Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = asymmetric thin-film composite membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4964 KiB  
Article
Viability of Total Ammoniacal Nitrogen Recovery Using a Polymeric Thin-Film Composite Forward Osmosis Membrane: Determination of Ammonia Permeability Coefficient
by Shirin Shahgodari, Joan Llorens and Jordi Labanda
Polymers 2024, 16(13), 1834; https://doi.org/10.3390/polym16131834 - 27 Jun 2024
Cited by 4 | Viewed by 1444
Abstract
Total ammoniacal nitrogen (TAN) occurs in various wastewaters and its recovery is vital for environmental reasons. Forward osmosis (FO), an energy-efficient technology, extracts water from a feed solution (FS) and into a draw solution (DS). Asymmetric FO membranes consist of an active layer [...] Read more.
Total ammoniacal nitrogen (TAN) occurs in various wastewaters and its recovery is vital for environmental reasons. Forward osmosis (FO), an energy-efficient technology, extracts water from a feed solution (FS) and into a draw solution (DS). Asymmetric FO membranes consist of an active layer and a support layer, leading to internal concentration polarization (ICP). In this study, we assessed TAN recovery using a polymeric thin-film composite FO membrane by determining the permeability coefficients of NH4+ and NH3. Calculations employed the solution–diffusion model, Nernst–Planck equation, and film theory, applying the acid–base equilibrium for bulk concentration corrections. Initially, model parameters were estimated using sodium salt solutions as the DS and deionized water as the FS. The NH4+ permeability coefficient was 0.45 µm/s for NH4Cl and 0.013 µm/s for (NH4)2SO4 at pH < 7. Meanwhile, the NH3 permeability coefficient was 6.18 µm/s at pH > 9 for both ammonium salts. Polymeric FO membranes can simultaneously recover ammonia and water, achieving 15% and 35% recovery at pH 11.5, respectively. Full article
(This article belongs to the Special Issue Functional Polymeric Materials for Water and Wastewater Management)
Show Figures

Figure 1

13 pages, 1365 KiB  
Review
The Treatment of Endocrine-Disruptive Chemicals in Wastewater through Asymmetric Reverse Osmosis Membranes: A Review
by Mohd Sohaimi Abdullah, Pei Sean Goh, Ahmad Fauzi Ismail and Hasrinah Hasbullah
Symmetry 2023, 15(5), 1049; https://doi.org/10.3390/sym15051049 - 9 May 2023
Cited by 6 | Viewed by 3870
Abstract
Endocrine-disrupting chemicals (EDCs) present in aquatic environment have been regarded as detrimental organic pollutants that pose significant adverse impacts on human health and the aquatic ecosystem. The removal of EDCs is highly desired to mitigate their harmful effects. Physical treatment through membrane-based separation [...] Read more.
Endocrine-disrupting chemicals (EDCs) present in aquatic environment have been regarded as detrimental organic pollutants that pose significant adverse impacts on human health and the aquatic ecosystem. The removal of EDCs is highly desired to mitigate their harmful effects. Physical treatment through membrane-based separation processes is an attractive approach, as it can effectively remove a wide range of recalcitrant organic and nonorganic EDCs. In particular, the reverse osmosis (RO) process has shown promise in removing EDCs of various concentrations and from different sources. Recently, the development of innovative asymmetric RO membranes has become the forefront in this field. Various membrane modification strategies have been commenced to address the limitations of commercial membranes. This review provides an overview of the recent advances in asymmetric RO membranes for EDC removal from water and wastewater system. The potential areas of improvement for RO processes and RO membranes are also highlighted. Based on the existing literature using RO for EDC removal from water, the most investigated EDCs are bisphenol A (BPA) and caffeine in the concentration range of 200 ppb to 100 ppm. Polyamide RO membranes have been shown to remove EDCs from water bodies with a removal efficiency of ~30 to 99%, largely depending on the type and concentration of the treated EDCs, as well as the properties of the RO membranes. It has been demonstrated that the performance can be further heightened by tailoring the properties of RO membranes and optimizing the operating conditions of the RO process. Full article
(This article belongs to the Special Issue Asymmetric Membranes: Volume 2)
Show Figures

