Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = asymmetric double quantum well

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3342 KiB  
Article
Tuning Electromagnetically Induced Transparency in a Double GaAs/AlGaAs Quantum Well with Modulated Doping
by C. A. Dagua-Conda, J. A. Gil-Corrales, R. V. H. Hahn, R. L. Restrepo, M. E. Mora-Ramos, A. L. Morales and C. A. Duque
Crystals 2025, 15(3), 248; https://doi.org/10.3390/cryst15030248 - 6 Mar 2025
Cited by 4 | Viewed by 1543
Abstract
Including an n-doped layer in asymmetric double quantum wells restricts confined carriers into V-shaped potential profiles, forming discrete conduction subbands and enabling intersubband transitions. Most studies on doped semiconductor heterostructures focus on how external fields and structural parameters dictate optical absorption. However, [...] Read more.
Including an n-doped layer in asymmetric double quantum wells restricts confined carriers into V-shaped potential profiles, forming discrete conduction subbands and enabling intersubband transitions. Most studies on doped semiconductor heterostructures focus on how external fields and structural parameters dictate optical absorption. However, electromagnetically induced transparency remains largely unexplored. Here, we show that the effect of an n-doped layer GaAs/AlxGa1−xAs in an asymmetric double quantum well system is quite sensitive to the width and position of the doped layer. By self-consistently solving the Poisson and Schrödinger’s equations, we determine the electronic structure using the finite element method within the effective mass approximation. We found that the characteristics of the n-doped layer can modulate the resonance frequencies involved in the electromagnetically induced transparency phenomenon. Our results demonstrate that an n-doped layer can control the electromagnetically induced transparency effect, potentially enhancing its applications in optoelectronic devices. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

15 pages, 6575 KiB  
Article
Tunable Characteristics of Optical Frequency Combs from InGaAs/GaAs Two-Section Mode-Locked Lasers
by Dengqun Weng, Yanbo Liang, Zhongliang Qiao, Xiang Li, Jia Xu Brian Sia, Zaijin Li, Lin Li, Hao Chen, Zhibin Zhao, Yi Qu, Guojun Liu, Chongyang Liu and Hong Wang
Sensors 2024, 24(24), 7905; https://doi.org/10.3390/s24247905 - 11 Dec 2024
Viewed by 1057
Abstract
We observed tunable characteristics of optical frequency combs (OFCs) generated from InGaAs/GaAs double quantum wells (DQWs) asymmetric waveguide two-section mode-locked lasers (TS-MLLs). This involves an asymmetric waveguide mode-locked semiconductor laser (AWML-SL) operating at a center wavelength of net modal gain of approximately 1.06 [...] Read more.
We observed tunable characteristics of optical frequency combs (OFCs) generated from InGaAs/GaAs double quantum wells (DQWs) asymmetric waveguide two-section mode-locked lasers (TS-MLLs). This involves an asymmetric waveguide mode-locked semiconductor laser (AWML-SL) operating at a center wavelength of net modal gain of approximately 1.06 µm, which indicates a stable pulse shape, with the power-current(P-I) characteristic curve revealing a small difference between forward and reverse drive currents in the gain region. Under different operating conditions, the laser exhibits the characteristics of OFCs. And the pulse interval in the timing and the peak interval in the frequency domain show a periodic alternating change trend with the increase in the gain current. This tunable characteristic is reported for the first time. The study demonstrates the feasibility of generating tunable optical combs using a monolithic integrated two-section mode-locked semiconductor laser (MI-TS-MLL). This has important reference value for the application of OFCs generated from MI-TS-MLLs or integrated optical chips. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

12 pages, 3365 KiB  
Article
Bias-Tunable Quantum Well Infrared Photodetector
by Gyana Biswal, Michael Yakimov, Vadim Tokranov, Kimberly Sablon, Sergey Tulyakov, Vladimir Mitin and Serge Oktyabrsky
Nanomaterials 2024, 14(6), 548; https://doi.org/10.3390/nano14060548 - 20 Mar 2024
Cited by 2 | Viewed by 2383
Abstract
With the rapid advancement of Artificial Intelligence-driven object recognition, the development of cognitive tunable imaging sensors has become a critically important field. In this paper, we demonstrate an infrared (IR) sensor with spectral tunability controlled by the applied bias between the long-wave and [...] Read more.
With the rapid advancement of Artificial Intelligence-driven object recognition, the development of cognitive tunable imaging sensors has become a critically important field. In this paper, we demonstrate an infrared (IR) sensor with spectral tunability controlled by the applied bias between the long-wave and mid-wave IR spectral regions. The sensor is a Quantum Well Infrared Photodetector (QWIP) containing asymmetrically doped double QWs where the external electric field alters the electron population in the wells and hence spectral responsivity. The design rules are obtained by calculating the electronic transition energies for symmetric and antisymmetric double-QW states using a Schrödinger–Poisson solver. The sensor is grown and characterized aiming detection in mid-wave (~5 µm) to long-wave IR (~8 µm) spectral ranges. The structure is grown using molecular beam epitaxy (MBE) and contains 25 periods of coupled double GaAs QWs and Al0.38Ga0.62As barriers. One of the QWs in the pair is modulation-doped to provide asymmetry in potential. The QWIPs are tested with blackbody radiation and FTIR down to 77 K. As a result, the ratio of the responsivities of the two bands at about 5.5 and 8 µm is controlled over an order of magnitude demonstrating tunability between MWIR and LWIR spectral regions. Separate experiments using parameterized image transformations of wideband LWIR imagery are performed to lay the framework for utilizing tunable QWIP sensors in object recognition applications. Full article
(This article belongs to the Special Issue Graphene-Based Optoelectronic and Plasmonic Devices)
Show Figures

