A Review: Applications of MOX Sensors from Air Quality Monitoring to Biomedical Diagnosis and Agro-Food Quality Control
Abstract
1. Introduction
2. Advancements in Air Quality Monitoring Using MOX Sensors
2.1. Carbon Monoxide (CO): Health Risks and Detection Technologies
2.2. Nitrogen Dioxide (NO2): Environmental Impacts and Detection with MOX Sensors
2.3. Ozone (O3): Secondary Pollutant and Its Effects on Environmental Health
2.4. Volatile Organic Compounds (VOCs): Sources, Toxic Risks, and Carcinogenic Potential in the Environment
3. Biomedical Applications of MOX Sensors: Breath Analysis for Disease Diagnosis
3.1. Acetone (CH3COCH3): A Biomarker for Diabetes and Fat Metabolism
3.2. Ammonia (NH3): An Indicator of Renal Dysfunction
3.3. VOCs and Colorectal Cancer (CRC)
4. Food Industry: Detection of Gas Markers for Quality Control Using MOX Sensors
4.1. Innovative Techniques for Monitoring Food Freshness
4.2. Use of MOX Sensors for Contamination Detection in the Agri-Food Supply Chain
4.3. MOX Sensors for Ensuring the Authenticity of High-Value Food Products
5. Comparison of MOX, Electrochemical, and Optical Sensors: Performance and Applications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khorramifar, A.; Karami, H.; Lvova, L.; Kolouri, A.; Łazuka, E.; Piłat-Rożek, M.; Łagód, G.; Ramos, J.; Lozano, J.; Kaveh, M.; et al. Environmental Engineering Applications of Electronic Nose Systems Based on MOX Gas Sensors. Sensors 2023, 23, 5716. [Google Scholar] [CrossRef] [PubMed]
- Poeta, E.; Liboà, A.; Mistrali, S.; Núñez-Carmona, E.; Sberveglieri, V. Nanotechnology and E-Sensing for Food Chain Quality and Safety. Sensors 2023, 23, 8429. [Google Scholar] [CrossRef] [PubMed]
- Firooz, A.A.; Mahjoub, A.R.; Khodadadi, A.A. Highly Sensitive CO and Ethanol Nanoflower-like SnO2 Sensor Among Various Morphologies Obtained by Using Single and Mixed Ionic Surfactant Templates. Sens. Actuators B Chem. 2009, 141, 89–96. [Google Scholar] [CrossRef]
- Singh, N.; Ponzoni, A.; Gupta, R.K.; Lee, P.S.; Comini, E. Synthesis of In2O3–ZnO Core–Shell Nanowires and Their Application in Gas Sensing. Sens. Actuators B Chem. 2011, 160, 1346–1351. [Google Scholar] [CrossRef]
- Schütze, A.; Baur, T.; Leidinger, M.; Reimringer, W.; Jung, R.; Conrad, T.; Sauerwald, T. Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How to? Environments 2017, 4, 20. [Google Scholar] [CrossRef]
- Rodríguez-Aguilar, M.; Díaz de León-Martínez, L.; Gorocica-Rosete, P.; Padilla, R.P.; Thirión-Romero, I.; Ornelas-Rebolledo, O.; Flores-Ramírez, R. Identification of Breath-Prints for the COPD Detection Associated with Smoking and Household Air Pollution by Electronic Nose. Respir. Med. 2020, 163, 105901. [Google Scholar] [CrossRef] [PubMed]
- Kanan, S.; Obeideen, K.; Moyet, M.; Abed, H.; Khan, D.; Shabnam, A.; El-Sayed, Y.; Arooj, M.; Mohamed, A.A. Recent Advances on Metal Oxide-Based Sensors for Environmental Gas Pollutants Detection. Crit. Rev. Anal. Chem. 2024; in press. [Google Scholar] [CrossRef] [PubMed]
- Isaac, N.A.; Pikaar, I.; Biskos, G. Metal Oxide Semiconducting Nanomaterials for Air Quality Gas Sensors: Operating Principles, Performance, and Synthesis Techniques. Mikrochim. Acta 2022, 189, 196. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal Oxide Semiconductor Gas Sensors in Environmental Monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tisch, U.; Haick, H. Chemical Sensors for Breath Gas Analysis: The Latest Developments at the Breath Analysis Summit 2013. J. Breath Res. 2014, 8, 027103. [Google Scholar] [CrossRef] [PubMed]
- Astolfi, M.; Zonta, G.; Malagù, C.; Anania, G.; Rispoli, G. MOX Nanosensors to Detect Colorectal Cancer Relapses from Patient’s Blood at Three Years Follow-Up, and Gender Correlation. Biosensors 2025, 15, 56. [Google Scholar] [CrossRef]
- Wilson, A.D. Developments of Recent Applications for Early Diagnosis of Diseases Using Electronic-Nose and Other VOC-Detection Devices. Sensors 2023, 23, 7885. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ponzoni, A.; Comini, E.; Concina, I.; Ferroni, M.; Falasconi, M.; Gobbi, E.; Sberveglieri, V.; Sberveglieri, G. Nanostructured Metal Oxide Gas Sensors, A Survey of Applications Carried Out at SENSOR Lab, Brescia (Italy) in the Security and Food Quality Fields. Sensors 2012, 12, 17023–17045. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mariotti, R.; Núñez-Carmona, E.; Genzardi, D.; Pandolfi, S.; Sberveglieri, V.; Mousavi, S. Volatile Olfactory Profiles of Umbrian Extra Virgin Olive Oils and Their Discrimination through MOX Chemical Sensors. Sensors 2022, 22, 7164. [Google Scholar] [CrossRef]
- Rüffer, D.; Hoehne, F.; Bühler, J. New Digital Metal-Oxide (MOx) Sensor Platform. Sensors 2018, 18, 1052. [Google Scholar] [CrossRef]
- Collier-Oxandale, A.M.; Thorson, J.; Halliday, H.; Milford, J.; Hannigan, M. Understanding the ability of low-cost MOx sensors to quantify ambient VOCs. Atmos. Meas. Tech. 2019, 12, 1441–1460. [Google Scholar] [CrossRef]
- Patil, A.G.; Pramanick, B.; Madhukar, A. MOS Based Gas Sensors for Monitoring of Air Pollution: A Review. IEEE Sens. J. 2025, 25, 9250–9262. [Google Scholar] [CrossRef]
- Sun, Y.; Milando, C.W.; Spangler, K.R.; Wei, Y.; Schwartz, J.; Dominici, F.; Nori-Sarma, A.; Sun, S.; Wellenius, G.A. Short term exposure to low level ambient fine particulate matter and natural cause, cardiovascular, and respiratory morbidity among US adults with health insurance: Case time series study. BMJ 2024, 384, e076322. [Google Scholar] [CrossRef]
- Varon, J.; Marik, P.E.; Fromm, R.E., Jr.; Gueler, A. Carbon monoxide poisoning: A review for clinicians. J. Emerg. Med. 1999, 17, 87–93. [Google Scholar] [CrossRef]
- Nandy, T.; Coutu, R.A., Jr.; Ababei, C. Carbon Monoxide Sensing Technologies for Next-Generation Cyber-Physical Systems. Sensors 2018, 18, 3443. [Google Scholar] [CrossRef]
- Seo, M.H.; Yuasa, M.; Kida, T.; Huh, J.S.; Yamazoe, N.; Shimanoe, K. Microstructure control of TiO2 nanotubular films for improved VOC sensing. Sens. Actuators B Chem. 2011, 154, 251–256. [Google Scholar] [CrossRef]
- Menini, P.; Parret, F.; Guerrero, M.; Soulantica, K.; Erades, L.; Maisonnat, A.; Chaudret, B. CO response of a nanostructured SnO2 gas sensor doped with palladium and platinum. Sens. Actuators B Chem. 2004, 103, 111–114. [Google Scholar] [CrossRef]
- Kolmakov, A.; Zhang, Y.; Cheng, G.; Moskovits, M. Detection of CO and O2 using tin oxide nanowire sensors. Adv. Mater. 2003, 15, 997–1000. [Google Scholar] [CrossRef]
- Du, X.; George, S.M. Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition. Sens. Actuators B Chem. 2008, 135, 152–160. [Google Scholar] [CrossRef]
