Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (274)

Search Parameters:
Keywords = atmospheric VOCs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6694 KiB  
Article
Spatiotemporal Assessment of Benzene Exposure Characteristics in a Petrochemical Industrial Area Using Mobile-Extraction Differential Optical Absorption Spectroscopy (Me-DOAS)
by Dong keun Lee, Jung-min Park, Jong-hee Jang, Joon-sig Jung, Min-kyeong Kim, Jaeseok Heo and Duckshin Park
Toxics 2025, 13(8), 655; https://doi.org/10.3390/toxics13080655 - 31 Jul 2025
Viewed by 250
Abstract
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in [...] Read more.
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in the Ulsan petrochemical complex, South Korea. A vehicle-mounted Me-DOAS system conducted monthly measurements throughout 2024, capturing data during four daily intervals to evaluate diurnal variation. Routes included perimeter loops and grid-based transects within core industrial zones. The highest benzene concentrations were observed in February (mean: 64.28 ± 194.69 µg/m3; geometric mean: 5.13 µg/m3), with exceedances of the national annual standard (5 µg/m3) in several months. Notably, nighttime and early morning sessions showed elevated levels, suggesting contributions from nocturnal operations and meteorological conditions such as atmospheric inversion. A total of 179 exceedances (≥30 µg/m3) were identified, predominantly in zones with benzene-handling activities. Correlation analysis revealed a significant relationship between high concentrations and specific emission sources. These results demonstrate the utility of Me-DOAS in capturing spatiotemporal emission dynamics and support its application in exposure risk assessment and industrial emission control. The findings provide a robust framework for targeted management strategies and call for integration with source apportionment and dispersion modeling tools. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

14 pages, 6012 KiB  
Article
Decoding the Primacy of Transportation Emissions of Formaldehyde Pollution in an Urban Atmosphere
by Shi-Qi Liu, Hao-Nan Ma, Meng-Xue Tang, Yu-Ming Shao, Ting-Ting Yao, Ling-Yan He and Xiao-Feng Huang
Toxics 2025, 13(8), 643; https://doi.org/10.3390/toxics13080643 - 30 Jul 2025
Viewed by 272
Abstract
Understanding the differential impacts of emission sources of volatile organic compounds (VOCs) on formaldehyde (HCHO) levels is pivotal to effectively mitigating key photochemical radical precursors, thereby enhancing the regulation of atmospheric oxidation capacity (AOC) and ozone formation. This investigation systematically selected and analyzed [...] Read more.
Understanding the differential impacts of emission sources of volatile organic compounds (VOCs) on formaldehyde (HCHO) levels is pivotal to effectively mitigating key photochemical radical precursors, thereby enhancing the regulation of atmospheric oxidation capacity (AOC) and ozone formation. This investigation systematically selected and analyzed year-long VOC measurements across three urban zones in Shenzhen, China. Photochemical age correction methods were implemented to develop the initial concentrations of VOCs before source apportionment; then Positive Matrix Factorization (PMF) modeling resolved six primary sources: solvent usage (28.6–47.9%), vehicle exhaust (24.2–31.2%), biogenic emission (13.8–18.1%), natural gas (8.5–16.3%), gasoline evaporation (3.2–8.9%), and biomass burning (0.3–2.4%). A machine learning (ML) framework incorporating Shapley Additive Explanations (SHAP) was subsequently applied to evaluate the influence of six emission sources on HCHO concentrations while accounting for reaction time adjustments. This machine learning-driven nonlinear analysis demonstrated that vehicle exhaust nearly always emerged as the primary anthropogenic contributor in diverse functional zones and different seasons, with gasoline evaporation as another key contributor, while the traditional reactivity metric method, ozone formation potential (OFP), tended to underestimate the role of the two sources. This study highlights the primacy of strengthening emission reduction of transportation sectors to mitigate HCHO pollution in megacities. Full article
Show Figures

