Distinguishing Saharan Dust Plume Sources in the Tropical Atlantic Using Elemental Indicators
Abstract
:1. Introduction
2. Materials and Methods
2.1. AEROSE Campaign Overview
2.2. Aerosol Sampling and Elemental Analysis
2.2.1. Cascade Impactor
2.2.2. Isotope Analysis of Dust Samples
2.3. Source Region Identification of Dust Samples
2.3.1. Dust Event Classification
2.3.2. Source Region Quantification
2.4. Correlating Source Region Contributions to Elemental Isotope Ratios
3. Results and Discussion
3.1. Source Region Identification
3.1.1. Dust Event Detection and Classification
3.1.2. Source Region Quantification
3.2. Elemental Characterizations of AEROSE ’15 Dust Samples
3.2.1. Dust Event Isotope Concentrations
3.2.2. Correlational Analysis of Dust Sample Isotopes and Source Region Emissions
4. Conclusions
- –
- Regionally specific elemental indicators remain detectable in dust aerosols collected along the Saharan air layer trajectory far into the Tropical Atlantic marine boundary layer. We find that the combination of Ca, Fe, K, Sr, and Ti isotopes can uniquely fingerprint PSA contributions in downwind Saharan dust particulates sampled in the tropical Atlantic. These elemental characteristics can change rapidly over sub-weekly timescales and short distances (1000 km>) within the tropical Atlantic.
- –
- Western Sahara (PSA-2) was the largest contributor of Ca isotopes detected during AEROSE dust observation periods; previous studies have traced Ca-rich dust aerosols to the northern latitudes of Morocco and Algeria [29,33]. The very strong correlation (R-squared > 0.79) between Ca-44 and PSA-2 dust emissions was attributed to calcite minerals from dry lake beds and mining activities in Western Sahara.
- –
- K-39 isotopes were very strongly correlated with El Djouf Desert aerosol emissions (PSA-2.5). The correlation between K-39 ratios and PSA-2.5 was a likely indicator of illite minerals near the El Djouf Desert region, according to corroboration with mineral mapping studies. Previous studies have shown that this region could be the second largest dust aerosol emitter in the Sahara, despite its non-attribution in previous PSA designations [25,44].
- –
- PSA-3 dust emissions were very strongly correlated with Fe, Ti, and Sr isotopes. Fe-57 isotope correlations may indicate that iron oxide mineral deposition is occurring at a higher rate following PSA-3 dust emissions; these minerals may have important implications for oceanic carbon cycling since they are limiting nutrients in marine ecosystem productivity.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaufman, Y.J.; Koren, I.; Remer, L.A.; Tanré, D.; Ginoux, P.; Fan, S. Dust Transport and Deposition Observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) Spacecraft over the Atlantic Ocean. J. Geophys. Res. D Atmos. 2005, 110, 10–12. [Google Scholar] [CrossRef]
- d’Almeida, G.A. A Model for Saharan Dust Transport. J. Appl. Meteorol. Clim. 1986, 25, 903–916. [Google Scholar] [CrossRef]
- Kok, J.; Adebiyi, A.; Albani, S.; Balkanski, Y.; Checa-Garcia, R.; Chin, M.; Colarco, P.; Hamilton, D.; Huang, Y.; Ito, A.; et al. Contribution of the World’s Main Dust Source Regions to the Global Cycle of Desert Dust. Atmos. Chem. Phys. 2021, 21, 8169–8193. [Google Scholar] [CrossRef]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental Characterization of Global Sources of Atmospheric Soil Dust Identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) Absorbing Aerosol Product. Rev. Geophys. 2002, 40, 2-1-2–31. [Google Scholar] [CrossRef]