- Tischner, A.; Maier, T.; Stepper, C.; Köck, A. Ultrathin SnO2 gas sensors fabricated by spray pyrolysis for the detection of humidity and carbon monoxide. Sens. Actuators B Chem. 2008, 134, 796–802. [Google Scholar] [CrossRef]
- Yuasa, M.; Masaki, T.; Kida, T.; Shimanoe, K.; Yamazoe, N. Nano-sized PdO loaded SnO2 nanoparticles by reverse micelle method for highly sensitive CO gas sensor. Sens. Actuators B Chem. 2009, 136, 99–104. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Huang, J.; Wang, Y.; Kong, F.; Wu, S.; Zhang, S.; Huang, W. Preparation and CO gas-sensing behavior of Au-doped SnO2 sensors. Vacuum 2006, 81, 394–397. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Cho, B.K.; Gulina, L.; Tolstoy, V. SnO2 thin films modified by the SnO2–Au nanocomposites: Response to reducing gases. Sens. Actuators B Chem. 2009, 141, 610–616. [Google Scholar] [CrossRef]
- Wang, C.T.; Chen, M.T. Vanadium-promoted tin oxide semiconductor carbon monoxide gas sensors. Sens. Actuators B Chem. 2010, 150, 360–366. [Google Scholar] [CrossRef]
- Kim, H.; Park, C.S.; Kang, K.M.; Hong, M.H.; Choi, Y.J.; Park, H.H. The CO gas sensing properties of direct-patternable SnO2 films containing graphene or Ag nanoparticles. New J. Chem. 2015, 39, 2256–2260. [Google Scholar] [CrossRef]
- Park, J.A.; Moon, J.; Lee, S.J.; Kim, S.H.; Zyung, T.; Chu, H.Y. Structure and CO gas sensing properties of electrospun TiO2 nanofibers. Mater. Lett. 2010, 64, 255–257. [Google Scholar] [CrossRef]
- Moon, H.G.; Shim, Y.S.; Jang, H.W.; Kim, J.S.; Choi, K.J.; Kang, C.Y.; Choi, J.W.; Park, H.H.; Yoon, S.J. Highly sensitive CO sensors based on cross-linked TiO2 hollow hemispheres. Sens. Actuators B Chem. 2010, 149, 116–121. [Google Scholar] [CrossRef]
- Lee, J.S.; Ha, T.J.; Hong, M.H.; Park, H.H. The effect of porosity on the CO sensing properties of TiO2 xerogel thin films. Thin Solid Films 2013, 529, 98–102. [Google Scholar] [CrossRef]
- Rao, L.L.R.; Singha, M.K.; Subramaniam, K.M.; Jampana, N.; Asokan, S. Molybdenum microheaters for MEMS-based gas sensor applications: Fabrication, electro-thermo-mechanical and response characterization. IEEE Sens. J. 2017, 17, 22–29. [Google Scholar]
- Lee, J.S.; Ha, T.J.; Hong, M.H.; Park, C.S.; Park, H.H. The effect of multiwalled carbon nanotube doping on the CO gas sensitivity of TiO2 xerogel composite film. Appl. Surf. Sci. 2013, 269, 125–128. [Google Scholar] [CrossRef]
- Chang, J.F.; Kuo, H.H.; Leu, I.C.; Hon, M.H. The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor. Sens. Actuators B Chem. 2002, 84, 258–264. [Google Scholar] [CrossRef]
- Hjiri, M.; El Mir, L.; Leonardi, S.G.; Pistone, A.; Mavilia, L.; Neri, G. Al-doped ZnO for highly sensitive CO gas sensors. Sens. Actuators B Chem. 2014, 196, 413–420. [Google Scholar] [CrossRef]
- Gong, H.; Hu, J.Q.; Wang, J.H.; Ong, C.H.; Zhu, F.R. Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sens. Actuators B Chem. 2006, 115, 247–251. [Google Scholar] [CrossRef]
- Wei, S.; Yu, Y.; Zhou, M. CO gas sensing of Pd-doped ZnO nanofibers synthesized by electrospinning method. Mater. Lett. 2010, 64, 2284–2286. [Google Scholar] [CrossRef]
- Dhahri, R.; Hjiri, M.; El Mir, L.; Alamri, H.; Bonavita, A.; Iannazzo, D.; Leonardi, S.G.; Neri, G. CO Sensing Characteristics of In-Doped ZnO Semiconductor Nanoparticles. J. Sci. Adv. Mater. Devices 2017, 2, 34–40. [Google Scholar] [CrossRef]
- Kim, K.; Song, Y.W.; Chang, S.; Kim, I.H.; Kim, S.; Lee, S.Y. Fabrication and characterization of Ga-doped ZnO nanowire gas sensor for the detection of CO. Thin Solid Films 2009, 518, 1190–1193. [Google Scholar] [CrossRef]
- Kuhaili, M.F.; Durrani, S.M.A.; Bakhtiari, I.A. Carbon monoxide gas-sensing properties of CeO2–ZnO thin films. Appl. Surf. Sci. 2008, 255, 3033–3039. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, J.H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Wen, Z.; Zhu, L.; Li, Y.; Zhang, Z.; Ye, Z. Mesoporous Co3O4 nanoneedle arrays for high-performance gas sensor. Sens. Actuators B Chem. 2014, 203, 873–879. [Google Scholar] [CrossRef]
- Ackermann-Liebrich, U. Respiratory and Cardiovascular Effects of NO2 in Epidemiological Studies. In Encyclopedia of Environmental Health; Nriagu, J.O., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 840–844. ISBN 9780444522726. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, K.K.; Yang, G.P.; Li, P.F.; Liu, C.Y.; Ingeniero, R.C.O.; Bange, H.W. Continuous Chemiluminescence Measurements of Dissolved Nitric Oxide (NO) and Nitrogen Dioxide (NO2) in the Ocean Surface Layer of the East China Sea. Environ. Sci. Technol. 2021, 55, 3668–3675. [Google Scholar] [CrossRef] [PubMed]
- Russell, H.S.; Frederickson, L.B.; Kwiatkowski, S.; Emygdio, A.P.M.; Kumar, P.; Schmidt, J.A.; Hertel, O.; Johnson, M.S. Enhanced Ambient Sensing Environment—A New Method for Calibrating Low-Cost Gas Sensors. Sensors 2022, 22, 7238. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fazio, E.; Spadaro, S.; Corsaro, C.; Neri, G.; Leonardi, S.G.; Neri, F.; Lavanya, N.; Sekar, C.; Donato, N.; Neri, G. Metal-Oxide Based Nanomaterials: Synthesis, Characterization and Their Applications in Electrical and Electrochemical Sensors. Sensors 2021, 21, 2494. [Google Scholar] [CrossRef]
- Forleo, A.; Francioso, L.; Capone, S.; Siciliano, P.; Lommens, P.; Hens, Z. Synthesis and gas sensing properties of ZnO quantum dots. Sens. Actuators B 2010, 146, 111–115. [Google Scholar] [CrossRef]
- Sberveglieri, G.; Baratto, C.; Comini, E.; Faglia, G.; Ferroni, M.; Ponzoni, A.; Vomiero, A. Synthesis and characterization of semiconducting nanowires for gas sensing. Sens. Actuators B 2007, 121, 208–213. [Google Scholar] [CrossRef]
- Dvorak, J.; Jirsak, T.; Rodriguez, J.A. Fundamental Studies of Desulfurization Processes: Reaction of Methanethiol on ZnO and Cs/ZnO. Surf. Sci. 2001, 479, 155–168. [Google Scholar] [CrossRef]
- Waclawik, E.R.; Chang, J.; Ponzoni, A.; Concina, I.; Zappa, D.; Comini, E.; Motta, N.; Faglia, G.; Sberveglieri, G. Functionalised Zinc Oxide Nanowire Gas Sensors: Enhanced NO2 Gas Sensor Response by Chemical Modification of Nanowire Surfaces. Beilstein J. Nanotechnol. 2012, 3, 368–377. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jung, G.; Shin, H.; Jeon, S.W.; Lim, Y.H.; Hong, S.; Kim, D.H.; Lee, J.H. Transducer-Aware Hydroxy-Rich-Surface Indium Oxide Gas Sensor for Low-Power and High-Sensitivity NO2 Gas Sensing. ACS Appl. Mater. Interfaces 2023, 15, 22651–22661. [Google Scholar] [CrossRef]
- Spirito, P. Elettronica Digitale; McGraw-Hill Libri Italia SRL: Milano, Italy, 2006; ISBN 978-88-386-6323-9. [Google Scholar]
- Field Effect Transistor (JPG), in Elettronica 2000, n. 7; MK Periodici: Milano, Italy, 1979; pp. 72–76, OCLC 955598089.
