Abanto, Héctor Estévez, Mauro Valdés-Barrón, Roberto Bonifaz-Alfonso, David Riveros-Rosas and Adriana González-Cabrera
Atmosphere 2024, 15(1), 108; https://doi.org/10.3390/atmos15010108 - 16 Jan 2024
Cited by 2 | Viewed by 2076
Abstract
This paper presents an analysis of the morphology and columnar microphysical properties of atmospheric aerosols in Mexico City (MC) for the period 2022–2023. The morphological study focused on the structure description of soot particles and tar balls (TB). By transmission electron microscope (TEM) [...] Read more.
This paper presents an analysis of the morphology and columnar microphysical properties of atmospheric aerosols in Mexico City (MC) for the period 2022–2023. The morphological study focused on the structure description of soot particles and tar balls (TB). By transmission electron microscope (TEM) and scanning electrode microscope (SEM), voluminous soot aggregates mixed with TBs were observed. The chemistry shows that both soot and TBs are mostly carbonaceous species with well-defined morphologies. On the other hand, the columnar aerosol microphysical properties recovered from AERONET show that the particles have a bimodal aerosol size distribution (ASD) with two modes: fine and coarse. The ASD remains constant without showing significant seasonal changes, only with some variability for coarse particles. The aerosol optical depth (AOD) value is significantly high, typical of urban areas. The real (n) and imaginary (k) parts of the complex refractive index (CRI) were obtained from the photometric measurements. The CRI values show seasonal variations, with spring being the season with the highest values for n, while the highest values for k were measured in winter. Full article
(This article belongs to the Topic Atmospheric Chemistry, Aging, and Dynamics)
Show Figures

Figure 1

14 pages, 4757 KB  
Article
Retrieval of Aerosol Optical Depth and FMF over East Asia from Directional Intensity and Polarization Measurements of PARASOL
by Shupeng Wang, Li Fang, Weishu Gong, Weihe Wang and Shihao Tang
Atmosphere 2024, 15(1), 6; https://doi.org/10.3390/atmos15010006 - 20 Dec 2023
Viewed by 1746
Abstract
The advantages of performing aerosol retrieval with multi-angle, multi-spectral photopolarimetric measurements over intensity-only measurements come from this technique’s sensitivity to aerosols’ microphysical properties, such as their particle size, shape, and complex refraction index. In this study, an extended LUT (Look Up Table) algorithm [...] Read more.
The advantages of performing aerosol retrieval with multi-angle, multi-spectral photopolarimetric measurements over intensity-only measurements come from this technique’s sensitivity to aerosols’ microphysical properties, such as their particle size, shape, and complex refraction index. In this study, an extended LUT (Look Up Table) algorithm inherited from a previous work based on the assumption of surface reflectance spectral shape invariance is proposed and applied to PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar) measurements to retrieve aerosols’ optical properties including aerosol optical depth (AOD) and aerosol fine-mode fraction (FMF). Case studies conducted over East China for different aerosol scenes are investigated. A comparison between the retrieved AOD regional distribution and the corresponding MODIS (Moderate-resolution Imaging Spectroradiometer) C6 AOD products shows similar spatial distributions in the Jing-Jin-Ji (Beijing–Tianjin–Hebei, China’s mega city cluster) region. The PARASOL AOD retrievals were compared against the AOD measurements of seven AERONET (Aerosol Robotic Network) stations in China to evaluate the performance of the retrieval algorithm. In the fine-particle-dominated regions, lower RMSEs were found at Beijing and Hefei urban stations (0.16 and 0.18, respectively) compared to those at other fine-particle-dominated AERONET stations, which can be attributed to the assumption of surface reflectance spectral shape invariance that has significant advantages in separating the contribution of surface and aerosol scattering in urban areas. For the FMF validation, an RMSE of 0.23, a correlation of 0.57, and a bias of −0.01 were found. These results show that the algorithm performs reasonably in distinguishing the contribution of fine and coarse particles. Full article
(This article belongs to the Special Issue Atmospheric Aerosols and Climate Impacts)
Show Figures

Figure 1

17 pages, 9122 KB  
Article
Optical Properties and Vertical Distribution of Aerosols Using Polarization Lidar and Sun Photometer over Lanzhou Suburb in Northwest China
by Mengqi Li, Xianjie Cao, Zhida Zhang, Hongyu Ji, Min Zhang, Yumin Guo, Pengfei Tian and Jiening Liang
Remote Sens. 2023, 15(20), 4927; https://doi.org/10.3390/rs15204927 - 12 Oct 2023
Cited by 3 | Viewed by 1984
Abstract
To better understand aerosol vertical distribution and radiation effects, the seasonal variation and vertical distribution characteristics of aerosol optical properties were analyzed based on the aerosol extinction coefficient, depolarization ratio and backscatter Ångström exponent derived from the dual-wavelength polarization lidar at the Semi-Arid [...] Read more.
To better understand aerosol vertical distribution and radiation effects, the seasonal variation and vertical distribution characteristics of aerosol optical properties were analyzed based on the aerosol extinction coefficient, depolarization ratio and backscatter Ångström exponent derived from the dual-wavelength polarization lidar at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) from December 2009 to November 2012. Combining the CE-318 sun photometer, the microphysical, optical and vertical distribution characteristics of aerosol during a dust process were discussed comprehensively. The results revealed that the vertical profiles of the aerosol extinction coefficient and depolarization ratio clearly had seasonal variation characteristics. The aerosol optical depth (AOD) integrating with the aerosol extinction coefficient within 0–2 km in the spring, summer, autumn and winter accounted for 48%, 45%, 56% and 58% of the total AOD, respectively. The non-spherical feature was most distinctive in the spring, followed by the winter, autumn and summer. The particle size of aerosol in the lower layer was larger than that in the upper layer according to the vertical profile of the backscatter Ångström exponent. The cluster analysis of backward trajectory showed SACOL is dominated by dust aerosol in the spring and the mixtures of dust with anthropogenic pollution in the winter. A dust event in April 2010 was selected and the analysis showed that it mainly came from the high-altitude and long-range transportation from the Taklamakan Desert. During this period, the extinction coefficient increased up to 0.9 km−1, the maximum AOD was 2.21 and the SSA ranged from 0.92 to 0.99. The radiation force in the atmosphere reached 126.15 W/m2. It can be found that the influence of aerosol on the atmospheric radiation effect cannot be ignored. Full article
(This article belongs to the Special Issue Remote Sensing of Aerosol, Cloud and Their Interactions)
Show Figures

