Organic Nanobowls Modified Thin Film Composite Membrane for Enhanced Purification Performance toward Different Water Resources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of Organic Nanobowls and Composite Membranes
2.3. Characterization
2.4. Membrane Performance Test
3. Results and Discussions
3.1. Characterizations of Organic Nanobowls and Composite Membranes
3.2. Membrane Performance Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, S.; Liao, Z.; Fane, A.; Li, J.; Tang, C.; Zheng, C.; Lin, J.; Kong, L. Engineering antifouling reverse osmosis membranes: A review. Desalination 2021, 499, 114857. [Google Scholar] [CrossRef]
- Liao, Z.; Fang, X.; Li, J.; Li, X.; Zhang, W.; Sun, X.; Shen, J.; Han, W.; Zhao, S.; Wang, L. Incorporating organic nanospheres into the polyamide layer to prepare thin film composite membrane with enhanced biocidal activity and chlorine resistance. Sep. Purif. Technol. 2018, 207, 222–230. [Google Scholar] [CrossRef]
- Zhang, R.; Tian, J.; Gao, S.; Van der Bruggen, B. How to coordinate the trade-off between water permeability and salt rejection in nanofiltration? J. Mater. Chem. A 2020, 8, 8831–8847. [Google Scholar] [CrossRef]
- Liao, Z.; Fang, X.; Xie, J.; Li, Q.; Wang, D.; Sun, X.; Wang, L.; Li, J. Hydrophilic Hollow Nanocube-Functionalized Thin Film Nanocomposite Membrane with Enhanced Nanofiltration Performance. ACS Appl. Mater. Interfaces 2019, 11, 5344–5352. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, X.; Bruggen, B.V.D. An MXene-based membrane for molecular separation. Environ. Sci. Nano 2020, 7, 1289–1304. [Google Scholar] [CrossRef]
- Li, X.; Xu, Y.; Goh, K.; Chong, T.H.; Wang, R. Layer-by-layer assembly based low pressure biocatalytic nanofiltration membranes for micropollutants removal. J. Membr. Sci. 2020, 615, 118514. [Google Scholar] [CrossRef]
- Li, X.; Sotto, A.; Li, J.; Van der Bruggen, B. Progress and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles. J. Membr. Sci. 2017, 524, 502–528. [Google Scholar] [CrossRef]
- Xie, J.; Liao, Z.; Zhang, M.; Ni, L.; Qi, J.; Wang, C.; Sun, X.; Wang, L.; Wang, S.; Li, J. Sequential Ultrafiltration-Catalysis Membrane for Excellent Removal of Multiple Pollutants in Water. Environ. Sci. Technol. 2021, 55, 2652–2661. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Minh Nhat, N.; Wan, G.; Xie, J.; Ni, L.; Qi, J.; Li, J.; Schaefer, A.I. Low pressure operated ultrafiltration membrane with integration of hollow mesoporous carbon nanospheres for effective removal of micropollutants. J. Hazard. Mater. 2020, 397, 122779. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, W.; Zhang, Q.; Chen, X. Insight into the feed/permeate flow velocity on the trade-off of water flux and scaling resistance of superhydrophobic and welding-pore fibrous membrane in membrane distillation. J. Membr. Sci. 2021, 620, 118883. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, Y.; Luo, Y.; Wang, W.; Chen, X. Porous evaporators with special wettability for low-grade heat-driven water desalination. J. Mater. Chem. A 2021, 9, 702–726. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhong, L.; Horseman, T.; Liu, Z.; Wang, W. Superhydrophobic-omniphobic membrane with anti-deformable pores for membrane distillation with excellent wetting resistance. J. Membr. Sci. 2020, 620, 118768. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Wang, J.; Gascon, J.; Li, J.; Van der Bruggen, B. Metal–organic frameworks based membranes for liquid separation. Chem. Soc. Rev. 2017, 46, 7124–7144. [Google Scholar] [CrossRef]