Graphical abstract

18 pages, 5900 KiB  
Article
Ambient Air VOC Levels in an Industrial Area of Turkey: Levels, Spatial Distribution, and Health Risk Assessment
by Aykan Karademir, Ercan Arpaz, Şenay Çetin Doğruparmak and Gülsün Özgül
Toxics 2025, 13(7), 540; https://doi.org/10.3390/toxics13070540 - 27 Jun 2025
Viewed by 350
Abstract
The seasonal variations, spatial distribution, and health risk assessment of 13 volatile organic compounds (VOCs), particularly benzene, toluene, ethyl benzene, and xylene (BTEX), in the ambient air of Dilovası, a Turkish city with unplanned urbanization, are presented in this study. Using passive tube [...] Read more.
The seasonal variations, spatial distribution, and health risk assessment of 13 volatile organic compounds (VOCs), particularly benzene, toluene, ethyl benzene, and xylene (BTEX), in the ambient air of Dilovası, a Turkish city with unplanned urbanization, are presented in this study. Using passive tube sampling, at 22 locations in Dilovası, air samples were collected separately for the summer and winter, and concentrations were measured using thermal desorption GC-MS. Pollution maps were created using the Golden Software Surfer program and QGIS Desktop 3.42.0 software program. A health risk evaluation was conducted using the US Environmental Protection Agency’s (USEPA) approach. The study’s findings demonstrated that the atmospheric VOC concentrations at the sampling locations varied significantly by season and location. According to a carcinogenic risk assessment, residents in this area may be more susceptible to cancer if they are exposed to benzene, ethylbenzene, and naphthalene over an extended period. A non-carcinogenic risk (HQ) evaluation determined that while there was no significant risk at 21 measurement points, there was a substantial risk for non-cancer health effects at 1 measurement point. The significance of regulatory policies and pollution control technologies has once again emerged in this context. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

19 pages, 1633 KiB  
Article
Machine Learning Modeling Reveals Divergent Air Pollutant Responses to Stringent Emission Controls in the Yangtze River Delta Region
by Qiufang Yao, Linhao Wang, Wenjing Qiu, Yutong Shi, Qi Xu, Yanping Xiao, Jiacheng Zhou, Shilong Li, Haobin Zhong and Jinsong Liu
Atmosphere 2025, 16(6), 710; https://doi.org/10.3390/atmos16060710 - 12 Jun 2025
Viewed by 1019
Abstract
Ozone (O3) and fine particulate matter (PM2.5) are critical atmospheric pollutants whose complex chemical coupling presents significant challenges for multi-pollutant control strategies. This study investigated the spatiotemporal variations and driving mechanisms of O3 and PM2.5 in Jiaxing, [...] Read more.
Ozone (O3) and fine particulate matter (PM2.5) are critical atmospheric pollutants whose complex chemical coupling presents significant challenges for multi-pollutant control strategies. This study investigated the spatiotemporal variations and driving mechanisms of O3 and PM2.5 in Jiaxing, China, during different COVID-19 lockdown periods from November 2019 to January 2024. Using high-resolution monitoring data, random forest modeling, and HYSPLIT backward trajectory analysis, we quantified the relative contributions of anthropogenic emissions, meteorological conditions, and regional transport to the formation and variation of O3 and PM2.5 concentrations. The results revealed a distinct inverse relationship between O3 and PM2.5, with meteorologically normalized PM2.5 decreasing significantly (−5.0 μg/m3 compared to the pre-lockdown baseline of 0.6 μg/m3), while O3 increased substantially (15.2 μg/m3 compared to the baseline of 5.3 μg/m3). Partial dependency analysis revealed that PM2.5-O3 relationships evolved from linear to non-linear patterns across lockdown periods, while NO2-O3 interactions indicated shifts from VOC-limited to NOx-limited regimes. Regional transport patterns exhibited significant temporal variations, with source regions shifting from predominantly northern areas pre-lockdown to more diverse directional contributions afterward. Notably, the partial lockdown period demonstrated the most balanced pollution control outcomes, maintaining reduced PM2.5 levels while avoiding O3 increases. These findings provide critical insights for developing targeted multi-pollutant control strategies in the Yangtze River Delta region and similar urban environments. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