Figure 1

21 pages, 2037 KiB  
Review
Progress towards Stable and High-Performance Polyelectrolyte Multilayer Nanofiltration Membranes for Future Wastewater Treatment Applications
by Áron Bóna, Ildikó Galambos and Nándor Nemestóthy
Membranes 2023, 13(4), 368; https://doi.org/10.3390/membranes13040368 - 23 Mar 2023
Cited by 21 | Viewed by 3891
Abstract
The increasing demand for nanofiltration processes in drinking water treatment, industrial separation and wastewater treatment processes has highlighted several shortcomings of current state-of-the-art thin film composite (TFC NF) membranes, including limitations in chemical resistance, fouling resistance and selectivity. Polyelectrolyte multilayer (PEM) membranes provide [...] Read more.
The increasing demand for nanofiltration processes in drinking water treatment, industrial separation and wastewater treatment processes has highlighted several shortcomings of current state-of-the-art thin film composite (TFC NF) membranes, including limitations in chemical resistance, fouling resistance and selectivity. Polyelectrolyte multilayer (PEM) membranes provide a viable, industrially applicable alternative, providing significant improvements in these limitations. Laboratory experiments using artificial feedwaters have demonstrated selectivity an order of magnitude higher than polyamide NF, significantly higher fouling resistance and excellent chemical resistance (e.g., 200,000 ppmh chlorine resistance and stability over the 0–14 pH range). This review provides a brief overview of the various parameters that can be modified during the layer-by-layer procedure to determine and fine-tune the properties of the resulting NF membrane. The different parameters that can be adjusted during the layer-by-layer process are presented, which are used to optimize the properties of the resulting nanofiltration membrane. Substantial progress in PEM membrane development is presented, particularly selectivity improvements, of which the most promising route seems to be asymmetric PEM NF membranes, offering a breakthrough in active layer thickness and organic/salt selectivity: an average of 98% micropollutant rejection coupled with a NaCl rejection below 15%. Advantages for wastewater treatment are highlighted, including high selectivity, fouling resistance, chemical stability and a wide range of cleaning methods. Additionally, disadvantages of the current PEM NF membranes are also outlined; while these may impede their use in some industrial wastewater applications, they are largely not restrictive. The effect of realistic feeds (wastewaters and challenging surface waters) on PEM NF membrane performance is also presented: pilot studies conducted for up to 12 months show stable rejection values and no significant irreversible fouling. We close our review by identifying research areas where further studies are needed to facilitate the adoption of this notable technology. Full article
(This article belongs to the Special Issue UF/NF/RO Membranes for Wastewater Treatment and Reuse)
Show Figures

Figure 1

11 pages, 1459 KiB  
Article
Determining the Bending Rigidity of Free-Standing Planar Phospholipid Bilayers
by Oscar Zabala-Ferrera, Paige Liu and Peter J. Beltramo
Membranes 2023, 13(2), 129; https://doi.org/10.3390/membranes13020129 - 19 Jan 2023
Cited by 3 | Viewed by 3510
Abstract
We describe a method to determine membrane bending rigidity from capacitance measurements on large area, free-standing, planar, biomembranes. The bending rigidity of lipid membranes is an important biological mechanical property that is commonly optically measured in vesicles, but difficult to quantify in a [...] Read more.
We describe a method to determine membrane bending rigidity from capacitance measurements on large area, free-standing, planar, biomembranes. The bending rigidity of lipid membranes is an important biological mechanical property that is commonly optically measured in vesicles, but difficult to quantify in a planar, unsupported system. To accomplish this, we simultaneously image and apply an electric potential to free-standing, millimeter area, planar lipid bilayers composed of DOPC and DOPG phospholipids to measure the membrane Young’s (elasticity) modulus. The bilayer is then modeled as two adjacent thin elastic films to calculate bending rigidity from the electromechanical response of the membrane to the applied field. Using DOPC, we show that bending rigidities determined by this approach are in good agreement with the existing work using neutron spin echo on vesicles, atomic force spectroscopy on supported lipid bilayers, and micropipette aspiration of giant unilamellar vesicles. We study the effect of asymmetric calcium concentration on symmetric DOPC and DOPG membranes and quantify the resulting changes in bending rigidity. This platform offers the ability to create planar bilayers of controlled lipid composition and aqueous ionic environment, with the ability to asymmetrically alter both. We aim to leverage this high degree of compositional and environmental control, along with the capacity to measure physical properties, in the study of various biological processes in the future. Full article
(This article belongs to the Special Issue Electrical Phenomena in Biological and Biomimetic Membranes)
Show Figures