- Sicard, P.; Agathokleous, E.; Anenberg, S.C.; De Marco, A.; Paoletti, E.; Calatayud, V. Trends in Urban Air Pollution Over the Last Two Decades: A Global Perspective. Sci. Total Environ. 2023, 858 Pt 2, 160064. [Google Scholar] [CrossRef] [PubMed]
- Aleixandre, M.; Gerboles, M. Review of Small Commercial Sensors for Indicative Monitoring of Ambient Gas. Chem. Eng. Trans. 2012, 30, 169–174. [Google Scholar] [CrossRef]
- Castell, N.; Viana, M.; Minguillón, M.C.; Guerreiro, C.; Querol, X. Real-World Application of New Sensor Technologies for Air Quality Monitoring. 2013. Available online: http://acm.eionet.europa.eu/docs/ETCACM_TP_2013_16_new_AQ_SensorTechn.pdf (accessed on 26 February 2025).
- Huda, R.K.; Kumar, P.; Gupta, R.; Sharma, A.K.; Toteja, G.S.; Babu, B.V. Air Quality Monitoring Using Low-Cost Sensors in Urban Areas of Jodhpur, Rajasthan. Int. J. Environ. Res. Public Health 2024, 21, 623. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Spinelle, L.; Gerboles, M.; Aleixandre, M.; Bonavitacola, F. Evaluation of Metal Oxides Sensors for the Monitoring of O3 in Ambient Air at ppb Level. Chem. Eng. Trans. 2016, 54, 319–324. [Google Scholar] [CrossRef]
- Rusinek, R.; Żytek, A.; Stasiak, M.; Wiącek, J.; Gancarz, M. Application of MOX Sensors to Determine the Emission of Volatile Compounds in Corn Groats as a Function of Vertical Pressure in the Silo and Moisture Content of the Bed. Sensors 2024, 24, 2187. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tan, H.; Othman, M.H.D.; Kek, H.Y.; Chong, W.T.; Nyakuma, B.B.; Wahab, R.A.; Teck, G.L.H.; Wong, K.Y. Revolutionizing Indoor Air Quality Monitoring through IoT Innovations: A Comprehensive Systematic Review and Bibliometric Analysis. Environ. Sci. Pollut. Res. Int. 2024, 31, 44463–44488. [Google Scholar] [CrossRef] [PubMed]
- Folifack Signing, V.R.; Mbarndouka Taamté, J.; Kountchou Noube, M.; Hamadou Yerima, A.; Azzopardi, J.; Tchuente Siaka, Y.F.; Saïdou. IoT-Based Monitoring System and Air Quality Prediction Using Machine Learning for a Healthy Environment in Cameroon. Environ. Monit. Assess. 2024, 196, 621. [Google Scholar] [CrossRef] [PubMed]
- Barcelo-Ordinas, J.M.; Ferrer-Cid, P.; Garcia-Vidal, J.; Viana, M.; Ripoll, A. H2020 Project CAPTOR Dataset: Raw Data Collected by Low-Cost MOX Ozone Sensors in a Real Air Pollution Monitoring Network. Data Brief 2021, 36, 107127. [Google Scholar] [CrossRef]
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of Low-Cost Sensing Technologies for Air Quality Monitoring and Exposure Assessment: How Far Have They Gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef]
- Freeman, T.; Cudmore, R. Review of Odour Management in New Zealand; Air Quality Technical Report 24; New Zealand Ministry of Environment: Wellington, New Zealand, 2002; p. 163.