18 pages, 2014 KiB  
Article
The Variation in Emission Characteristics and Sources of Atmospheric VOCs in a Polymer Material Chemical Industrial Park in the Yangtze River Delta Region, China
by Wenjuan Li, Jian Wu, Chengcheng Xu and Rupei Wang
Atmosphere 2025, 16(6), 687; https://doi.org/10.3390/atmos16060687 - 6 Jun 2025
Viewed by 423
Abstract
To characterize the temporal variation in and source contribution of volatile organic compounds (VOCs) in a polymer industrial park, a two-year offline monitoring campaign (2018–2019) at Shangyu Industrial Park in the Yangtze River Delta was conducted. The study quantified the VOCs composition, seasonal [...] Read more.
To characterize the temporal variation in and source contribution of volatile organic compounds (VOCs) in a polymer industrial park, a two-year offline monitoring campaign (2018–2019) at Shangyu Industrial Park in the Yangtze River Delta was conducted. The study quantified the VOCs composition, seasonal variation, and ozone formation potential (OFP), with source apportionment performed using the Positive Matrix Factorization (PMF) model. During the observation period, the average concentration of total VOCs in 2019 was 286.1 ppb, showing a 22.6% reduction compared to that in 2018. Seasonal analysis revealed decreases in the total VOCs concentration by 41.8%, 38.4%, and 6.1% during spring, summer and winter, respectively, while an increase of 13.8% was observed in autumn, primarily attributed to industrial restructuring in the second half of 2019. Notable reductions were observed in specific VOCs components: oxygen-containing volatile organic compounds (OVOCs), alkane, halogenated hydrocarbon, alkene, and alkyne decreased by 34.5%, 27.9%, 26.3%, 24.6%, and 20.4%, respectively. The average OFP in 2019 was 2402.0 μg/m3, representing a 1.8% reduction from 2018. Contributions to total OFP from alkane, OVOCs, alkyne, and alkene decreased by 32.9%, 26.0%, 20.7%, and 15.0%, respectively, while halogenated hydrocarbons and aromatic hydrocarbons increased by 50.1% and 7.0%. PMF analysis identified four major VOCs sources: industrial production (44.9%), biomass combustion (17.8%), vehicle exhaust (11.0%), and solvent usage (26.3%). From 2018 to 2019, contributions from vehicle exhaust and solvent usage increased by 4.8% and 5.9%, respectively, while industrial production and biomass combustion decreased by 10.5% and 0.3%. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

22 pages, 2881 KiB  
Article
Characteristics of Ship-Emitted VOCs and Their Contributions to Urban Atmospheric VOCs in Guangzhou, China
by Xueying Zeng, Liwei Wang, Haining Wu, Chenglei Pei, Hong Ju, Junjie He, Ming Liu, Mei Li, Daiwei Chen, Yongjiang Xu, Wenlong Tang, Jinchi Li and Chunlei Cheng
Toxics 2025, 13(6), 479; https://doi.org/10.3390/toxics13060479 - 5 Jun 2025
Viewed by 475
Abstract
With the implementation of China’s low-sulfur fuel policy, the characteristics of volatile organic compounds (VOCs) emitted from ship exhausts have changed significantly, and the influence of these emissions on the local atmosphere of port cities needs to be evaluated. In this study, the [...] Read more.
With the implementation of China’s low-sulfur fuel policy, the characteristics of volatile organic compounds (VOCs) emitted from ship exhausts have changed significantly, and the influence of these emissions on the local atmosphere of port cities needs to be evaluated. In this study, the characteristics of localized source profiles of ship-emitted VOCs with respect to different ship types, fuel types, and engine operating conditions were analyzed in Guangzhou Port. Oxygenated VOCs (OVOCs) dominated in ferry (91.1%), cargo ship (87.0%), and tugboat (54.4% ± 7.9%) emissions (diesel fuel), while alkanes (56.3% ± 1.6%) and alkenes (36.0% ± 0.9%) were major species in multi-purpose ship (LNG fuel) emissions. These results suggest the dominance of OVOCs in the exhaust emissions of diesel-type ships and the prominent difference in ship-emitted VOCs between diesel and LNG fuel ships, which also influenced the emission characteristics of VOCs from main and auxiliary engines. Based on the measured source profiles, ship emissions contributed 18.2% ± 0.8% (summer), 8.7% ± 1.9% (winter), 6.0% ± 1.1% (spring), and 5.6% ± 1.7% (autumn) to VOCs in the port area, and 7.8% ± 1.5% in July and 5.0% ± 0.5% in September in the urban area. An air mass trajectory analysis revealed that the south wind transported the ship exhaust emissions to the port area and inland urban area, which explained the higher contributions of ship emissions in summer and more ship emissions received in the port area than in the urban area. Therefore, estimating the influence of ship emissions on ambient air quality in port cities requires integrating local ship source profiles, locations, and meteorological conditions. This study provides insights into the ship-emitted VOC characteristics given China’s low-sulfur fuel policy and their differential contributions to urban atmospheric VOCs. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