Figure 1

15 pages, 3074 KiB  
Article
Air-to-Air Heat and Moisture Recovery in a Plate-Frame Exchanger Using Composite and Asymmetric Membranes
by Amir Jahed Mogharrab, Seyedmehdi Sharifian, Neda Asasian-Kolur, Ali Ghadimi, Bahram Haddadi and Michael Harasek
Membranes 2022, 12(5), 484; https://doi.org/10.3390/membranes12050484 - 29 Apr 2022
Cited by 4 | Viewed by 3125
Abstract
The present work studied an air-to-air exchanger comprising a flat plate module with a diagonal channel and a counterflow configuration for the air streams. The objective of this study was to remove moisture and sensible heat from an exhaust air stream by indirect [...] Read more.
The present work studied an air-to-air exchanger comprising a flat plate module with a diagonal channel and a counterflow configuration for the air streams. The objective of this study was to remove moisture and sensible heat from an exhaust air stream by indirect contact with another air stream. The temperature and flow rate of the exhaust air was in the range of 40–80 °C and 1–5 L·min−1, respectively, and the fresh ambient air to exhaust air flow ratio was 1–5. An asymmetric porous membrane (P-MEM), a thin film composite membrane (C-MEM), and a kraft paper were used as the core for the heat exchange module. The most influential parameter was the humid air temperature, with a direct positive effect (50–60%) due to the increase in the kinetic energy of the water molecules. The other effective parameter was the flow rate of the humid gas with a reverse effect on the enthalpy exchanger performance (25–37%). The ratio of “fresh” air to “exhaust” air had the lowest positive effect (8–10%) on the total effectiveness. The sensible effectiveness of different membranes under the studied conditions was relatively the same, showing their similar heat conductivity. However, the kraft paper showed the best performance compared to the synthetic membranes due to having a porous/hydrophile texture. P-MEM with an asymmetric porous texture showed the closest performance to kraft paper. Furthermore, it was found that under limited conditions, such as higher temperatures (70 and 80 °C) and flow rates (5 L·min−1) for the humid air, the performance of P-MEM was a little better than the kraft paper. However, C-MEM with the lowest total effectiveness and overall heat transfer coefficient (150–210 W·m−2·K−1) showed that the hydrophile PEBAX layer could not contribute to moisture recovery due to its high thickness. Full article
Show Figures

Figure 1

59 pages, 4254 KiB  
Review
Roles of Sulfites in Reverse Osmosis (RO) Plants and Adverse Effects in RO Operation
by Yasushi Maeda
Membranes 2022, 12(2), 170; https://doi.org/10.3390/membranes12020170 - 31 Jan 2022
Cited by 16 | Viewed by 22461
Abstract
More than 60 years have passed since UCLA first announced the development of an innovative asymmetric cellulose acetate reverse osmosis (RO) membrane in 1960. This innovation opened a gate to use RO for commercial use. RO is now ubiquitous in water treatment and [...] Read more.
More than 60 years have passed since UCLA first announced the development of an innovative asymmetric cellulose acetate reverse osmosis (RO) membrane in 1960. This innovation opened a gate to use RO for commercial use. RO is now ubiquitous in water treatment and has been used for various applications, including seawater desalination, municipal water treatment, wastewater reuse, ultra-pure water (UPW) production, and industrial process waters, etc. RO is a highly integrated system consisting of a series of unit processes: (1) intake system, (2) pretreatment, (3) RO system, (4) post-treatment, and (5) effluent treatment and discharge system. In each step, a variety of chemicals are used. Among those, sulfites (sodium bisulfite and sodium metabisulfite) have played significant roles in RO, such as dechlorination, preservatives, shock treatment, and sanitization, etc. Sulfites especially became necessary as dechlorinating agents because polyamide hollow-fiber and aromatic thin-film composite RO membranes developed in the late 1960s and 1970s were less tolerable with residual chlorine. In this review, key applications of sulfites are explained in detail. Furthermore, as it is reported that sulfites have some adverse effects on RO membranes and processes, such phenomena will be clarified. In particular, the following two are significant concerns using sulfites: RO membrane oxidation catalyzed by heavy metals and a trigger of biofouling. This review sheds light on the mechanism of membrane oxidation and triggering biofouling by sulfites. Some countermeasures are also introduced to alleviate such problems. Full article
Show Figures