- Washington, R.; Bouet, C.; Cautenet, G.; Mackenzie, E.; Ashpole, I.; Engelstaedter, S.; Lizcano, G.; Henderson, G.M.; Schepanski, K.; Tegen, I. Dust as a Tipping Element: The Bodélé Depression, Chad. Proc. Natl. Acad. Sci. USA 2009, 106, 20564. [Google Scholar] [CrossRef] [PubMed]
- Ismail, S.; Ferrare, R.A.; Browell, E.V.; Kooi, S.A.; Dunion, J.P.; Heymsfield, G.; Notari, A.; Butler, C.F.; Burton, S.; Fenn, M.; et al. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances. J. Atmos. Sci. 2010, 67, 1026–1047. [Google Scholar] [CrossRef]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-Scale Attribution of Anthropogenic and Natural Dust Sources and Their Emission Rates Based on MODIS Deep Blue Aerosol Products. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Miller, R.L.; Knippertz, P.; Pérez García-Pando, C.; Perlwitz, J.P.; Tegen, I. Impact of Dust Radiative Forcing upon Climate. In Mineral Dust: A Key Player in the Earth System; Knippertz, P., Stuut, J.-B.W., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2014; pp. 327–357. ISBN 978-94-017-8978-3. [Google Scholar]
- Flores, A.; Sakai, R.K.; Joseph, E.; Nalli, N.R.; Smirnov, A.; Demoz, B.; Morris, V.R.; Wolfe, D.; Chiao, S. On Saharan Air Layer Stability and Suppression of Convection over the Northern Tropical Atlantic: Case Study Analysis of a 2007 Dust Outflow Event. Atmosphere 2023, 14, 707. [Google Scholar] [CrossRef]
- Hoose, C.; Möhler, O. Heterogeneous Ice Nucleation on Atmospheric Aerosols: A Review of Results from Laboratory Experiments. Atmos. Chem. Phys. 2012, 12, 9817–9854. [Google Scholar] [CrossRef]
- Zhang, Y.; Mahowald, N.; Scanza, R.A.; Journet, E.; Desboeufs, K.; Albani, S.; Kok, J.F.; Zhuang, G.; Chen, Y.; Cohen, D.D.; et al. Modeling the Global Emission, Transport and Deposition of Trace Elements Associated with Mineral Dust. Biogeosciences 2015, 12, 5771–5792. [Google Scholar] [CrossRef]
- Prospero, J.M.; Mayol-Bracero, O.L. Understanding the Transport and Impact of African Dust on the Caribbean Basin. Bull. Am. Meteorol. Soc. 2013, 94, 1329–1337. [Google Scholar] [CrossRef]
- Garrison, V.H.; Majewski, M.S.; Konde, L.; Wolf, R.E.; Otto, R.D.; Tsuneoka, Y. Inhalable Desert Dust, Urban Emissions, and Potentially Biotoxic Metals in Urban Saharan-Sahelian Air. Sci. Total Environ. 2014, 500–501, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Journet, E.; Balkanski, Y.; Harrison, S.P. A New Data Set of Soil Mineralogy for Dust-Cycle Modeling. Atmos. Chem. Phys. 2014, 14, 3801–3816. [Google Scholar] [CrossRef]
- Formenti, P.; Caquineau, S.; Desboeufs, K.; Klaver, A.; Chevaillier, S.; Journet, E.; Rajot, J.L. Mapping the Physico-Chemical Properties of Mineral Dust in Western Africa: Mineralogical Composition. Atmos. Chem. Phys. 2014, 14, 10663–10686. [Google Scholar] [CrossRef]
- Kok, J.F. A Scaling Theory for the Size Distribution of Emitted Dust Aerosols Suggests Climate Models Underestimate the Size of the Global Dust Cycle. Proc. Natl. Acad. Sci. USA 2011, 108, 1016–1021. [Google Scholar] [CrossRef] [PubMed]