- Botticini, S.; Comini, E.; Dello Iacono, S.; Flammini, A.; Gaioni, L.; Galliani, A.; Ghislotti, L.; Lazzaroni, P.; Re, V.; Sisinni, E.; et al. Index Air Quality Monitoring for Light and Active Mobility. Sensors 2024, 24, 3170. [Google Scholar] [CrossRef]
- Rydosz, A. The Use of Copper Oxide Thin Films in Gas-Sensing Applications. Coatings 2018, 8, 425. [Google Scholar] [CrossRef]
- Kong, Y.; Teather, R.M.; Forster, R.J. Biodiversity and Composition of Methanogenic Populations in the Rumen of Cows Fed Alfalfa Hay or Triticale Straw. FEMS Microbiol. Ecol. 2013, 84, 302–315. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Enteric Methane in Dairy Cattle Production: Quantifying the Opportunities and Impact of Reducing Emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef]
- Hill, J.; McSweeney, C.; Wright, A.G.; Bishop-Hurley, G.; Kalantar-Zadeh, K. Measuring Methane Production from Ruminants. Trends Biotechnol. 2016, 34, 26–35. [Google Scholar] [CrossRef]
- Shaalan, N.M.; Rashad, M.; Abdel-Rahim, M.A. CuO Nanoparticles Synthesized by Microwave-Assisted Method for Methane Sensing. Opt. Quantum Electron. 2016, 48, 531. [Google Scholar] [CrossRef]
- Lakhmi, R.; Fischer, M.; Darves-Blanc, Q.; Alrammouz, R.; Rieu, M.; Viricelle, J.P. Linear and Non-Linear Modelling Methods for a Gas Sensor Array Developed for Process Control Applications. Sensors 2024, 24, 3499. [Google Scholar] [CrossRef]
- Chesler, P.; Hornoiu, C.; Anastasescu, M.; Calderon-Moreno, J.M.; Gheorghe, M.; Gartner, M. Cobalt- and Copper-Based Chemiresistors for Low Concentration Methane Detection, a Comparison Study. Gels 2022, 8, 721. [Google Scholar] [CrossRef]
- Aroca, A.; Gotor, C.; Bassham, D.C. Hydrogen Sulfide: From a Toxic Molecule to a Key Molecule of Cell Life. Antioxidants 2020, 9, 621. [Google Scholar] [CrossRef]
- Hu, X.; Zhu, Z.; Li, Z.; Xie, L.; Wu, Y.; Zheng, L. Heterostructure of CuO Microspheres Modified with CuFe2O4 Nanoparticles for Highly Sensitive H2S Gas Sensor. Sens. Actuators B Chem. 2018, 264, 139–149. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Rao, M.V.; Li, Q. Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S. Sensors 2019, 19, 905. [Google Scholar] [CrossRef]
- Quang, P.L.; Cuong, N.D.; Hoa, T.T.; Long, H.T.; Hung, C.M.; Le, D.T.T.; Hieu, N.V. Simple Post-Synthesis of Mesoporous p-Type Co3O4 Nanochains for Enhanced H2S Gas Sensing Performance. Sens. Actuators B Chem. 2018, 270, 158–166. [Google Scholar] [CrossRef]
- Guo, L.; Wang, M.; Cao, D. A Novel Zr-MOF as Fluorescence Turn-On Probe for Real-Time Detecting H2S Gas and Fingerprint Identification. Small 2018, 14, 1703822. [Google Scholar] [CrossRef]
- Jo, S.B.; Kim, H.J.; Ahn, J.H.; Hwang, B.W.; Huh, J.S.; Ragupathy, D.; Lee, S.C.; Kim, J.C. Effects of Thin-Film Thickness on Sensing Properties of SnO2-Based Gas Sensors for the Detection of H2S Gas at ppm Levels. J. Nanosci. Nanotechnol. 2020, 20, 7169–7174. [Google Scholar] [CrossRef]
- Heranjal, S.; Maciel, M.; Kamalapally, S.N.R.; Ramrakhiani, I.; Schulz, E.; Cao, S.; Liu, X.; Relich, R.F.; Wek, R.; Woollam, M.; et al. Establishing Healthy Breath Baselines with Tin Oxide Sensors: Fundamental Building Blocks for Noninvasive Health Monitoring. Mil. Med. 2024, 189 (Suppl. S3), 221–229. [Google Scholar] [CrossRef]
- Glöckler, J.; Jaeschke, C.; Padilla, M.; Mitrovics, J.; Mizaikoff, B. Ultratrace eNose Sensing of VOCs toward Breath Analysis Applications Utilizing an eNose-Based Analyzer. ACS Meas. Sci. Au 2024, 4, 184–187. [Google Scholar] [CrossRef]
- Glöckler, J.; Jaeschke, C.; Kocaöz, Y.; Kokoric, V.; Tütüncü, E.; Mitrovics, J.; Mizaikoff, B. iHWG-MOX: A Hybrid Breath Analysis System via the Combination of Substrate-Integrated Hollow Waveguide Infrared Spectroscopy with Metal Oxide Gas Sensors. ACS Sens. 2020, 5, 1033–1039. [Google Scholar] [CrossRef]
- Dragonieri, S.; Annema, J.T.; Schot, R.; van der Schee, M.P.; Spanevello, A.; Carratú, P.; Resta, O.; Rabe, K.F.; Sterk, P.J. An Electronic Nose in the Discrimination of Patients with Non-Small Cell Lung Cancer and COPD. Lung Cancer 2009, 64, 166–170. [Google Scholar] [CrossRef]
- Santos, F.; Magalhães, S.; Henriques, M.C.; Fardilha, M.; Nunes, A. Spectroscopic Features of Cancer Cells: FTIR Spectroscopy as a Tool for Early Diagnosis. Curr. Metabolomics 2018, 6, 103–111. [Google Scholar] [CrossRef]
- Derveaux, E.; Van Brussel, T.; Van Weyenbergh, J.; Lievens, Y.; De Neve, W.; Derua, R.; Dhaene, T.; De Preter, K.; Bockstal, M.; Bosteels, C.; et al. NMR-Metabolomics Reveals a Metabolic Shift after Surgical Resection of Non-Small Cell Lung Cancer. Cancers 2023, 15, 2127. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, J.; Yu, X.; Zhang, W.; Zhang, X. Determination of Acetone in Human Breath by Gas Chromatography–Mass Spectrometry and Solid-Phase Microextraction with on-Fiber Derivatization. J. Chromatogr. B 2004, 810, 269–275. [Google Scholar] [CrossRef]
- Righettoni, M.; Tricoli, A.; Pratsinis, S.E. Si:WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis. Anal. Chem. 2010, 82, 3581–3587. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P.Z. Diabetes: A Look to the Future. Lancet Diabetes Endocrinol. 2014, 2, e1–e2. [Google Scholar] [CrossRef]
- Rydosz, A. A Negative Correlation between Blood Glucose and Acetone Measured in Healthy and Type 1 Diabetes Mellitus Patient Breath. J. Diabetes Sci. Technol. 2015, 9, 881–884. [Google Scholar] [CrossRef]
- Jiang, L.; Lv, S.; Tang, W.; Zhao, L.; Wang, C.; Wang, J.; Wang, T.; Guo, X.; Liu, F.; Wang, C.; et al. YSZ-Based Acetone Sensor Using a Cd2SnO4 Sensing Electrode for Exhaled Breath Detection in Medical Diagnosis. Sens. Actuators B Chem. 2021, 345, 130321. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, A.; Chang, H.; Xia, B. Room-Temperature High-Performance Acetone Gas Sensor Based on Hydrothermal Synthesized SnO2-Reduced Graphene Oxide Hybrid Composite. RSC Adv. 2015, 5, 3016–3022. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, Y. Ultrasensitive and Low Detection Limit of Acetone Gas Sensor Based on ZnO/SnO2 Thick Films. RSC Adv. 2020, 10, 35958–35965. [Google Scholar] [CrossRef]
- Deng, Y. Semiconducting Metal Oxides for Gas Sensing; Springer: Singapore, 2019; ISBN 978-981-13-5852-4. [Google Scholar]