Figure 1

18 pages, 8784 KiB  
Article
Improving the Structural Parameter of the Membrane Sublayer for Enhanced Forward Osmosis
by Jin Fei Sark, Nora Jullok and Woei Jye Lau
Membranes 2021, 11(6), 448; https://doi.org/10.3390/membranes11060448 - 15 Jun 2021
Cited by 18 | Viewed by 4247
Abstract
The structural (S) parameter of a medium is used to represent the mass transport resistance of an asymmetric membrane. In this study, we aimed to fabricate a membrane sublayer using a novel composition to improve the S parameter for enhanced forward [...] Read more.
The structural (S) parameter of a medium is used to represent the mass transport resistance of an asymmetric membrane. In this study, we aimed to fabricate a membrane sublayer using a novel composition to improve the S parameter for enhanced forward osmosis (FO). Thin film composite (TFC) membranes using polyamide (PA) as an active layer and different polysulfone:polyethersulfone (PSf:PES) supports as sublayers were prepared via the phase inversion technique, followed by interfacial polymerization. The membrane made with a PSf:PES ratio of 2:3 was observed to have the lowest contact angle (CA) with the highest overall porosity. It also had the highest water permeability (A; 3.79 ± 1.06 L m−2 h−1 bar−1) and salt permeability (B; 8.42 ± 2.34 g m−2 h−1), as well as a good NaCl rejection rate of 74%. An increase in porosity at elevated temperatures from 30 to 40 °C decreased Sint from 184 ± 4 to 159 ± 2 μm. At elevated temperatures, significant increases in the water flux from 13.81 to 42.86 L m−2 h−1 and reverse salt flux (RSF) from 12.74 to 460 g m−2 h−1 occur, reducing Seff from 152 ± 26 to 120 ± 14 μm. Sint is a temperature-dependent parameter, whereas Seff can only be reduced in a high-water- permeability membrane at elevated temperatures. Full article
(This article belongs to the Special Issue Membrane Development for Pervaporation and Vapor Permeation Processes)
Show Figures

Figure 1

11 pages, 43276 KiB  
Article
Organic Nanobowls Modified Thin Film Composite Membrane for Enhanced Purification Performance toward Different Water Resources
by Changjin Ou, Sisi Li, Zhongyi Wang, Juan Qin, Qian Wang, Zhipeng Liao and Jiansheng Li
Membranes 2021, 11(5), 350; https://doi.org/10.3390/membranes11050350 - 10 May 2021
Cited by 14 | Viewed by 3319
Abstract
The structure and composition of nanofillers have a significant influence on polyamide nanofiltration (NF) membranes. In this work, an asymmetric organic nanobowl containing a concave cavity was synthesized and incorporated into a polyamide layer to prepare thin film nanocomposite (TFN) membranes via an [...] Read more.
The structure and composition of nanofillers have a significant influence on polyamide nanofiltration (NF) membranes. In this work, an asymmetric organic nanobowl containing a concave cavity was synthesized and incorporated into a polyamide layer to prepare thin film nanocomposite (TFN) membranes via an interfacial polymerization process. Benefiting from the hydrophilicity, hollow cavity and charge property of the compatible organic nanobowls, the separation performance of the developed TFN membrane was significantly improved. The corresponding water fluxes increased to 119.44 ± 5.56, 141.82 ± 3.24 and 130.27 ± 2.05 L/(m2·h) toward Na2SO4, MgCl2 and NaCl solutions, respectively, with higher rejections, compared with the control thin film composite (TFC) and commercial (CM) membranes. Besides this, the modified TFN membrane presented a satisfying purification performance toward tap water, municipal effluent and heavy metal wastewater. More importantly, a better antifouling property of the TFN membrane than TFC and CM membranes was achieved with the assistance of organic nanobowls. These results indicate that the separation performance of the TFN membrane can be elevated by the incorporation of organic nanobowls. Full article
Show Figures