- Kok, J.F.; Ridley, D.A.; Zhou, Q.; Miller, R.L.; Zhao, C.; Heald, C.L.; Ward, D.S.; Albani, S.; Haustein, K. Smaller Desert Dust Cooling Effect Estimated from Analysis of Dust Size and Abundance. Nat. Geosci. 2017, 10, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Di Biagio, C.; Boucher, H.; Caquineau, S.; Chevaillier, S.; Cuesta, J.; Formenti, P. Variability of the Infrared Complex Refractive Index of African Mineral Dust: Experimental Estimation and Implications for Radiative Transfer and Satellite Remote Sensing. Atmos. Chem. Phys. 2014, 14, 11093–11116. [Google Scholar] [CrossRef]
- Castellanos, P.; Colarco, P.; Espinosa, W.R.; Guzewich, S.D.; Levy, R.C.; Miller, R.L.; Chin, M.; Kahn, R.A.; Kemppinen, O.; Moosmüller, H.; et al. Mineral Dust Optical Properties for Remote Sensing and Global Modeling: A Review. Remote Sens. Environ. 2024, 303, 113982. [Google Scholar] [CrossRef]
- Ravelo-Pérez, L.M.; Rodríguez, S.; Galindo, L.; García, M.I.; Alastuey, A.; López-Solano, J. Soluble Iron Dust Export in the High Altitude Saharan Air Layer. Atmos. Environ. 2016, 133, 49–59. [Google Scholar] [CrossRef]
- de Baar, H.J.W.; Boyd, P.W.; Coale, K.H.; Landry, M.R.; Tsuda, A.; Assmy, P.; Bakker, D.C.E.; Bozec, Y.; Barber, R.T.; Brzezinski, M.A.; et al. Synthesis of Iron Fertilization Experiments: From the Iron Age in the Age of Enlightenment. J. Geophys. Res. Ocean. 2005, 110. [Google Scholar] [CrossRef]
- Lapointe, B.E.; Brewton, R.A.; Herren, L.W.; Wang, M.; Hu, C.; McGillicuddy, D.J.; Lindell, S.; Hernandez, F.J.; Morton, P.L. Nutrient Content and Stoichiometry of Pelagic Sargassum Reflects Increasing Nitrogen Availability in the Atlantic Basin. Nat. Commun. 2021, 12, 3060. [Google Scholar] [CrossRef] [PubMed]
- Bozlaker, A.; Prospero, J.M.; Fraser, M.P.; Chellam, S. Quantifying the Contribution of Long-Range Saharan Dust Transport on Particulate Matter Concentrations in Houston, Texas, Using Detailed Elemental Analysis. Environ. Sci. Technol. 2013, 47, 10179–10187. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.; Palchan, D.; Krom, M.D.; Angert, A. Elemental and Isotopic Composition of Surface Soils from Key Saharan Dust Sources. Chem. Geol. 2016, 442, 54–61. [Google Scholar] [CrossRef]
- Guinoiseau, D.; Singh, S.P.; Galer, S.J.G.; Abouchami, W.; Bhattacharyya, R.; Kandler, K.; Bristow, C.; Andreae, M.O. Characterization of Saharan and Sahelian Dust Sources Based on Geochemical and Radiogenic Isotope Signatures. Quat. Sci. Rev. 2022, 293, 107729. [Google Scholar] [CrossRef]
- Rodríguez, S.; Alastuey, A.; Alonso-Pérez, S.; Querol, X.; Cuevas, E.; Abreu-Afonso, J.; Viana, M.; Pérez, N.; Pandolfi, M.; De La Rosa, J. Transport of Desert Dust Mixed with North African Industrial Pollutants in the Subtropical Saharan Air Layer. Atmos. Chem. Phys. 2011, 11, 6663–6685. [Google Scholar] [CrossRef]
- Querol, X.; Tobías, A.; Pérez, N.; Karanasiou, A.; Amato, F.; Stafoggia, M.; Pérez García-Pando, C.; Ginoux, P.; Forastiere, F.; Gumy, S.; et al. Monitoring the Impact of Desert Dust Outbreaks for Air Quality for Health Studies. Environ. Int. 2019, 130, 104867. [Google Scholar] [CrossRef] [PubMed]
- Formenti, P.; Schütz, L.; Balkanski, Y.; Desboeufs, K.; Ebert, M.; Kandler, K.; Petzold, A.; Scheuvens, D.; Weinbruch, S.; Zhang, D. Recent Progress in Understanding Physical and Chemical Properties of African and Asian Mineral Dust. Atmos. Chem. Phys. 2011, 11, 8231–8256. [Google Scholar] [CrossRef]