- Mazabuel-Collazos, A.; Rodríguez-Páez, J.E. Chemical Synthesis and Characterization of ZnO–TiO2 Semiconductor Nanocomposites: Tentative Mechanism of Particle Formation. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1739–1752. [Google Scholar] [CrossRef]
- Navale, S.T.; Yang, Z.B.; Liu, C.; Cao, P.J.; Patil, V.B.; Ramgir, N.S.; Mane, R.S.; Stadler, F.J. Enhanced Acetone Sensing Properties of Titanium Dioxide Nanoparticles with a Sub-Ppm Detection Limit. Sens. Actuators B Chem. 2018, 255, 1701–1710. [Google Scholar] [CrossRef]
- Cheng, X.; Xu, Y.; Gao, S.; Zhao, H.; Huo, L. Ag Nanoparticles Modified TiO2 Spherical Heterostructures with Enhanced Gas-Sensing Performance. Sens. Actuators B Chem. 2011, 155, 716–721. [Google Scholar] [CrossRef]
- Bhowmik, B.; Manjuladevi, V.; Gupta, R.K.; Bhattacharyya, P. Highly Selective Low-Temperature Acetone Sensor Based on Hierarchical 3-D TiO2 Nanoflowers. IEEE Sens. J. 2016, 16, 3488–3495. [Google Scholar] [CrossRef]
- Tian, X.; Cui, X.; Lai, T.; Ren, J.; Yang, Z.; Xiao, M.; Wang, B.; Xiao, X.; Wang, Y. Gas Sensors Based on TiO2 Nanostructured Materials for the Detection of Hazardous Gases: A Review. Nano Mater. Sci. 2021, 3, 390–403. [Google Scholar] [CrossRef]
- Lou, Z.; Li, F.; Deng, J.; Wang, L.; Zhang, T. Branch-like Hierarchical Heterostructure (α-Fe2O3/TiO2): A Novel Sensing Material for Trimethylamine Gas Sensor. ACS Appl. Mater. Interfaces 2013, 5, 12310–12316. [Google Scholar] [CrossRef]
- Sharma, B.; Sharma, A.; Myung, J. ha Highly Selective Detection of Acetone by TiO2-SnO2 Heterostructures for Environmental Biomarkers of Diabetes. Sens. Actuators B Chem. 2021, 349, 130733. [Google Scholar] [CrossRef]
- Muñoz-Bolaños, J.D.; Rodríguez-Páez, J.E. WO3 Mono-Nanocrystals: Synthesis, Characterization and Evaluation of Their Electrical Behavior in Oxygen and Acetone Atmospheres. Mater. Sci. Eng. B 2021, 274, 115472. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, B.; Liu, W.; Zhou, X.; Liu, M.; Sun, X.; Lv, J.; Zhang, L.; Xu, W.; Bai, X.; et al. Highly Sensitive and Selective Acetone Sensor Based on Three-Dimensional Ordered WO3/Au Nanocomposite with Enhanced Performance. Sens. Actuators B Chem. 2020, 320, 128405. [Google Scholar] [CrossRef]
- Zahmouli, N.; Hjiri, M.; Leonardi, S.G.; El Mir, L.; Neri, G.; Iannazzo, D.; Espro, C.; Aida, M.S. High Performance Gd-Doped γ-Fe2O3 Based Acetone Sensor. Mater. Sci. Semicond. Process. 2020, 116, 105154. [Google Scholar] [CrossRef]
- Kohli, N.; Hastir, A.; Kumari, M.; Singh, R.C. Hydrothermally Synthesized Heterostructures of In2O3/MWCNT as Acetone Gas Sensor. Sens. Actuators A Phys. 2020, 314, 112240. [Google Scholar] [CrossRef]
- Harvey, S.P.; Mason, T.O.; Gassenbauer, Y.; Schafranek, R.; Klein, A. Surface versus Bulk Electronic/Defect Structures of Transparent Conducting Oxides: I. Indium Oxide and ITO. J. Phys. D Appl. Phys. 2006, 39, 3959–3968. [Google Scholar] [CrossRef]
- Wang, J.-C.; Shi, W.; Sun, X.-Q.; Wu, F.-Y.; Li, Y.; Hou, Y. Enhanced Photo-Assisted Acetone Gas Sensor and Efficient Photocatalytic Degradation Using Fe-Doped Hexagonal and Monoclinic WO3 Phase−Junction. Nanomaterials 2020, 10, 398. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Zhang, J.; Li, G.; Leng, D.; Gao, Y.; Gao, J.; Lu, H.; Li, X. Metal–Organic Framework-Derived Cu2O–CuO Octahedrons for Sensitive and Selective Detection of Ppb-Level NO2 at Room Temperature. Sens. Actuators B Chem. 2021, 328, 129045. [Google Scholar] [CrossRef]
- Choi, Y.M.; Cho, S.-Y.; Jang, D.; Koh, H.-J.; Choi, J.; Kim, C.-H.; Jung, H.-T. Ultrasensitive Detection of VOCs Using a High-Resolution CuO/Cu2O/Ag Nanopattern Sensor. Adv. Funct. Mater. 2019, 29, 1808319. [Google Scholar] [CrossRef]
- Van Duy, L.; Van Duy, N.; Hung, C.M.; Hoa, N.D.; Dich, N.Q. Urea Mediated Synthesis and Acetone-Sensing Properties of Ultrathin Porous ZnO Nanoplates. Mater. Today Commun. 2020, 25, 101445. [Google Scholar] [CrossRef]
- Ochoa-Muñoz, Y.H.; Mejía de Gutiérrez, R.; Rodríguez-Páez, J.E. Metal Oxide Gas Sensors to Study Acetone Detection Considering Their Potential in the Diagnosis of Diabetes: A Review. Molecules 2023, 28, 1150. [Google Scholar] [CrossRef]
- Cai, L.; Dong, X.; Wu, G.; Sun, J.; Chen, N.; Wei, H.; Zhu, S.; Tian, Q.; Wang, X.; Jing, Q.; et al. Ultrasensitive Acetone Gas Sensor Can Distinguish the Diabetic State of People and Its High-Performance Analysis by First-Principles Calculation. Sens. Actuators B Chem. 2022, 351, 130863. [Google Scholar] [CrossRef]
- Krishnan, S.T.; Devadhasan, J.P.; Kim, S. Recent Analytical Approaches to Detect Exhaled Breath Ammonia with Special Reference to Renal Patients. Anal. Bioanal. Chem. 2017, 409, 21–31. [Google Scholar] [CrossRef]
- Anderson, J.C.; Lamm, W.J.E.; Hlastala, M.P. Measuring Airway Exchange of Endogenous Acetone Using a Single-Exhalation Breathing Maneuver. J. Appl. Physiol. 2006, 100, 880–889. [Google Scholar] [CrossRef]
- Statheropoulos, M.; Agapiou, A.; Georgiadou, A. Analysis of Expired Air of Fasting Male Monks at Mount Athos. J. Chromatogr. B 2006, 832, 274–279. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, F.; Chen, Y.; Liu, J.; Sun, Y.; Luo, T.; Li, M.; Liu, J. A Novel Ammonia Sensor Based on High Density, Small Diameter Polypyrrole Nanowire Arrays. Sens. Actuators B Chem. 2009, 142, 204–209. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, M.; Zheng, K.; Ye, W.; Zhang, S.; Wang, B.; Long, X. High-Performance Room Temperature Ammonia Sensors Based on Pure Organic Molecules Featuring B–N Covalent Bond. Adv. Sci. 2024, 11, e2308483. [Google Scholar] [CrossRef]
- Chen, C.C.; Hsieh, J.C.; Chao, C.H.; Yang, W.S.; Cheng, H.T.; Chan, C.K.; Lu, C.J.; Meng, H.F.; Zan, H.W. Correlation between Breath Ammonia and Blood Urea Nitrogen Levels in Chronic Kidney Disease and Dialysis Patients. J. Breath Res. 2020, 14, 036002. [Google Scholar] [CrossRef]
- Jayasree, T.; Bobby, M.; Muttan, S. Sensors for Detecting Ammonia from the Exhaled Breath of Renal Disorder Patients. Sensor Lett. 2015, 13, 1003–1008. [Google Scholar] [CrossRef]
- Jayasree, T.; Bobby, M.; Muttan, S. Sensor Data Classification for Renal Dysfunction Patients Using Support Vector Machine. J. Med. Biol. Eng. 2015, 35, 759–764. [Google Scholar] [CrossRef]
- Kumar, G.; Mishra, S.; Jain, A. Development of Breath Ammonia Analysis System for Disease Diagnosis. Asian J. Biochem. Pharm. Res. 2013, 3, 36–43. [Google Scholar]