Figure 1

20 pages, 6435 KiB  
Article
Insights into the Influence of Membrane Permeability and Structure on Osmotically-Driven Membrane Processes
by Jing Wei, Qianhong She and Xin Liu
Membranes 2021, 11(2), 153; https://doi.org/10.3390/membranes11020153 - 22 Feb 2021
Cited by 15 | Viewed by 4067
Abstract
The success of osmotically-driven membrane (OM) technology relies critically on high-performance membranes. Yet trade-off of membrane properties, often further complicated by the strongly non-linear dependence of OM performance on them, imposes important constraint on membrane performance. This work systematically characterized four typical commercial [...] Read more.
The success of osmotically-driven membrane (OM) technology relies critically on high-performance membranes. Yet trade-off of membrane properties, often further complicated by the strongly non-linear dependence of OM performance on them, imposes important constraint on membrane performance. This work systematically characterized four typical commercial osmotic membranes in terms of intrinsic separation parameters, structure and surface properties. The osmotic separation performance and membrane scaling behavior of these membranes were evaluated to elucidate the interrelationship of these properties. Experimental results revealed that membranes with smaller structural parameter (S) and higher water/solute selectivity underwent lower internal concentration polarization (ICP) and exhibited higher forward osmosis (FO) efficiency (i.e., higher ratio of experimental water flux over theoretical water flux). Under the condition with low ICP, membrane water permeability (A) had dominant effect on water flux. In this case, the investigated thin film composite membrane (TFC, A = 2.56 L/(m2 h bar), S = 1.14 mm) achieved a water flux up to 82% higher than that of the asymmetric cellulose triacetate membrane (CTA-W(P), A = 1.06 L/(m2 h bar), S = 0.73 mm). In contrast, water flux became less dependent on the A value but was affected more by membrane structure under the condition with severe ICP, and the membrane exhibited lower FO efficiency. The ratio of water flux (Jv TFC/Jv CTA-W(P)) decreased to 0.55 when 0.5 M NaCl feed solution and 2 M NaCl draw solution were used. A framework was proposed to evaluate the governing factors under different conditions and to provide insights into the membrane optimization for targeted OM applications. Full article
(This article belongs to the Special Issue Membrane-based Technologies for Water and Energy Sustainability)
Show Figures

Graphical abstract

14 pages, 7706 KiB  
Article
Phase Separation within a Thin Layer of Polymer Solution as Prompt Technique to Predict Membrane Morphology and Transport Properties
by Tatiana Anokhina, Ilya Borisov, Alexey Yushkin, Gleb Vaganov, Andrey Didenko and Alexey Volkov
Polymers 2020, 12(12), 2785; https://doi.org/10.3390/polym12122785 - 25 Nov 2020
Cited by 16 | Viewed by 3339
Abstract
In this work, the precipitation of a thin layer of a polymer solution was proposed to imitate the process of asymmetric membrane formation by a non-solvent induced phase separation (NIPS) technique. The phase inversion within the thin (<500 μm) and bulk (~2 cm) [...] Read more.
In this work, the precipitation of a thin layer of a polymer solution was proposed to imitate the process of asymmetric membrane formation by a non-solvent induced phase separation (NIPS) technique. The phase inversion within the thin (<500 μm) and bulk (~2 cm) layer of polyamic-acid (PAA) in N-methyl-2-pyrrolidone (NMP) by using water as non-solvent was considered. It was shown that polymer films formed within the “limited” layer of polymer solution showed a good agreement with the morphology of corresponded asymmetric flat-sheet membranes even in the case of three-component casting solution (PAA/NMP/EtOH). At the same time, the polymer films formed on the interface of two bulk phases (“infinite” regime) did not fully correspond to the membrane structure. It was shown that up to 50% of NMP solvent in PAA solution can be replaced by ethanol, which can have a renewable origin. By changing the ethanol content in the casting solution, the average size of transport pores can be varied in the range of 12–80 nm, and the liquid permeance from 16.6 up to 207 kg/m2∙h∙bar. To summarize, the precipitation of polymer solution within the thin layer can be considered a prompt technique and a powerful tool for fast screening and optimization of the complex composition of casting solutions using its small quantity. Furthermore, the prediction of membrane morphology can be done without casting the membrane, further post-treatment procedures, and scanning electron microscopy (SEM) analysis. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Membrane Technology)
Show Figures