Figure 1

12 pages, 1011 KiB  
Article
Maximizing Four-Wave Mixing in Four-Subband Semiconductor Quantum Wells with Optimal-Shortcut Spatially Varying Control Fields
by Dionisis Stefanatos and Emmanuel Paspalakis
Symmetry 2024, 16(3), 261; https://doi.org/10.3390/sym16030261 - 21 Feb 2024
Viewed by 1216
Abstract
In the present article, we derive optimal spatially varying control fields, which maximize the four-wave mixing efficiency in a four-subband semiconductor asymmetric double quantum well, following analogous works in atomic systems. The control fields coherently prepare the medium, where a weak probe pulse [...] Read more.
In the present article, we derive optimal spatially varying control fields, which maximize the four-wave mixing efficiency in a four-subband semiconductor asymmetric double quantum well, following analogous works in atomic systems. The control fields coherently prepare the medium, where a weak probe pulse is propagated and eventually converted to a signal pulse at the output. The optimal fields, which maximize the conversion efficiency for a given propagation length, are obtained by applying optimal control theory to a simplified form of propagation equations but are tested with numerical simulations using the full set of Maxwell–Schrödinger equations, which accurately describe the propagation of light pulses in the medium. For short propagation distances, the proposed optimal scheme outperforms a simpler spatially changing control protocol that we recently studied, while for larger distances, the efficiency of both protocols approaches unity. The present work is expected to find application in frequency conversion between light beams, conversion between light beams carrying orbital angular momentum, and nonlinear optical amplification. Full article
Show Figures

Figure 1

15 pages, 895 KiB  
Article
Parabolic–Gaussian Double Quantum Wells under a Nonresonant Intense Laser Field
by Esin Kasapoglu, Melike Behiye Yücel and Carlos A. Duque
Nanomaterials 2023, 13(8), 1360; https://doi.org/10.3390/nano13081360 - 14 Apr 2023
Cited by 11 | Viewed by 2169
Abstract
In this paper, we investigate the electronic and optical properties of an electron in both symmetric and asymmetric double quantum wells that consist of a harmonic potential with an internal Gaussian barrier under a nonresonant intense laser field. The electronic structure was obtained [...] Read more.
In this paper, we investigate the electronic and optical properties of an electron in both symmetric and asymmetric double quantum wells that consist of a harmonic potential with an internal Gaussian barrier under a nonresonant intense laser field. The electronic structure was obtained by using the two-dimensional diagonalization method. To calculate the linear and nonlinear absorption, and refractive index coefficients, a combination of the standard density matrix formalism and the perturbation expansion method was used. The obtained results show that the electronic and thereby optical properties of the considered parabolic–Gaussian double quantum wells could be adjusted to obtain a suitable response to specific aims with parameter alterations such as well and barrier width, well depth, barrier height, and interwell coupling, in addition to the applied nonresonant intense laser field. Full article
(This article belongs to the Special Issue Study on Quantum Dot and Quantum Dot-Based Device)
Show Figures

Figure 1

15 pages, 7531 KiB  
Article
An Asymmetric Model Position Dependent Mass: Quantum Mechanical Study
by Biswanath Rath, Pravanjan Mallick, Jihad Asad, Rania Wannan, Rabab Jarrar and Hussein Shanak
Axioms 2023, 12(4), 318; https://doi.org/10.3390/axioms12040318 - 23 Mar 2023
Cited by 3 | Viewed by 1761
Abstract
We propose an asymmetric model position dependent mass and study its quantum mechanical behaviour on different potentials such as harmonic oscillator potential, double well potential, Gaussian single well potential and triangular single well model potential. It is observed from our study that the [...] Read more.
We propose an asymmetric model position dependent mass and study its quantum mechanical behaviour on different potentials such as harmonic oscillator potential, double well potential, Gaussian single well potential and triangular single well model potential. It is observed from our study that the model asymmetric mass works well for weak coupling preserving the symmetric phase portrait. However, the dominance of asymmetric feature of the mass in the system clearly visible for higher values of the constant associated with the mass. Though, both position dependent mass and potential have significant role in controlling the spectral feature of the system, one may dominate over other for certain cases. Full article
(This article belongs to the Special Issue Applied Mathematics in Energy and Mechanical Engineering)
Show Figures