- Jayasree, T.; Muttan, S. Study of Gas Sensors for the Detection of Volatile Organic Compounds in Breath. Appl. Mech. Mater. 2014, 573, 785–790. [Google Scholar] [CrossRef]
- Righettoni, M.; Amann, A.; Pratsinis, S.E. Breath Analysis by Nanostructured Metal Oxides as Chemo-Resistive Gas Sensors. Mater. Today 2015, 18, 163–171. [Google Scholar] [CrossRef]
- Senesac, L.; Thundat, T.G. Nanosensors for Trace Explosive Detection. Mater. Today 2008, 11, 28–36. [Google Scholar] [CrossRef]
- Guo, D.; Zhang, D.; Li, N.; Zhang, L.; Yang, J. Diabetes Identification and Classification by Means of a Breath Analysis System; Springer Nature: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Fens, N.; van der Schee, M.P.; Brinkman, P.; Sterk, P.J. Exhaled Breath Analysis by Electronic Nose in Airways Disease. Established Issues and Key Questions. Clin. Exp. Allergy 2013, 43, 705–715. [Google Scholar] [CrossRef]
- Buszewski, B.; Ligor, T.; Jezierski, T.; Wenda-Piesik, A.; Walczak, M.; Rudnicka, J. Identification of Volatile Lung Cancer Markers by Gas Chromatography-Mass Spectrometry: Comparison with Discrimination by Canines. Anal. Bioanal. Chem. 2012, 404, 141–146. [Google Scholar] [CrossRef]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal Cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef]
- Astolfi, M.; Rispoli, G.; Anania, G.; Artioli, E.; Nevoso, V.; Zonta, G.; Malagù, C. Tin, Titanium, Tantalum, Vanadium and Niobium Oxide-Based Sensors to Detect Colorectal Cancer Exhalations in Blood Samples. Molecules 2021, 26, 466. [Google Scholar] [CrossRef] [PubMed]
- Poļaka, I.; Mežmale, L.; Anarkulova, L.; Kononova, E.; Vilkoite, I.; Veliks, V.; Ļeščinska, A.M.; Stonāns, I.; Pčolkins, A.; Tolmanis, I.; et al. The Detection of Colorectal Cancer through Machine Learning-Based Breath Sensor Analysis. Diagnostics 2023, 13, 3355. [Google Scholar] [CrossRef] [PubMed]
- Bax, C.; Robbiani, S.; Zannin, E.; Capelli, L.; Ratti, C.; Bonetti, S.; Novelli, L.; Raimondi, F.; Di Marco, F.; Dellacà, R.L. An Experimental Apparatus for E-Nose Breath Analysis in Respiratory Failure Patients. Diagnostics 2022, 12, 776. [Google Scholar] [CrossRef]
- Wanniarachchi, P.C.; Kumarasinghe, K.G.U.; Jayathilake, C. Recent Advancements in Chemosensors for the Detection of Food Spoilage. Food Chem. 2024, 436, 137733. [Google Scholar] [CrossRef]
- Park, J.-C.; Yuk, Y.; Lee, S. Recent Trends in Gas Sensors for Food Spoilage Monitoring. J. Sens. Sci. Technol. 2024, 33, 412–418. [Google Scholar] [CrossRef]
- Li, H.-Y.; Huang, L.; Wang, X.-X.; Lee, C.-S.; Yoon, J.-W.; Zhou, J.; Guo, X.; Lee, J.-H. Molybdenum Trioxide Nanopaper as a Dual Gas Sensor for Detecting Trimethylamine and Hydrogen Sulfide. RSC Adv. 2017, 7, 3680–3685. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, W.; Wei, J.; Lan, K.; Yan, S.; Chen, R.; Qin, G. Ultrasensitive Flexible Olfactory Receptor-Derived Peptide Sensor for Trimethylamine Detection by the Bending Connection Method. ACS Sens. 2022, 7, 3513–3520. [Google Scholar] [CrossRef]
- Genzardi, D.; Núñez Carmona, E.; Poeta, E.; Gai, F.; Caruso, I.; Fiorilla, E.; Schiavone, A.; Sberveglieri, V. Unraveling the Chicken Meat Volatilome with Nanostructured Sensors: Impact of Live and Dehydrated Insect Larvae Feeding. Sensors 2024, 24, 4921. [Google Scholar] [CrossRef]
- Chung, J.H.; Cho, Y.-H.; Hwang, J.; Lee, S.H.; Lee, S.; Park, S.-H.; Sohn, S.; Cho, D.; Lee, K.; Shim, Y.-S. Heterostructures of SnO2-Decorated Cr2O3 Nanorods for Highly Sensitive H2S Detection. J. Sens. Sci. Technol. 2024, 33, 40–47. [Google Scholar] [CrossRef]
- Shu, J.; Qiu, Z.; Lv, S.; Zhang, K.; Tang, D. Cu2+-Doped SnO2 Nanograin/Polypyrrole Nanospheres with Synergic Enhanced Properties for Ultrasensitive Room-Temperature H2S Gas Sensing. Anal. Chem. 2017, 89, 11135–11142. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Qiu, L.; Wang, T.; Yu, H.; Yang, W.; Dong, X.; Yang, Y. P–N Heterojunction Formation: Metal Sulfide@Metal Oxide Chemiresistor for ppb H2S Detection from Exhaled Breath and Food Spoilage at Flexible Room Temperature. ACS Sens. 2024, 9, 3433–3443. [Google Scholar] [CrossRef]
- Sholehah, A.; Karmala, K.; Huda, N.; Utari, L.; Septiani, N.L.W.; Yuliarto, B. Structural Effect of ZnO-Ag Chemoresistive Sensor on Flexible Substrate for Ethylene Gas Detection. Sens. Actuators A Phys. 2021, 331, 112934. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, S.M.; Oh, M.-H.; Huh, Y.S.; Jang, H.W. Food Quality Assessment Using Chemoresistive Gas Sensors: Achievements and Future Perspectives. Sustain. Food Technol. 2024, 2, 266–280. [Google Scholar] [CrossRef]
- Dang, T.T.L.; Tran, V.D.N.; Chu, T.X.; Chu, M.H.; Nguyen, V.D.; Nguyen, D.H. Eco-Friendly Facile Synthesis of Co3O4–Pt Nanorods for Ethylene Detection towards Fruit Quality Monitoring. Sens. Actuators A Phys. 2023, 362, 114607. [Google Scholar] [CrossRef]
- Jaisutti, R.; Khemphet, S.; Pudwat, S.; Petchsang, N.; Kim, Y.-H.; Osotchan, T.; Zhu, Z. UV-Induced Room-Temperature Ethylene Sensors Based on Ag-Decorated ZnO Nanoflowers for Fruit Ripeness Monitoring. ACS Appl. Nano Mater. 2024, 7, 16575–16584. [Google Scholar] [CrossRef]
- Poeta, E.; De Chiara, M.L.V.; Cefola, M.; Caruso, I.; Genzardi, D.; Núñez-Carmona, E.; Pace, B.; Palumbo, M.; Sberveglieri, V. Quality Monitoring of Table Grapes Stored in Controlled Atmosphere Using an S3 + MOS Nanosensor Device. Postharvest Biol. Technol. 2025, 227, 113587. [Google Scholar] [CrossRef]
- Canhoto, O.; Magan, N. Electronic Nose Technology for the Detection of Microbial and Chemical Contamination of Potable Water. Sens. Actuators B Chem. 2005, 106, 3–6. [Google Scholar] [CrossRef]
- Ventura-Aguilar, R.I.; Lucas-Bautista, J.A.; Arévalo-Galarza, M.d.L.; Bosquez-Molina, E. Volatile Organic Compounds as a Diagnostic Tool for Detecting Microbial Contamination in Fresh Agricultural Products: Mechanism of Action and Analytical Techniques. Processes 2024, 12, 1555. [Google Scholar] [CrossRef]
- Berna, A.Z.; Lammertyn, J.; Saevels, S.; Di Natale, C.; Nicolaï, B.M. Electronic Nose Systems to Study Shelf Life and Cultivar Effect on Tomato Aroma Profile. Sensors 2004, 97, 324–333. [Google Scholar] [CrossRef]
- Carmona, E.N.; Sberveglieri, V.; Pulvirenti, A. Detection of Microorganisms in Water and Different Food Matrix by Electronic Nose. In Proceedings of the 2013 Seventh International Conference on Sensing Technology (ICST), Wellington, New Zealand, 3–5 December 2013; pp. 699–703. [Google Scholar] [CrossRef]