12 pages, 1295 KiB  
Article
Risk Assessment and Management Strategies for Odor Release During the Emergency Excavation of VOC-Contaminated Wastes
by Xiaowei Xu, Jun Zhang, Yi Wang, Haifeng Tu, Yang Lv, Zehua Zhao, Dapeng Zhang and Qi Yu
Toxics 2025, 13(6), 457; https://doi.org/10.3390/toxics13060457 - 30 May 2025
Viewed by 351
Abstract
This study examines the assessment and management strategies for odor risks during emergency cleanup of VOC-contaminated waste. By analyzing illegally dumped VOC waste, the impact on odor intensity levels and exceedance probabilities in nearby residential areas was evaluated. Utilizing a VOC source emission [...] Read more.
This study examines the assessment and management strategies for odor risks during emergency cleanup of VOC-contaminated waste. By analyzing illegally dumped VOC waste, the impact on odor intensity levels and exceedance probabilities in nearby residential areas was evaluated. Utilizing a VOC source emission model, a Gaussian plume dispersion model, and Monte Carlo simulations under various meteorological conditions, the effectiveness of the control measures was assessed. Key pollutants included ethylbenzene, toluene, styrene, and m/p-xylene, which, despite posing minimal short-term health risks (PHI: 0.17–0.64), exhibited significant odor risks (Odor PHI: 127–1156). At 20 m from the source, the probability of the odor intensity exceeding Level 2.5 approached 100%, decreasing to 85% at 50 m and further declining with distance. Atmospheric stability shifts—from very unstable (Class A) to stable (Class F)—increased the odor intensity from 0.5 to 2.5. Under moderately stable conditions (Class E), m/p-xylene had a 44.2% probability of exceeding an odor intensity level of 2.5. Even at 250 m, the odor intensity levels ranged between 1.2 and 1.7, remaining perceptible. Effective mitigation strategies include establishing appropriate buffer distances and using adsorption materials like activated carbon. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