Figure 1

18 pages, 2573 KB  
Article
Machine Learning Techniques for Vertical Lidar-Based Detection, Characterization, and Classification of Aerosols and Clouds: A Comprehensive Survey
by Simone Lolli
Remote Sens. 2023, 15(17), 4318; https://doi.org/10.3390/rs15174318 - 1 Sep 2023
Cited by 15 | Viewed by 5313
Abstract
This survey presents an in-depth analysis of machine learning techniques applied to lidar observations for the detection of aerosol and cloud optical, geometrical, and microphysical properties. Lidar technology, with its ability to probe the atmosphere at very high spatial and temporal resolution and [...] Read more.
This survey presents an in-depth analysis of machine learning techniques applied to lidar observations for the detection of aerosol and cloud optical, geometrical, and microphysical properties. Lidar technology, with its ability to probe the atmosphere at very high spatial and temporal resolution and measure backscattered signals, has become an invaluable tool for studying these atmospheric components. However, the complexity and diversity of lidar technology requires advanced data processing and analysis methods, where machine learning has emerged as a powerful approach. This survey focuses on the application of various machine learning techniques, including supervised and unsupervised learning algorithms and deep learning models, to extract meaningful information from lidar observations. These techniques enable the detection, classification, and characterization of aerosols and clouds by leveraging the rich features contained in lidar signals. In this article, an overview of the different machine learning architectures and algorithms employed in the field is provided, highlighting their strengths, limitations, and potential applications. Additionally, this survey examines the impact of machine learning techniques on improving the accuracy, efficiency, and robustness of aerosol and cloud real-time detection from lidar observations. By synthesizing the existing literature and providing critical insights, this survey serves as a valuable resource for researchers, practitioners, and students interested in the application of machine learning techniques to lidar technology. It not only summarizes current state-of-the-art methods but also identifies emerging trends, open challenges, and future research directions, with the aim of fostering advancements in this rapidly evolving field. Full article
Show Figures

Figure 1

33 pages, 19921 KB  
Article
Combined Characterization of Airborne Saharan Dust above Sofia, Bulgaria, during Blocking-Pattern Conditioned Dust Episode in February 2021
by Zahari Peshev, Anatoli Chaikovsky, Tsvetina Evgenieva, Vladislav Pescherenkov, Liliya Vulkova, Atanaska Deleva and Tanja Dreischuh
Remote Sens. 2023, 15(15), 3833; https://doi.org/10.3390/rs15153833 - 1 Aug 2023
Cited by 8 | Viewed by 2543
Abstract
The wintertime outbreaks of Saharan dust, increasing in intensity and frequency over the last decade, have become an important component of the global dust cycle and a challenging issue in elucidating its feedback to the ongoing climate change. For their adequate monitoring and [...] Read more.
The wintertime outbreaks of Saharan dust, increasing in intensity and frequency over the last decade, have become an important component of the global dust cycle and a challenging issue in elucidating its feedback to the ongoing climate change. For their adequate monitoring and characterization, systematic multi-instrument observations and multi-aspect analyses of the distribution and properties of desert aerosols are required, covering the full duration of dust events. In this paper, we present observations of Saharan dust in the atmosphere above Sofia, Bulgaria, during a strong dust episode over the whole of Europe in February 2021, conditioned by a persistent blocking weather pattern over the Mediterranean basin, providing clear skies and constant measurement conditions. This study was accomplished using different remote sensing (lidar, satellite, and radiometric), in situ (particle analyzing), and modeling/forecasting methods and resources, using real measurements and data (re)analysis. A wide range of columnar and range/time-resolved optical, microphysical, physical, topological, and dynamical characteristics of the detected aerosols dominated by desert dust are obtained and profiled with increased accuracy and reliability by combining the applied approaches and instruments in terms of complementarity, calibration, and normalization. Vertical profiles of the aerosol/dust total and mode volume concentrations are presented and analyzed using the LIRIC-2 inversion code joining lidar and sun-photometer data. The results show that interactive combining and use of various relevant approaches, instruments, and data have a significant synergistic effect and potential for verifying and improving theoretical models aimed at complete aerosol/dust characterization. Full article
Show Figures

Figure 1

Back to TopTop