- Falasconi, M.; Gobbi, E.; Pardo, M.; Della Torre, M.; Bresciani, A.; Sberveglieri, G. Detection of Toxigenic Strains of Fusarium verticillioides in Corn by Electronic Olfactory System. Sens. Actuators B Chem. 2005, 108, 250–257. [Google Scholar] [CrossRef]
- Chen, J.; Wei, Z.; Wang, Y.; Long, M.; Wu, W.; Kuca, K. Fumonisin B1: Mechanisms of Toxicity and Biological Detoxification Progress in Animals. Food Chem. Toxicol. 2021, 149, 111977. [Google Scholar] [CrossRef]
- Greco, G.; Núñez-Carmona, E.; Genzardi, D.; Bianchini, L.; Piccoli, P.; Zottele, I.; Tamanini, A.; Motolose, C.; Scalmato, A.; Sberveglieri, G.; et al. Tailored Gas Sensors as Rapid Technology to Support the Jams Production. Chemosensors 2023, 11, 403. [Google Scholar] [CrossRef]
- Olsen, M.; Lindqvist, R.; Bakeeva, A.; Su-lin, L.L.; Sulyok, M. Distribution of Mycotoxins Produced by Penicillium spp. Inoculated in Apple Jam and Crème Fraiche during Chilled Storage. Int. J. Food Microbiol. 2019, 292, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Mahata, B.; Acharyya, S.; Banerji, P.; Guha, P.K. Assessment of Fish Adulteration Using SnO2 Nanopetal-Based Gas Sensor and Machine Learning. Food Chem. 2024, 438, 138039. [Google Scholar] [CrossRef]
- Almario, A.A.; Calabokis, O.P.; Barrera, E.A. Smart E-Tongue Based on Polypyrrole Sensor Array as Tool for Rapid Analysis of Coffees from Different Varieties. Foods 2024, 13, 3586. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Pietro, M.A.; Simal-Gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef]
- Sberveglieri, V. Validation of Parmigiano Reggiano Cheese Aroma Authenticity, Categorized through the Use of an Array of Semiconductors Nanowire Device (S3). Materials 2016, 9, 81. [Google Scholar] [CrossRef]
- Martins, V.d.C.; de Oliveira Godoy, R.L.; Senna Gouvêa, A.C.M.; Pessanha de Araujo Santiago, M.C.; Borguini, R.G.; de Oliveira Braga, E.C.; Pacheco, S.; de Mattos do Nascimento, L.S. Fraud Investigation in Commercial Coffee by Chromatography. Food Qual. Saf. 2018, 2, 121–133. [Google Scholar] [CrossRef]
- Oliveira, R.C.S.; Oliveira, L.S.; Franca, A.S.; Augusti, R. Evaluation of the Potential of SPME-GC-MS and Chemometrics to Detect Adulteration of Ground Roasted Coffee with Roasted Barley. J. Food Compos. Anal. 2009, 22, 257–261. [Google Scholar] [CrossRef]
Gas Source | Semiconductor Type | Sensing Materials | Doping Elements | Operating Conditions | Performance | References |
---|---|---|---|---|---|---|
CO | n | SnO2 | PdO, Au | 300 °C | Increase in sensitivity and reduction of response times. | [26,27,28] |
CO | n | SnO2 | Ca | 350 °C | Excellent performance at low CO concentrations (30 ppm). | [29] |
CO | n | SnO2 | ZnO | 300 °C | Excellent performance at high CO concentrations (300 ppm). | [29] |
CO | n | SnO2 | CuO, Ag | 400 °C | Improved sensitivity at 100 ppm of CO. | [20,30] |
CO | n | TiO2 | Mo | 500 °C | A high sensitivity to CO. | [34] |
CO | n | TiO2 | MWCNT | 400 °C | An increase in sensitivity with rapid response times (4 s at 50 ppm of CO) and overall good sensor stability. | [35] |
CO | n | ZnO | Al | 300–400 °C | Sensitivity decreases with increasing thickness and improves in thinner films. | [36,37] |
CO | n | ZnO | Cu | 350 °C | Excellent sensor response and sensitivity. | [38] |
CO | n | ZnO | Pd | 220 °C | Strong sensitivity to low CO concentrations (1–20 ppm), exhibiting greater selectivity compared to gases such as NO2 and methane. | [39] |
CO | n | ZnO | In | 300 °C | Optimal response at indium concentrations between 1% and 2%. | [40] |
CO | n | ZnO | Ga | 300 °C | Best response with a gallium concentration of 3% by weight. | [41] |
CO | n | ZnO | CeO2 | 380 °C | Maximum sensitivity at 10,000 ppm of CO, with particularly fast response and recovery times. | [42] |
CO | p | Co3O4 | / | 250 °C | Rapid response and high sensitivity to CO concentrations between 5 and 50 ppm. | [43] |
CO | p | Co3O4 | AuPdPt | 300 °C | An increase in sensitivity. | [43] |
CO | n | SnO2 | Co3O4 | 350 °C | Ensure optimal performance at low CO concentrations (1–10 ppm). | [43] |
CO | p | NiO | CeO2, CuO | 300 °C | An increase in sensitivity. | [44] |
NO2 | n | TiO2, SnO2, ZnO | V, Ca | 200–400 °C | The use of nanostructures promotes greater gas adsorption, thereby enhancing the material’s performance. | [47,48] |
NO2 | n | In2O3 | / | 100 °C | Sensitive and reactive, especially at low temperatures. | [55] |
O3 | n | SnO2 | / | 300–400 °C | Excellent sensitivity to O3. | [57,58,59] |
O3 | n | SnO2 | Pd | 300–400 °C | Continuous calibration is required to obtain accurate measurements. | [61,62,63] |
CH4 | n | SnO2 | CuO, Al, Au, Pd | 210–220 °C | High sensitivity, able to detect CH4 concentrations up to 5 ppm with response and recovery times of approximately 250 s. | [74] |
CH4 | n | SnO2 | CoO, Al, Au, Pd | 210–220 °C | Performance remained unchanged after months of use. | [74] |
H2S | p | CuO | CuFe2O4 | 240 °C | Porous and rough surface, ideal for enhancing gas adsorption. | [76,77] |
H2S | p | Co3O4 | / | 300 °C | Selectivity for H2S compared to other toxic gases. | [78] |
Gas Source | Semiconductor Type | Sensing Materials | Doping Elements | Operating Conditions | Performance | References |
---|---|---|---|---|---|---|
CH3COCH3 | n | SnO2 | NiO, H2SO4 | 200 °C | Improve sensitivity and reduce the operating temperature, ensuring rapid response times. | [94] |
CH3COCH3 | n | TiO2 | Ag2V4O11 | 300 °C | High selectivity, long-term stability, and fast response times. | [101,102] |
CH3COCH3 | n | TiO2 | Fe2O3 | 300 °C | High selectivity, long-term stability, and fast response times. | [101,102] |
CH3COCH3 | n | WO3 | Au | 410 °C | Good performance in acetone detection, making it suitable for non-invasive diagnostic applications. | [103] |
CH3COCH3 | p | Fe2O3 | Gd | 200 °C | Improve sensitivity and selectivity than Fe O alone, making it possible to detect low concentrations of acetone (~1 ppm). | [105] |
CH3COCH3 | n | In2O3 | / | 300 °C | High conductivity and the presence of structural defects that modulate its electrical resistance. | [106,107] |
CH3COCH3 | p | Cu2O–CuO | Ag | 350 °C | Selectivity but high operating temperature. | [109,110] |
NH3 | n | SnO2 | Au | 400 °C | High sensitivity. | [120] |