31 pages, 1087 KiB  
Review
Global Trends in Air Pollution Modeling over Cities Under the Influence of Climate Variability: A Review
by William Camilo Enciso-Díaz, Carlos Alfonso Zafra-Mejía and Yolanda Teresa Hernández-Peña
Environments 2025, 12(6), 177; https://doi.org/10.3390/environments12060177 - 28 May 2025
Cited by 1 | Viewed by 861
Abstract
The objective of this article is to conduct a review to analyze global trends in the use of air pollution models under the influence of climate variability (CV) over urban areas. Five scientific databases were used (2013–2024): Scopus, ScienceDirect, SpringerLink, Web of Science, [...] Read more.
The objective of this article is to conduct a review to analyze global trends in the use of air pollution models under the influence of climate variability (CV) over urban areas. Five scientific databases were used (2013–2024): Scopus, ScienceDirect, SpringerLink, Web of Science, and Google Scholar. The frequency of citations of the variables of interest in the selected scientific databases was analyzed by means of an index using quartiles (Q). The results showed a hierarchy in the use of models: regional climate models/RCMs (Q3) > statistical models/SMs (Q3) > chemical transport models/CTMs (Q4) > machine learning models/MLMs (Q4) > atmospheric dispersion models/ADMs (Q4). RCMs, such as WRF, were essential for generating high-resolution projections of air pollution, crucial for local impact assessments. SMs, such as GAM, excelled in modeling nonlinear relationships between air pollutants and climate variables. CTMs, such as WRF-Chem, simulated detailed atmospheric chemical processes vital for understanding pollutant formation and transport. MLMs, such as ANNs, improved the accuracy of predictions and uncovered complex patterns. ADMs, such as HYSPLIT, evaluated air pollutant dispersion, informing regulatory strategies. The most studied pollutants globally were O3 (Q3) > PM (Q3) > VOCs (Q4) > NOx (Q4) > SO2 (Q4), with models adapting to their specific characteristics. Temperature emerged as the dominant climate variable, followed by wind, precipitation, humidity, and solar radiation. There was a clear differentiation in the selection of models and variables between high- and low-income countries. CTMs predominated in high-income countries, driven by their ability to simulate complex physicochemical processes, while SMs were preferred in low-income countries, due to their simplicity and lower resource requirements. Temperature was the main climate variable, and precipitation stood out in low-income countries for its impact on PM removal. VOCs were the most studied pollutant in high-income countries, and NOx in low-income countries, reflecting priorities and technical capabilities. The coupling between regional atmospheric models and city-scale air quality models was vital; future efforts should emphasize intra-urban models for finer urban pollution resolution. This study highlights how national resources and priorities influence air pollution research over cities under the influence of CV. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Figure 1

10 pages, 2024 KiB  
Article
Bifunctional 4,5-Diiodoimidazole Interfacial Engineering Enables Simultaneous Defect Passivation and Crystallization Control for High-Efficiency Inverted Perovskite Solar Cells
by Huaxi Gao, Yu Zhang, Ihtesham Ghani, Min Xin, Danish Khan, Junyu Wang, Di Lu, Tao Cao, Wei Chen, Xin Yang and Zeguo Tang
Nanomaterials 2025, 15(10), 766; https://doi.org/10.3390/nano15100766 - 20 May 2025
Viewed by 483
Abstract
Despite the rapid efficiency advancement of perovskite solar cells (PSCs), non-radiative recombination at the buried interface between self-assembled monolayers (SAMs) and perovskite remains a critical bottleneck, primarily due to interfacial defects and energy level mismatch. In this study, we demonstrate a bifunctional interlayer [...] Read more.
Despite the rapid efficiency advancement of perovskite solar cells (PSCs), non-radiative recombination at the buried interface between self-assembled monolayers (SAMs) and perovskite remains a critical bottleneck, primarily due to interfacial defects and energy level mismatch. In this study, we demonstrate a bifunctional interlayer engineering strategy by introducing 4,5-diiodoimidazole (4,5-Di-I) at the Me-4PACz/perovskite interface. This approach uniquely addresses two fundamental limitations of SAM-based interfaces: the insufficient defect passivation capability of conventional Me-4PACz due to steric hindrance effects and the poor perovskite wettability on hydrophobic SAM surfaces that exacerbates interfacial voids. The imidazole derivatives not only form strong Pb–N coordination bonds with undercoordinated Pb2+ but also modulate the surface energy of Me-4PACz, enabling the growth of pinhole-free perovskite films with preferential crystal orientation. The champion device with 4,5-Di-I modification achieves a power conversion efficiency (PCE) of 24.10%, with a VOC enhancement from 1.12 V to 1.14 V, while maintaining 91% of initial PCE after 1300 h in N₂ atmosphere (25 °C), demonstrating superior stability under ISOS-L-2 protocols. This work establishes a universal strategy for interfacial multifunctionality design, proving that simultaneous defect suppression and crystallization control can break the long-standing trade-off between efficiency and stability in solution-processed photovoltaics. Full article
(This article belongs to the Special Issue Advanced Nanoscale Materials and (Flexible) Devices)
Show Figures