- Scheuvens, D.; Schütz, L.; Kandler, K.; Ebert, M.; Weinbruch, S. Bulk Composition of Northern African Dust and Its Source Sediments—A Compilation. Earth Sci. Rev. 2013, 116, 170–194. [Google Scholar] [CrossRef]
- Morris, V.; Clemente-Colón, P.; Nalli, N.R.; Joseph, E.; Armstrong, R.A.; Detrés, Y.; Goldberg, M.D.; Minnett, P.J.; Lumpkin, R. Measuring Trans-Atlantic Aerosol Transport from Africa. Eos. Trans. Am. Geophys. Union 2006, 87, 565–571. [Google Scholar] [CrossRef]
- Nalli, N.R.; Joseph, E.; Morris, V.R.; Barnet, C.D.; Wolf, W.W.; Wolfe, D.; Minnett, P.J.; Szczodrak, M.; Izaguirre, M.A.; Lumpkin, R.; et al. Multiyear Observations of the Tropical Atlantic Atmosphere: Multidisciplinary Applications of the NOAA Aerosols and Ocean Science Expeditions. Bull. Am. Meteorol. Soc. 2011, 92, 765–789. [Google Scholar] [CrossRef]
- Bourlès, B.; Lumpkin, R.; McPhaden, M.J.; Hernandez, F.; Nobre, P.; Campos, E.; Yu, L.; Planton, S.; Busalacchi, A.; Moura, A.D.; et al. THE PIRATA PROGRAM: History, Accomplishments, and Future Directions. Bull. Am. Meteorol. Soc. 2008, 89, 1111–1126. [Google Scholar] [CrossRef]
- Rodríguez, S.; Calzolai, G.; Chiari, M.; Nava, S.; García, M.I.; López-Solano, J.; Marrero, C.; López-Darias, J.; Cuevas, E.; Alonso-Pérez, S.; et al. Rapid Changes of Dust Geochemistry in the Saharan Air Layer Linked to Sources and Meteorology. Atmos. Environ. 2020, 223, 117186. [Google Scholar] [CrossRef]
- Fitzgerald, E.; Ault, A.P.; Zauscher, M.D.; Mayol-Bracero, O.L.; Prather, K.A. Comparison of the Mixing State of Long-Range Transported Asian and African Mineral Dust. Atmos. Environ. 2015, 115, 19–25. [Google Scholar] [CrossRef]
- Minnett, P.J.; Knuteson, R.O.; Best, F.A.; Osborne, B.J.; Hanafin, J.A.; Brown, O.B. The Marine-Atmospheric Emitted Radiance Interferometer: A High-Accuracy, Seagoing Infrared Spectroradiometer. J. Atmos. Ocean Technol. 2001, 18, 994–1013. [Google Scholar] [CrossRef]
- Nalli, N.R.; Clemente-Colón, P.; Minnett, P.J.; Szczodrak, M.; Morris, V.; Joseph, E.; Goldberg, M.D.; Barnet, C.D.; Wolf, W.W.; Jessup, A.; et al. Ship-Based Measurements for Infrared Sensor Validation during Aerosol and Ocean Science Expedition 2004. J. Geophys. Res. Atmos. 2006, 111, D09S04. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.N.; Slutsker, I.; Giles, D.M.; McClain, C.R.; Eck, T.F.; Sakerin, S.M.; Macke, A.; Croot, P.; Zibordi, G.; et al. Maritime Aerosol Network as a Component of Aerosol Robotic Network. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Watson, J.G.; Chen, L.W.A.; Chow, J.C.; Doraiswamy, P.; Lowenthal, D.H. Source Apportionment: Findings from the U.S. Supersites Program. J. Air Waste Manag. Assoc. 2008, 58, 265–288. [Google Scholar] [CrossRef] [PubMed]
- Cheng, I.; Zhang, L.; Blanchard, P.; Dalziel, J.; Tordon, R. Concentration-Weighted Trajectory Approach to Identifying Potential Sources of Speciated Atmospheric Mercury at an Urban Coastal Site in Nova Scotia, Canada. Atmos. Chem. Phys. 2013, 13, 6031–6048. [Google Scholar] [CrossRef]
- Kim, J.E.; Kim, I.S.; Won, S.R.; Wee, D. A Simplified Potential Source Density Function Based on Predefined Discretization. J. Eng. Res. 2024. [Google Scholar] [CrossRef]