NH3 | n, p | MoO3 | Si | 300 °C | High selectivity for ammonia, maintaining thermal stability and precision even at high relative humidity. | [120] |
NH3 | n | SnO2 | PT. Pd | 200–400 °C | Higher sensitivity, with a detection range between 10 and 300 ppm and reduced interference from other gases. | [123] |
NH3 | p | WO3 | Si | 350 °C | Sensitivity and selectivity with detection limits below 20 ppb and a fast response even in the presence of high relative humidity. | [124] |
CRC VOCs | n, p | SnO2, TiO2, WO3, Nb2O5, V2O5, | Au | 350–450 °C | High sensitivity and excellent discriminative capability for VOCs. | [130] |
CRC VOCs | n | SnO2, TiO2 | Au | 300 °C | High sensitivity and excellent discriminative capability for VOCs. | [11] |
CRC VOCs | p | Sm, Fe2O3 | / | 300 °C | High sensitivity and excellent discriminative capability for VOCs. | [11] |
CRC VOCs | n | SnO2, TiO2 | Nb2O5 | 300 °C | High sensitivity and excellent discriminative capability for VOCs. | [11] |
CRC VOCs | n | TiO2, Ta2O5, V2O5 | / | 300 °C | High sensitivity and excellent discriminative capability for VOCs. | [11] |
CRC VOCs | n | SnO2, WO3 | / | 200–400 °C | High selectivity, long-term stability, and fast response times. | [131] |
CRC VOCs | n | SnO2 | Au | 450 °C | Stable and reproducible response. | [130,132] |
CRC VOCs | n | TiO2 | Au | 450 °C | Stable and reproducible response. | [130,132] |
Gas Source | Semiconductor Type | Sensing Materials | Doping Elements | Operating Conditions | Performance | References |
---|---|---|---|---|---|---|
TMA | n, p | MoO3 | / | 225–325 °C | High sensitivity to TMA, detecting concentrations as low as 2 ppm even at 25 °C. | [134] |
TMA | n, p | MoO3 | Ti3C2Tx | 200 °C | Higher sensitivity to TMA and fast response times. | [136] |
H2S | N | SnO2 | C4H3N | 200–300 °C | Excellent performance due to the improvement in electron transfer. | [139] |
H2S | N | In2O3 | MoS2 | 200–300 °C | Excellent performance due to the improvement in electron transfer. | [140] |
C2H4 | n, p | SnO2, WO3, CuO | / | 300–400 °C | High sensitivity. | [141] |
C2H4 | n | Co3O4 | Pt | 200–300 °C | High sensitivity and selectivity. | [142] |
C2H4 | n | ZnO | Ag | 300 °C | High sensitivity and selectivity. | [143] |
C2H4 | n | SnO2 | Pd, Au | 500 °C | Excellent performance for detecting samples stored under different conditions. | [144] |
VOCs contaminants | n | SnO2 | Pd, Au | 350–400 °C | High sensitivity in the detection of VOCs emitted by microbial contaminants (lactic acid bacteria and coliforms). | [149] |
VOCs contaminants | n | SnO2, WO3, In2O3, | Au, Ag, Mo | 350–475 °C | Optimal detection of volatile compounds produced during fungal growth. | [151] |
VOCs contaminants | n | SnO2 | Pd, Au | 400–500 °C | Sensitive and reliable, the sensors were capable of detecting VOCs resulting from mold contamination. | [153] |
VOCs adulteration | n | SnO2, SnO2Au | Au | 300–400 °C | The exceptional ability of the system to accurately discriminate the aromatic characteristics of the oils. | [14] |
VOCs adulteration | n | SnO2 | Au, Ag | 350 °C | High stability and sensitivity in the analysis of VOCs from Parmigiano Reggiano. | [157] |
VOCs adulteration | n | ZnO, SnO2 | / | 350–450 °C | High stability and sensitivity in the analysis of Parmigiano Reggiano VOCs. | [157] |
VOCs adulteration | n | SnO2 | / | 400 °C | Precision in detecting differences between the volatile profiles of coffees. | [159] |
VOCs adulteration | n | SnO2 | Au | 400 °C | Precision in detecting differences between the volatile profiles of coffees. | [159] |
Sensor Type | Key Advantages | Limitations | Relevant Applications | References |
---|---|---|---|---|
Metal Oxide (MOX) Sensors | Relatively low production cost | Poor selectivity towards specific analytes | Air quality monitoring and gas leak detection | [8] |
High robustness and long operational life | Sensitivity to variations in temperature and humidity | Breath analysis for disease diagnosis | [10] | |
Capable of detecting a wide range of volatile compounds | High power consumption due to required heating | Assessment of ripeness and freshness in agri-food products | [2] | |
Electrochemical Sensors | High sensitivity and selectivity | Limited operational lifetime (due to consumption of electrodes or reagents) | Detection of toxic gases (e.g., CO, NO2) | [77] |
Low power consumption | Susceptibility to adverse environmental conditions (e.g., temperature, pH, chemical interferences) | Biosensors for biomarker monitoring (e.g., glucose, lactate) | [48] | |
Linear response to analyte concentration | Requires periodic calibration and maintenance | Food safety and contaminant detection | [77] | |
Optical Sensors | High accuracy and resolution | High production and instrumentation costs | Non-invasive medical diagnostics | [79] |
Remote and non-invasive detection | Greater complexity in design and integration into portable devices | Environmental analysis (e.g., detection of volatile organic compounds) | [57] | |
Immunity to electromagnetic interference | Potential degradation of optical components | Traceability and quality control in agri-food processes | [62] | |
Rapid response time | / | / | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poeta, E.; Núñez-Carmona, E.; Sberveglieri, V. A Review: Applications of MOX Sensors from Air Quality Monitoring to Biomedical Diagnosis and Agro-Food Quality Control. J. Sens. Actuator Netw. 2025, 14, 50. https://doi.org/10.3390/jsan14030050
Poeta E, Núñez-Carmona E, Sberveglieri V. A Review: Applications of MOX Sensors from Air Quality Monitoring to Biomedical Diagnosis and Agro-Food Quality Control. Journal of Sensor and Actuator Networks. 2025; 14(3):50. https://doi.org/10.3390/jsan14030050
Chicago/Turabian StylePoeta, Elisabetta, Estefanía Núñez-Carmona, and Veronica Sberveglieri. 2025. "A Review: Applications of MOX Sensors from Air Quality Monitoring to Biomedical Diagnosis and Agro-Food Quality Control" Journal of Sensor and Actuator Networks 14, no. 3: 50. https://doi.org/10.3390/jsan14030050
APA StylePoeta, E., Núñez-Carmona, E., & Sberveglieri, V. (2025). A Review: Applications of MOX Sensors from Air Quality Monitoring to Biomedical Diagnosis and Agro-Food Quality Control. Journal of Sensor and Actuator Networks, 14(3), 50. https://doi.org/10.3390/jsan14030050