Figure 1

12 pages, 861 KiB  
Article
Harmonic-Gaussian Symmetric and Asymmetric Double Quantum Wells: Magnetic Field Effects
by Esin Kasapoglu, Melike Behiye Yücel and Carlos A. Duque
Nanomaterials 2023, 13(5), 892; https://doi.org/10.3390/nano13050892 - 27 Feb 2023
Cited by 13 | Viewed by 3093
Abstract
In this study, we considered the linear and non-linear optical properties of an electron in both symmetrical and asymmetrical double quantum wells, which consist of the sum of an internal Gaussian barrier and a harmonic potential under an applied magnetic field. Calculations are [...] Read more.
In this study, we considered the linear and non-linear optical properties of an electron in both symmetrical and asymmetrical double quantum wells, which consist of the sum of an internal Gaussian barrier and a harmonic potential under an applied magnetic field. Calculations are in the effective mass and parabolic band approximations. We have used the diagonalization method to find eigenvalues and eigenfunctions of the electron confined within the symmetric and asymmetric double well formed by the sum of a parabolic and Gaussian potential. A two-level approach is used in the density matrix expansion to calculate the linear and third-order non-linear optical absorption and refractive index coefficients. The potential model proposed in this study is useful for simulating and manipulating the optical and electronic properties of symmetric and asymmetric double quantum heterostructures, such as double quantum wells and double quantum dots, with controllable coupling and subjected to externally applied magnetic fields. Full article
(This article belongs to the Special Issue Semiconductor Quantum Wells and Nanostructures)
Show Figures

Figure 1

13 pages, 17081 KiB  
Article
Optical Measurements and Theoretical Modelling of Excitons in Double ZnO/ZnMgO Quantum Wells in an Internal Electric Field
by Janusz Andrzejewski, Mieczyslaw Antoni Pietrzyk, Dawid Jarosz and Adrian Kozanecki
Materials 2021, 14(23), 7222; https://doi.org/10.3390/ma14237222 - 26 Nov 2021
Cited by 3 | Viewed by 1941
Abstract
In this paper, the photoluminescence spectra of excitons in ZnO/ZnMgO/ZnO double asymmetric quantum wells grown on a–plane Al2O3 substrates with internal electric-field bands structures were studied. In these structures, the electron and the hole in the exciton are spatially separated [...] Read more.
In this paper, the photoluminescence spectra of excitons in ZnO/ZnMgO/ZnO double asymmetric quantum wells grown on a–plane Al2O3 substrates with internal electric-field bands structures were studied. In these structures, the electron and the hole in the exciton are spatially separated between neighbouring quantum wells, by a ZnMgO barrier with different thickness. The existence of an internal electric field generates a linear potential and, as a result, lowers the energy of quantum states in the well. For the wide wells, the electrons are spatially separated from the holes and can create indirect exciton. To help the understanding of the photoluminescence spectra, for single particle states the 8 k·p for wurtzite structure is employed. Using these states, the exciton in the self-consistent model with 2D hydrogenic 1s–like wave function is calculated. Full article
(This article belongs to the Special Issue Semiconductor Quantum Wells and Superlattices)
Show Figures

Figure 1

25 pages, 3596 KiB  
Review
Enhancing Metastability by Dissipation and Driving in an Asymmetric Bistable Quantum System
by Bernardo Spagnolo, Angelo Carollo and Davide Valenti
Entropy 2018, 20(4), 226; https://doi.org/10.3390/e20040226 - 26 Mar 2018
Cited by 16 | Viewed by 4502
Abstract
The stabilizing effect of quantum fluctuations on the escape process and the relaxation dynamics from a quantum metastable state are investigated. Specifically, the quantum dynamics of a multilevel bistable system coupled to a bosonic Ohmic thermal bath in strong dissipation regime is analyzed. [...] Read more.
The stabilizing effect of quantum fluctuations on the escape process and the relaxation dynamics from a quantum metastable state are investigated. Specifically, the quantum dynamics of a multilevel bistable system coupled to a bosonic Ohmic thermal bath in strong dissipation regime is analyzed. The study is performed by a non-perturbative method based on the real-time path integral approach of the Feynman-Vernon influence functional. We consider a strongly asymmetric double well potential with and without a monochromatic external driving, and with an out-of-equilibrium initial condition. In the absence of driving we observe a nonmonotonic behavior of the escape time from the metastable region, as a function both of the system-bath coupling coefficient and the temperature. This indicates a stabilizing effect of the quantum fluctuations. In the presence of driving our findings indicate that, as the coupling coefficient γ increases, the escape time, initially controlled by the external driving, shows resonant peaks and dips, becoming frequency-independent for higher γ values. Moreover, the escape time from the metastable state displays a nonmonotonic behavior as a function of the temperature, the frequency of the driving, and the thermal-bath coupling, which indicates the presence of a quantum noise enhanced stability phenomenon. Finally, we investigate the role of different spectral densities, both in sub-Ohmic and super-Ohmic dissipation regime and for different cutoff frequencies, on the relaxation dynamics from the quantum metastable state. The results obtained indicate that, in the crossover dynamical regime characterized by damped intrawell oscillations and incoherent tunneling, the spectral properties of the thermal bath influence non-trivially the short time behavior and the time scales of the relaxation dynamics from the metastable state. Full article
(This article belongs to the Special Issue Entropy and Information in the Foundation of Quantum Physics)
Show Figures