- Zeng, Y.; Hopke, P.K. A Study of the Sources of Acid Precipitation in Ontario, Canada. Atmos. Environ. 1989, 23, 1499–1509. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. Noaa’s Hysplit Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Hsu, N.C.; Lee, J.; Sayer, A.M.; Kim, W.; Bettenhausen, C.; Tsay, S.C. VIIRS Deep Blue Aerosol Products Over Land: Extending the EOS Long-Term Aerosol Data Records. J. Geophys. Res. Atmos. 2019, 124, 4026–4053. [Google Scholar] [CrossRef]
- Yu, Y.; Kalashnikova, O.V.; Garay, M.J.; Lee, H.; Notaro, M. Identification and Characterization of Dust Source Regions Across North Africa and the Middle East Using MISR Satellite Observations. Geophys. Res. Lett. 2018, 45, 6690–6701. [Google Scholar] [CrossRef]
- Di Biagio, C.; Formenti, P.; Balkanski, Y.; Caponi, L.; Cazaunau, M.; Pangui, E.; Journet, E.; Nowak, S.; Caquineau, S.; Andreae, O.M.; et al. Global Scale Variability of the Mineral Dust Long-Wave Refractive Index: A New Dataset of in Situ Measurements for Climate Modeling and Remote Sensing. Atmos. Chem. Phys. 2017, 17, 1901–1929. [Google Scholar] [CrossRef]
- Kandler, K.; Benker, N.; Bundke, U.; Cuevas, E.; Ebert, M.; Knippertz, P.; Rodríguez, S.; Schütz, L.; Weinbruch, S. Chemical Composition and Complex Refractive Index of Saharan Mineral Dust at Izaña, Tenerife (Spain) Derived by Electron Microscopy. Atmos. Environ. 2007, 41, 8058–8074. [Google Scholar] [CrossRef]
- El Bamiki, R.; Raji, O.; Ouabid, M.; Elghali, A.; Yazami, O.K.; Bodinier, J.L. Phosphate Rocks: A Review of Sedimentary and Igneous Occurrences in Morocco. Minerals 2021, 11, 1137. [Google Scholar] [CrossRef]
- Nickovic, S.; Vukovic, A.; Vujadinovic, M.; Djurdjevic, V.; Pejanovic, G. Technical Note: High-Resolution Mineralogical Database of Dust-Productive Soils for Atmospheric Dust Modeling. Atmos. Chem. Phys. 2012, 12, 845–855. [Google Scholar] [CrossRef]
- Wu, C.; Lin, Z.; Liu, X. The Global Dust Cycle and Uncertainty in CMIP5 (Coupled Model Intercomparison Project Phase 5) Models. Atmos. Chem. Phys. 2020, 20, 10401–10425. [Google Scholar] [CrossRef]
- Albani, S.; Mahowald, N.M.; Perry, A.T.; Scanza, R.A.; Zender, C.S.; Heavens, N.G.; Maggi, V.; Kok, J.F.; Otto-Bliesner, B.L. Improved Dust Representation in the Community Atmosphere Model. J. Adv. Model. Earth Syst. 2015, 6, 541–570. [Google Scholar] [CrossRef]
Dust Events | Mean PSAF for PSA-1 | Mean PSAF for PSA-2 | Mean PSAF for PSA-2.5 | Mean PSAF for PSA-3 | Mean PSAF for PSA-Hoggar |
---|---|---|---|---|---|
DE1 | 0.089 | 0.932 | 1.096 | 0 | 0 |
DE2 | 0 | 1.206 | 0.276 | 0 | 0 |
DE3 | 0.006 | 0.487 | 0.810 | 0.003 | 0 |
TE1 | 0 | 0.959 | 1.875 | 2.435 | 0.610 |
TE2 | 0 | 1.601 | 1.859 | 1.123 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeager, D.E.; Morris, V.R. Distinguishing Saharan Dust Plume Sources in the Tropical Atlantic Using Elemental Indicators. Atmosphere 2024, 15, 554. https://doi.org/10.3390/atmos15050554
Yeager DE, Morris VR. Distinguishing Saharan Dust Plume Sources in the Tropical Atlantic Using Elemental Indicators. Atmosphere. 2024; 15(5):554. https://doi.org/10.3390/atmos15050554
Chicago/Turabian StyleYeager, Daniel E., and Vernon R. Morris. 2024. "Distinguishing Saharan Dust Plume Sources in the Tropical Atlantic Using Elemental Indicators" Atmosphere 15, no. 5: 554. https://doi.org/10.3390/atmos15050554
APA StyleYeager, D. E., & Morris, V. R. (2024). Distinguishing Saharan Dust Plume Sources in the Tropical Atlantic Using Elemental Indicators. Atmosphere, 15(5), 554. https://doi.org/10.3390/atmos15050554