- Ding, L.; Gao, J.; Chung, T.-S. Schiff base reaction assisted one-step self-assembly method for efficient gravity-driven oil-water emulsion separation. Sep. Purif. Technol. 2019, 213, 437–446. [Google Scholar] [CrossRef]
- Liao, Z.; Fang, X.; Li, Q.; Xie, J.; Ni, L.; Wang, D.; Sun, X.; Wang, L.; Li, J. Resorcinol-formaldehyde nanobowls modified thin film nanocomposite membrane with enhanced nanofiltration performance. J. Membr. Sci. 2020, 594, 117468. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Liu, N.; Sun, T.; Cui, H.-H.; Wang, J.; Wang, M.; Wang, M.; Tang, Y. Rational structural design of ZnOHF nanotube-assembled microsphere adsorbents for high-efficient Pb2+ removal. CrystEngComm 2020, 22, 7543–7548. [Google Scholar] [CrossRef]
- Li, Q.; Liao, Z.; Xie, J.; Ni, L.; Wang, C.; Qi, J.; Sun, X.; Wang, L.; Li, J. Enhancing nanofiltration performance by incorporating tannic acid modified metal-organic frameworks into thin-film nanocomposite membrane. Environ. Res. 2020, 191, 110215. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Sun, Y.; Yu, H.; Chen, W.; Dai, H.; Shi, Y. A pillar 5 arene based gel from a low-molecular-weight gelator for sustained dye release in water. Dalton Trans. 2017, 46, 16802–16806. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Zhu, J.; Li, X.; Van der Bruggen, B. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review. Sep. Purif. Technol. 2021, 266, 118567. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, S.; Zhang, B.; Zhu, L. Hydrophilic polymers of intrinsic microporosity as water transport nanochannels of highly permeable thin-film nanocomposite membranes used for antibiotic desalination. J. Membr. Sci. 2019, 592, 117375. [Google Scholar] [CrossRef]
- Sun, N.; Zhu, Z.; Zeng, G. Bioinspired superwetting fibrous skin with hierarchical roughness for efficient oily water separation. Sci. Total Environ. 2020, 744, 140822. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhong, L.; Chen, X.; Zheng, W.; Zuo, J.; Zeng, G.; Wang, W. Monolithic and self-roughened Janus fibrous membrane with superhydrophilic/omniphobic surface for robust antifouling and antiwetting membrane distillation. J. Membr. Sci. 2020, 615, 118499. [Google Scholar] [CrossRef]
- Guo, X.-Q.; Wang, M.; Meng, F.; Tang, Y.-F.; Tian, S.; Yang, H.-L.; Jiang, G.-Q.; Zhu, J.-L. Rational design and synthesis of an amino-functionalized hydrogen-bonded network with an ACO zeolite-like topology for gas storage. CrystEngComm 2016, 18, 5616–5619. [Google Scholar] [CrossRef]
- Zhao, D.L.; Japip, S.; Zhang, Y.; Weber, M.; Chung, T.S. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review. Water Res. 2020, 173, 115557. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Chen, J.; Zhong, Y.; Yin, Y.; Cao, L.; Wu, H. Zwitterionic functionalized “cage-like” porous organic frameworks for nanofiltration membrane with high efficiency water transport channels and anti-fouling property. J. Membr. Sci. 2018, 548, 194–202. [Google Scholar] [CrossRef]
- Zhao, Q.; Ge, C.; Cai, Y.; Qiao, Q.; Jia, X. Silsesquioxane stabilized platinum-palladium alloy nanoparticles with morphology evolution and enhanced electrocatalytic oxidation of formic acid. J. Colloid Interface Sci. 2018, 514, 425–432. [Google Scholar] [CrossRef]
- Ding, J.; Liu, X.; Wan, M.; Liu, Q.; Sun, T.; Jiang, G.; Tang, Y. Controlled synthesis of CeVO4 hierarchical hollow microspheres with tunable hollowness and their efficient photocatalytic activity. CrystEngComm 2018, 20, 4499–4505. [Google Scholar] [CrossRef]
- Song, X.; Wang, Y.; Jiao, C.; Huang, M.; Wang, G.-H.; Jiang, H. Microstructure regulation of polyamide nanocomposite membrane by functional mesoporous polymer for high-efficiency desalination. J. Membr. Sci. 2020, 597, 117783. [Google Scholar] [CrossRef]