Figure 1

26 pages, 3417 KiB  
Article
Nonlinear Relaxation Phenomena in Metastable Condensed Matter Systems
by Bernardo Spagnolo, Claudio Guarcello, Luca Magazzù, Angelo Carollo, Dominique Persano Adorno and Davide Valenti
Entropy 2017, 19(1), 20; https://doi.org/10.3390/e19010020 - 31 Dec 2016
Cited by 99 | Viewed by 7268
Abstract
Nonlinear relaxation phenomena in three different systems of condensed matter are investigated. (i) First, the phase dynamics in Josephson junctions is analyzed. Specifically, a superconductor-graphene-superconductor (SGS) system exhibits quantum metastable states, and the average escape time from these metastable states in the presence [...] Read more.
Nonlinear relaxation phenomena in three different systems of condensed matter are investigated. (i) First, the phase dynamics in Josephson junctions is analyzed. Specifically, a superconductor-graphene-superconductor (SGS) system exhibits quantum metastable states, and the average escape time from these metastable states in the presence of Gaussian and correlated fluctuations is calculated, accounting for variations in the the noise source intensity and the bias frequency. Moreover, the transient dynamics of a long-overlap Josephson junction (JJ) subject to thermal fluctuations and non-Gaussian noise sources is investigated. Noise induced phenomena are observed, such as the noise enhanced stability and the stochastic resonant activation. (ii) Second, the electron spin relaxation process in a n-type GaAs bulk driven by a fluctuating electric field is investigated. In particular, by using a Monte Carlo approach, we study the influence of a random telegraph noise on the spin polarized transport. Our findings show the possibility to raise the spin relaxation length by increasing the amplitude of the external fluctuations. Moreover, we find that, crucially, depending on the value of the external field strength, the electron spin depolarization length versus the noise correlation time increases up to a plateau. (iii) Finally, the stabilization of quantum metastable states by dissipation is presented. Normally, quantum fluctuations enhance the escape from metastable states in the presence of dissipation. We show that dissipation can enhance the stability of a quantum metastable system, consisting of a particle moving in a strongly asymmetric double well potential, interacting with a thermal bath. We find that the escape time from the metastable region has a nonmonotonic behavior versus the system- bath coupling and the temperature, producing a stabilizing effect. Full article
(This article belongs to the Special Issue Nonequilibrium Phenomena in Confined Systems)
Show Figures

Figure 1

14 pages, 5199 KiB  
Article
Guided Modes in a Double-Well Asymmetric Potential of a Graphene Waveguide
by Yi Xu and Lay Kee Ang
Electronics 2016, 5(4), 87; https://doi.org/10.3390/electronics5040087 - 7 Dec 2016
Cited by 5 | Viewed by 6386
Abstract
The analogy between the electron wave nature in graphene electronics and the electromagnetic waves in dielectrics has suggested a series of optical-like phenomena, which is of great importance for graphene-based electronic devices. In this paper, we propose an asymmetric double-well potential on graphene [...] Read more.
The analogy between the electron wave nature in graphene electronics and the electromagnetic waves in dielectrics has suggested a series of optical-like phenomena, which is of great importance for graphene-based electronic devices. In this paper, we propose an asymmetric double-well potential on graphene as an electronic waveguide to confine the graphene electrons. The guided modes in this graphene waveguide are investigated using a modified transfer matrix method. It is found that there are two types of guided modes. The first kind is confined in one well, which is similar to the asymmetric quantum well graphene waveguide. The second kind can appear in two potential wells with double-degeneracy. Characteristics of all the possible guide modes are presented. Full article
(This article belongs to the Special Issue Two-Dimensional Electronics and Optoelectronics)
Show Figures

Graphical abstract

Back to TopTop