Graphical abstract

14 pages, 1488 KiB  
Communication
Preparation and Characterization of Thin-Film Composite Membrane with Nanowire-Modified Support for Forward Osmosis Process
by Ze-Xian Low, Qi Liu, Ezzatollah Shamsaei, Xiwang Zhang and Huanting Wang
Membranes 2015, 5(1), 136-149; https://doi.org/10.3390/membranes5010136 - 20 Mar 2015
Cited by 43 | Viewed by 10828
Abstract
Internal concentration polarization (ICP) in forward osmosis (FO) process is a characteristic problem for asymmetric thin-film composite (TFC) FO membrane which leads to lower water flux. To mitigate the ICP effect, modification of the substrates’ properties has been one of the most effective [...] Read more.
Internal concentration polarization (ICP) in forward osmosis (FO) process is a characteristic problem for asymmetric thin-film composite (TFC) FO membrane which leads to lower water flux. To mitigate the ICP effect, modification of the substrates’ properties has been one of the most effective methods. A new polyethersulfone-based ultrafiltration membrane with increased surface porosity and high water flux was recently produced by incorporating Zn2GeO4 nanowires. The composite membrane was used as a substrate for the fabrication of TFC FO membrane, by coating a thin layer of polyamide on top of the substrate. The substrate and the nanowires were characterized by a range of techniques such as SEM, XRD, and contact angle goniometry. The water permeability and molecular weight cut-offs (MWCO) of the substrate; and the FO performance of the TFC membrane were also determined. The Zn2GeO4-modified membrane showed ~45% increase in water permeability and NaCl salt rejection of 80% under RO mode. In FO mode, the ratio of water flux to reverse solute flux was also improved. However, lower FO flux was obtained which could be due to ICP. The result shows that Zn2GO4 nanowire may be used as a modifier to the substrate to improve the quality of the polyamide layer on the substrate to improve the flux and selectivity, but not as effective in reducing ICP. This work demonstrates that the incorporation of nanomaterials to the membrane substrate may be an alternative approach to improve the formation of polyamide skin layer to achieve better FO performance. Full article
(This article belongs to the Special Issue Selected Papers from MSA ECR MemSym2014)
Show Figures

Figure 1

25 pages, 1164 KiB  
Review
Pressure Retarded Osmosis and Forward Osmosis Membranes: Materials and Methods
by Inger Lise Alsvik and May-Britt Hägg
Polymers 2013, 5(1), 303-327; https://doi.org/10.3390/polym5010303 - 21 Mar 2013
Cited by 201 | Viewed by 32447
Abstract
In the past four decades, membrane development has occurred based on the demand in pressure driven processes. However, in the last decade, the interest in osmotically driven processes, such as forward osmosis (FO) and pressure retarded osmosis (PRO), has increased. The preparation of [...] Read more.
In the past four decades, membrane development has occurred based on the demand in pressure driven processes. However, in the last decade, the interest in osmotically driven processes, such as forward osmosis (FO) and pressure retarded osmosis (PRO), has increased. The preparation of customized membranes is essential for the development of these technologies. Recently, several very promising membrane preparation methods for FO/PRO applications have emerged. Preparation of thin film composite (TFC) membranes with a customized polysulfone (PSf) support, electorspun support, TFC membranes on hydrophilic support and hollow fiber membranes have been reported for FO/PRO applications. These novel methods allow the use of other materials than the traditional asymmetric cellulose acetate (CA) membranes and TFC polyamide/polysulfone membranes. This review provides an outline of the membrane requirements for FO/PRO and the new methods and materials in membrane preparation. Full article
(This article belongs to the Special Issue Polymer Thin Films and Membranes 2013)
Show Figures

Figure 1

Back to TopTop