- Ang, M.B.M.Y.; Pereira, J.M.; Trilles, C.A.; Aquino, R.R.; Huang, S.-H.; Lee, K.-R.; Lai, J.-Y. Performance and antifouling behavior of thin-film nanocomposite nanofiltration membranes with embedded silica spheres. Sep. Purif. Technol. 2019, 210, 521–529. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, Q.; Ye, C.; Wang, W.; Zheng, L.; Dong, F.; Yi, Z.; Xue, L.; Gao, C. Nanovoid Membranes Embedded with Hollow Zwitterionic Nanocapsules for a Superior Desalination Performance. Nano Lett. 2019, 19, 2953–2959. [Google Scholar] [CrossRef]
- Guo, X.; Wang, M.; Gu, X.; Zhu, J.; Tang, Y.; Jiang, G.; Bai, J. Synthesis, structures, and luminescence of two 2-D microporous metal-organic frameworks in the zinc (cadmium)-dicarboxylate-imidazolate system. J. Coord. Chem. 2016, 69, 1819–1827. [Google Scholar] [CrossRef]
- Wickramaratne, N.P.; Xu, J.; Wang, M.; Zhu, L.; Dai, L.; Jaroniec, M. Nitrogen enriched porous carbon spheres: Attractive materials for supercapacitor electrodes and CO2 adsorption. Chem. Mater. 2014, 26, 2820–2828. [Google Scholar] [CrossRef]
- Kadhom, M.; Hu, W.; Deng, B. Thin Film Nanocomposite Membrane Filled with Metal-Organic Frameworks UiO-66 and MIL-125 Nanoparticles for Water Desalination. Membranes 2017, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Chen, S.; Peng, X.; Zhang, L.; Gao, C. Polyamide membranes with nanoscale Turing structures for water purification. Science 2018, 360, 518–521. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, Z.; Lin, S.; Jin, H.; Gao, S.; Zhu, Y.; Jin, J. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nat. Commun. 2018, 9, 2004. [Google Scholar] [CrossRef]
- Gui, L.; Dong, J.; Fang, W.; Zhang, S.; Zhou, K.; Zhu, Y.; Zhang, Y.; Jin, J. Ultrafast Ion Sieving from Honeycomb-like Polyamide Membranes Formed Using Porous Protein Assemblies. Nano Lett. 2020, 20, 5821–5829. [Google Scholar] [CrossRef] [PubMed]
- Epsztein, R.; Shaulsky, E.; Dizge, N.; Warsinger, D.M.; Elimelech, M. Role of Ionic Charge Density in Donnan Exclusion of Monovalent Anions by Nanofiltration. Environ. Sci. Technol. 2018, 52, 4108–4116. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, X.; Gao, X.; Zheng, J.; Wang, J.; Volodin, A.; Xie, Y.F.; Huang, X.; Van der Bruggen, B.; Zhu, J. High-performance thin film nanocomposite membranes enabled by nanomaterials with different dimensions for nanofiltration. J. Membr. Sci. 2020, 596, 117717. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Song, C.; Gao, C.; Zhu, G. Effect of aminophend/formaldehyde resin polymeric nanospheres as nanofiller on polyamide thin film nanocomposite membranes for reverse osmosis application. J. Membr. Sci. 2020, 614, 118496. [Google Scholar] [CrossRef]
- Jia, L.; Zhang, X.; Zhu, J.; Cong, S.; Wang, J.; Liu, J.; Zhang, Y. Polyvinyl alcohol-assisted high-flux thin film nanocomposite membranes incorporated with halloysite nanotubes for nanofiltration. Environ. Sci. Water Res. Technol. 2019, 5, 1412–1422. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, Y.; Zeng, S.-Y.; Zhu, B.-K.; Zhu, L.-P.; Fang, L.-F.; Matsuyama, H. Incorporating hyperbranched polyester into cross-linked polyamide layer to enhance both permeability and selectivity of nanofiltration membrane. J. Membr. Sci. 2016, 518, 141–149. [Google Scholar] [CrossRef]
- Shepsko, C.S.; Dong, H.; Sengupta, A.K. Treated Municipal Wastewater Reuse: A Holistic Approach Using Hybrid Ion Exchange (HIX) with Concurrent Nutrient Recovery and CO2 Sequestration. ACS Sustain. Chem. Eng. 2019, 7, 9671–9679. [Google Scholar] [CrossRef]