Graphical abstract

20 pages, 2025 KiB  
Article
A Monitoring and Sampling Platform for Air Pollutants on a Rotary-Wing Unmanned Aerial Vehicle: Development and Application
by Xiaodie Kong, Xiaoya Dou, Hefan Liu, Guangming Shi, Xingyu Xiang, Qinwen Tan, Danlin Song, Fengxia Huang, Xiaoling Zhou, Hongbin Jiang, Pu Wang, Li Zhou and Fumo Yang
Atmosphere 2025, 16(5), 613; https://doi.org/10.3390/atmos16050613 - 17 May 2025
Viewed by 481
Abstract
Complex air pollution, including particulate matter and ozone, is a significant environmental issue in China, with volatile organic compounds (VOCs) as key precursors. Traditional ground-based monitoring methods struggle to capture the vertical distribution and changes of pollutants in the troposphere. To address this, [...] Read more.
Complex air pollution, including particulate matter and ozone, is a significant environmental issue in China, with volatile organic compounds (VOCs) as key precursors. Traditional ground-based monitoring methods struggle to capture the vertical distribution and changes of pollutants in the troposphere. To address this, we developed a vertical monitoring and sampling platform using a quadcopter unmanned aerial vehicle (UAV). The platform, equipped with lightweight quartz sampling canisters and miniaturized sensors, collects air samples for VOC analysis and vertical data on meteorological parameters and particulate matter. Performance tests showed the quartz canisters had less than 15% adsorption loss, with sample storage stability exceeding 80% over three days. Sensor data showed strong correlations with standard instruments (R2 > 0.80). Computational fluid dynamics simulations optimized the sampler’s inlet position and ascertained that ascending flight mitigates rotor-induced air recirculation. Field campaigns were conducted at six sites along the Chengdu Metropolitan Circle Ring Expressway. Vertical data from 0~300 m revealed particulate matter concentrations peaked at 50~70 m. Near-surface VOCs were dominated by alkanes, while aromatics were found concentrated at 150~250 m, indicating significant regional transport influences. The results confirmed the platform’s effectiveness for pollutant distribution analysis. Full article
Show Figures

Figure 1

17 pages, 539 KiB  
Article
Assessment of Odour Emission During the Composting Process by Using Olfactory Methods and Gas Sensor Array Measurements
by Mirosław Szyłak-Szydłowski, Wojciech Kos, Rafał Tarakowski, Miłosz Tkaczyk and Piotr Borowik
Sensors 2025, 25(10), 3153; https://doi.org/10.3390/s25103153 - 16 May 2025
Viewed by 504
Abstract
The final stage of green waste treatment typically occurs in composting plants, where waste is biologically stabilised through the activity of microorganisms. The composting process is accompanied by the emission of volatile organic compounds responsible for odour perception. Such nuisance odours are commonly [...] Read more.
The final stage of green waste treatment typically occurs in composting plants, where waste is biologically stabilised through the activity of microorganisms. The composting process is accompanied by the emission of volatile organic compounds responsible for odour perception. Such nuisance odours are commonly regarded as atmospheric air pollutants and are subject to monitoring and legal regulation. Olfactometry remains the standard method for quantifying odours. Unfortunately, due to its dependence on human evaluators, it is often regarded as both labour-intensive and costly. Electronic noses are an emerging measurement method that could be used for such applications. This manuscript reports experimental measurements that were carried out at a composting facility specialising in the processing of biodegradable materials. VOC concentration was measured by the TSI OmniTrak™ Solution. The efficiency of the deodourisation process was evaluated by means of field olfactometry. A gas sensor array of a PEN3 electronic nose was used for the on-site measurements of emitted gas characteristics. A strong correlation between measurements by the three distinct techniques was confirmed. Three different phases of the composting process could be distinguished in the collected results. Full article
(This article belongs to the Special Issue Gas Recognition in E-Nose System)
Show Figures

Figure 1

29 pages, 2615 KiB  
Review
A Review: Applications of MOX Sensors from Air Quality Monitoring to Biomedical Diagnosis and Agro-Food Quality Control
by Elisabetta Poeta, Estefanía Núñez-Carmona and Veronica Sberveglieri
J. Sens. Actuator Netw. 2025, 14(3), 50; https://doi.org/10.3390/jsan14030050 - 9 May 2025
Viewed by 2916
Abstract
Metal oxide semiconductor (MOX) sensors are emerging as a groundbreaking technology due to their remarkable features: high sensitivity, rapid response time, low cost, and potential for miniaturization. Their ability to detect volatile organic compounds (VOCs) in real time makes them ideal tools for [...] Read more.
Metal oxide semiconductor (MOX) sensors are emerging as a groundbreaking technology due to their remarkable features: high sensitivity, rapid response time, low cost, and potential for miniaturization. Their ability to detect volatile organic compounds (VOCs) in real time makes them ideal tools for applications across various fields, including environmental monitoring, medicine, and the food industry. This paper explores the evolution and growing utilization of MOX sensors, with a particular focus on atmospheric pollution monitoring, non-invasive disease diagnostics through the analysis of volatile compounds emitted by the human body, and food quality assessment. The crucial role of MOX sensors in monitoring the freshness of food and water, detecting chemical and biological contamination, and identifying food fraud is specifically examined. The rapid advancement of this technology offers new opportunities to improve quality of life, food safety, and public health, positioning MOX sensors as a key tool to address future challenges in these vital sectors. Full article
(This article belongs to the Section Actuators, Sensors and Devices)
Show Figures

Figure 1

14 pages, 7404 KiB  
Article
Electrospun Bis(2,4,4-trimethylpentyl) Tetradecyltrihexylphosphinate/Polyacrylonitrile Nanofiber Membranes with Enhanced Benzene, Toluene, and Xylene Adsorption Performance and Regenerability
by Changchang Wang, Xinrong Tao and Fengjen Chu
Nanomaterials 2025, 15(10), 711; https://doi.org/10.3390/nano15100711 - 9 May 2025
Viewed by 340
Abstract
Volatile organic compounds (VOCs) significantly contribute to atmospheric pollution and present considerable health hazards. This study involves the fabrication of a novel ionic liquid/polymer nanofiber membrane, [P(14)666]TMPP/PAN, using electrospinning, and its subsequent evaluation for adsorption performance concerning typical aromatic volatile organic [...] Read more.
Volatile organic compounds (VOCs) significantly contribute to atmospheric pollution and present considerable health hazards. This study involves the fabrication of a novel ionic liquid/polymer nanofiber membrane, [P(14)666]TMPP/PAN, using electrospinning, and its subsequent evaluation for adsorption performance concerning typical aromatic volatile organic compounds—benzene, toluene, and xylene. The membranes were methodically analysed utilising SEM, TGA, FTIR, and XRD techniques. Adsorption tests indicated that augmenting the [P(14)666]TMPP loading improved VOC uptake, with the 80 wt% ionic liquid membrane attaining maximum adsorption capacities of 1466.81, 569.14, and 456.29 mg/g for benzene, toluene, and xylene, respectively—signifying enhancements of 23.6-, 4.8-, and 8.4-fold compared to pristine PAN. Furthermore, regeneration studies validated consistent performance across four adsorption–desorption cycles. The results underscore the efficacy of electrospun [P(14)666]TMPP/PAN membranes as reusable adsorbents for the elimination of volatile organic compounds in air purification applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