- Epsztein, R.; Cheng, W.; Shaulsky, E.; Dizge, N.; Elimelech, M. Elucidating the mechanisms underlying the difference between chloride and nitrate rejection in nanofiltration. J. Membr. Sci. 2018, 548, 694–701. [Google Scholar] [CrossRef]
- He, Y.; Liu, J.; Han, G.; Chung, T.-S. Novel thin-film composite nanofiltration membranes consisting of a zwitterionic co-polymer for selenium and arsenic removal. J. Membr. Sci. 2018, 555, 299–306. [Google Scholar] [CrossRef]
- Jia, T.-Z.; Lu, J.-P.; Cheng, X.-Y.; Xia, Q.-C.; Cao, X.-L.; Wang, Y.; Xing, W.; Sun, S.-P. Surface enriched sulfonated polyarylene ether benzonitrile (SPEB) that enhances heavy metal removal from polyacrylonitrile (PAN) thin-film composite nanofiltration membranes. J. Membr. Sci. 2019, 580, 214–223. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, Y.; Shi, J.; Tan, D.; Jing, X.; Xu, Q. Modeling and optimization of the electric flocculation of wastewater containing Cr6+ using response surface methodology. Sep. Sci. Technol. 2017, 1–12. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, R.; Han, Y.; Wang, J.; Yan, C. A p-tert-Butyldihomooxacalix[4]arene Based Soft Gel for Sustained Drug Release in Water. Front. Chem. 2020, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Han, S.; Xu, Q.; Wang, Y.; Xu, Z.; Zhao, B.; Zhang, R. Optimizing degradation of Reactive Yellow 176 by dielectric barrier discharge plasma combined with TiO2 nano-particles prepared using response surface methodology. J. Taiwan Inst. Chem. Eng. 2016, 60, 302–312. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Wang, C.; Long, R.; Chen, T.; Yao, Y. Functionalization of inorganic nanomaterials with pillar n arenes. Chem. Commun. 2019, 55, 6817–6826. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, H.; Tang, Y.; Zhu, P.; Ma, H.; Ge, C.; Yan, F. Chemically grafting nanoscale UIO-66 onto polypyrrole nanotubes for long-life lithium-sulfur batteries. Chem. Commun. 2019, 55, 12108–12111. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Long, R.; Cao, Y.; Fan, D.; Cen, M.; Cao, L.; Chen, Y.; Yao, Y. Synthesis and controllable self-assembly of 3D amphiphilic organoplatinum(ii) metallacages in water. Chem. Commun. 2019, 55, 5167–5170. [Google Scholar] [CrossRef]
Membrane Type | C (%) | N (%) | O (%) | C/N | O/N | WCA (°) |
---|---|---|---|---|---|---|
TFC | 70.94 | 10.87 | 18.19 | 6.52 | 1.67 | 55.2 ± 2.7 |
TFN | 70.28 | 11.02 | 18.70 | 6.38 | 1.70 | 42.3 ± 4.6 |
CM | 71.08 | 11.38 | 17.55 | 6.24 | 1.54 | 28.5 ± 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, C.; Li, S.; Wang, Z.; Qin, J.; Wang, Q.; Liao, Z.; Li, J. Organic Nanobowls Modified Thin Film Composite Membrane for Enhanced Purification Performance toward Different Water Resources. Membranes 2021, 11, 350. https://doi.org/10.3390/membranes11050350
Ou C, Li S, Wang Z, Qin J, Wang Q, Liao Z, Li J. Organic Nanobowls Modified Thin Film Composite Membrane for Enhanced Purification Performance toward Different Water Resources. Membranes. 2021; 11(5):350. https://doi.org/10.3390/membranes11050350
Chicago/Turabian StyleOu, Changjin, Sisi Li, Zhongyi Wang, Juan Qin, Qian Wang, Zhipeng Liao, and Jiansheng Li. 2021. "Organic Nanobowls Modified Thin Film Composite Membrane for Enhanced Purification Performance toward Different Water Resources" Membranes 11, no. 5: 350. https://doi.org/10.3390/membranes11050350
APA StyleOu, C., Li, S., Wang, Z., Qin, J., Wang, Q., Liao, Z., & Li, J. (2021). Organic Nanobowls Modified Thin Film Composite Membrane for Enhanced Purification Performance toward Different Water Resources. Membranes, 11(5), 350. https://doi.org/10.3390/membranes11050350