20 pages, 1636 KiB  
Article
Field Comparison of Active and Passive Soil Gas Sampling Techniques for VOC Monitoring at Contaminated Sites
by Raffaella Borrelli, Alessandra Cecconi, Alessandro Oldani, Federico Fuin, Renata Emiliani, Fabrizio Cacciari, Antonella Vecchio, Camilla Lanari, Federico Villani, Guido Bonfedi, Donatella Giacopetti, Renato Baciocchi and Iason Verginelli
Environments 2025, 12(5), 141; https://doi.org/10.3390/environments12050141 - 26 Apr 2025
Viewed by 528
Abstract
This study presented a comprehensive comparison of soil gas sampling methodologies to monitor volatile organic compounds (VOCs) at two industrial sites in northern Italy. Utilizing active sampling techniques, such as stainless-steel canisters, vacuum bottles, and sorbent tubes, alongside passive methods like low-density polyethylene [...] Read more.
This study presented a comprehensive comparison of soil gas sampling methodologies to monitor volatile organic compounds (VOCs) at two industrial sites in northern Italy. Utilizing active sampling techniques, such as stainless-steel canisters, vacuum bottles, and sorbent tubes, alongside passive methods like low-density polyethylene (PE) membranes, sorbent pens, and Waterloo Membrane Samplers (WMS), the research examines their effectiveness under varied environmental conditions. Five field campaigns were conducted in two areas of the industrial sites characterized by BTEX and chlorinated solvent contamination. The results highlighted that active sampling, while expensive, provides real-time, high-resolution VOC concentration data, often outperforming passive methods for heavier compounds (e.g., hexachlorobutadiene). However, using the active systems in certain campaigns, challenges such as high soil humidity or atmospheric air infiltration were observed, resulting in an underestimation of the soil gas concentrations. Passive sampling systems demonstrated cost-effective, efficient alternatives, offering consistent spatial and temporal coverage. These methods showed alignment with active techniques for lighter compounds (e.g., TCE and BTEX) but faced limitations in sorbent saturation and equilibrium time for heavier VOCs (e.g., hexachlorobutadiene), requiring adjustments in exposure duration to enhance accuracy. PE samplers provided results comparable to active methods, especially for BTEX and TCE, while WMS and sorbent pens exhibited lower sensitivity for certain analytes. This underscores the importance of optimizing sampler configurations and deployment strategies. The findings emphasize the value of integrating active and passive approaches to achieve robust VOC assessments in heterogeneous subsurface environments. Full article
Show Figures

Figure 1

24 pages, 3161 KiB  
Review
Pollution Characterization and Environmental Impact Evaluation of Atmospheric Intermediate Volatile Organic Compounds: A Review
by Yongxin Yan, Yan Nie, Xiaoshuai Gao, Xiaoyu Yan, Yuanyuan Ji, Junling Li and Hong Li
Toxics 2025, 13(4), 318; https://doi.org/10.3390/toxics13040318 - 19 Apr 2025
Cited by 1 | Viewed by 614
Abstract
Atmospheric intermediate volatile organic compounds (IVOCs) are important precursors of secondary organic aerosols (SOAs), and in-depth research on them is crucial for atmospheric pollution control. This review systematically synthesizes global advancements in understanding IVOC sources, emissions characterization, compositional characteristics, ambient concentrations, SOA contributions, [...] Read more.
Atmospheric intermediate volatile organic compounds (IVOCs) are important precursors of secondary organic aerosols (SOAs), and in-depth research on them is crucial for atmospheric pollution control. This review systematically synthesizes global advancements in understanding IVOC sources, emissions characterization, compositional characteristics, ambient concentrations, SOA contributions, and health risk assessments. IVOCs include long-chain alkanes (C12~C22), sesquiterpenes, polycyclic aromatic hydrocarbons, monocyclic aromatic hydrocarbons, phenolic compounds, ketones, esters, organic acids, and heterocyclic compounds, which originate from primary emissions and secondary formation. Primary emissions include direct emissions from anthropogenic and biogenic sources, while secondary formation mainly results from radical reactions or particulate surface reactions. Recently, the total IVOC emissions have decreased in some countries, while emissions from certain sources, such as volatile chemical products, have increased. Ambient IVOC concentrations are generally higher in urban rather than in rural areas, higher indoors than outdoors, and on land rather than over oceans. IVOCs primarily generate SOAs via oxidation reactions with hydroxyl radicals, nitrate radicals, the ozone, and chlorine atoms, which contribute more to SOAs than traditional VOCs, with higher SOA yields. SOA tracers for IVOC species like naphthalene and β-caryophyllene have been identified. Integrating IVOC emissions into regional air quality models could significantly improve SOA simulation accuracy. The carcinogenic risk posed by naphthalene should be prioritized, while benzo[a]pyrene requires a combined risk assessment and hierarchical management. Future research should focus on developing high-resolution online detection technologies for IVOCs, clarifying the multiphase reaction mechanisms involved and SOA tracers, and conducting comprehensive human health risk assessments. Full article
(This article belongs to the Special Issue Analysis of the Sources and Components of Aerosols in Air Pollution)
Show Figures

Graphical abstract

Back to TopTop