# An Asymmetric Model Position Dependent Mass: Quantum Mechanical Study

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

_{3}molecule has been explained by using the PDM of the form [16]

## 2. Characteristic Features of New Asymmetric PDM

## 3. Quantum Mechanical Study on the New PDM Systems

## 4. Effect of Potential

#### 4.1. Single Well Potential

#### 4.2. Double Well Potential

#### 4.3. Gaussian Single Well Potential

#### 4.4. Rath Triangular Potential

## 5. Validity of Uncertainty Relation

## 6. Discussion and Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Asad, J.; Mallick, P.; Samei, M.E.; Rath, B.; Mohapatra, P.; Shanak, H.; Jarrar, R. Asymmetric variation of a finite mass harmonic like oscillator. Results Phys.
**2020**, 19, 103335. [Google Scholar] [CrossRef] - Rath, B.; Mallick, P.; Mohapatra, P.; Asad, J.; Shanak, H.; Jarrar, R. Position-dependent finite symmetric mass harmonic like oscillator: Classical and quantum mechanical study. Open Phys.
**2021**, 19, 266–276. [Google Scholar] [CrossRef] - Dong, S.-H.; Huang, W.-H.; Sedaghatnia, P.; Hassanabadi, H. Exact solutions of an exponential type position dependent mass problem. Results Phys.
**2022**, 34, 105294. [Google Scholar] [CrossRef] - El-Nabulsi, R.A. A generalized self-consistent approach to study position-dependent mass in semiconductors organic heterostructures and crystalline impure materials. Phys. E
**2020**, 134, 114295. [Google Scholar] [CrossRef] - El-Nabulsi, R.A. A new approach to Schrodinger equation with position-dependent mass and its implications in quantum dots and semiconductors. J. Phys. Chem. Sol.
**2020**, 140, 109384. [Google Scholar] [CrossRef] - Peter, A.J. The effect of position dependent effective mass of hydrogrnic impurities in parabolic GaAs/GaAlAs quantum dots in a strong magnetic field. Int. J. Mod. Phys. B
**2009**, 23, 5109. [Google Scholar] [CrossRef] - Sinha, A. Scattering states of a particle, with position-dependent mass, in a double heterojunction. Eur. Phys. Lett.
**2011**, 96, 20008. [Google Scholar] [CrossRef] [Green Version] - Costa Filho, R.N.; Almeida, M.P.; Farias, G.A.; Andrade, J.S., Jr. Displacement operator for quantum systems with position-dependent mass. Phys. Rev. A
**2011**, 84, 050102. [Google Scholar] [CrossRef] [Green Version] - Ullah, K.; Ullah, H. Enhanced optomechanically induced transparency and slow/fast light in a position-dependent mass optomechanics. Eur. Phys. J. D
**2020**, 74, 197. [Google Scholar] [CrossRef] - Da Costa, B.G.; Gomez, I.S.; Rath, B. Exact solution and coherent states of an asymmetric oscillator with position-dependent mass. J. Math. Phys.
**2023**, 64, 012102. [Google Scholar] [CrossRef] - Biswas, K.; Saha, J.P.; Patra, P. On the position-dependent effective mass Hamiltonian. Eur. Phys. J. Plus
**2020**, 135, 457. [Google Scholar] [CrossRef] - Cruz y Cruz, S.; Rosas-Ortiz, O. Position-dependent mass oscillators and coherent states. J. Phys. A Math. Theor.
**2009**, 42, 185205. [Google Scholar] [CrossRef] [Green Version] - Sari, H.; Kasapoglu, E.; Sakiroglu, S.; Sökmen, I.; Duque, C.A. Effect of position-dependent effective mass on donor impurity- and exciton-related electronic and optical properties of 2D Gaussian quantum dots. Eur. Phys. J. Plus
**2022**, 137, 341. [Google Scholar] [CrossRef] - El-Nabulsi, R.A. Dynamics of position-dependent mass particle in crystal lattices microstructures. Phys. E
**2021**, 127, 114525. [Google Scholar] [CrossRef] - Silva, J.E.G.; Furtado, J.; Ramos, A.C.A. Position-dependent mass effects on a bilayer graphene catenoid bridge. Eur. J. Phys. B
**2021**, 94, 127. [Google Scholar] [CrossRef] - Roy-Layinde, T.O.; Omoteso, K.A.; Oyero, B.A.; Laoye, J.A.; Vincent, U.E. Vibrational resonance of ammonia molecule with doubly singular position-dependent mass. Eur. J. Phys. B
**2022**, 95, 80. [Google Scholar] [CrossRef] - El-Nabulsi, R.A. Quantum dynamics in low-dimensional systems with position-dependent mass and product-like fractal geometry. Phys. E
**2021**, 134, 114827. [Google Scholar] [CrossRef] - Ghosh, A.P.; Mandal, A.; Sarkar, S.; Ghosh, M. Influence of position-dependent effective mass on the nonlinear optical properties of impurity doped quantum dots in presence of Gaussian white noise. Opt. Commun.
**2016**, 367, 325–334. [Google Scholar] [CrossRef] - Alpdogan, S.; Havare, A. Dirac Particle for the Position Dependent Mass in the Generalized Asymmetric Woods-Saxon Potential. Adv. High Energy Phys.
**2014**, 2014, 973847. [Google Scholar] [CrossRef] [Green Version] - Aydogdu, O.; Arda, A.; Sever, R. Effective-mass Dirac equation for Woods-Saxon potential: Scattering, bound states, and resonances. J. Math. Phys.
**2012**, 53, 042106. [Google Scholar] [CrossRef] - Rajashabala, S.; Navaneethakrishnan, K. Effects of dielectric screening and position dependent effective mass on donor binding energies and on diamagnetic susceptibility in a quantum well. Superlattices Microstruct.
**2008**, 43, 247–261. [Google Scholar] [CrossRef] - Amir, N.; Iqbal, S. Coherent states for nonlinear harmonic oscillator and some of its properties. J. Math. Phys.
**2015**, 56, 062108. [Google Scholar] [CrossRef] - Dos Santos, M.A.; Gomez, I.S.; da Costa, B.G.; Mustafa, O. Probability density correlation for PDM-Hamiltonians and superstatistical PDM-partition functions. Eur. Phys. J. Plus
**2021**, 136, 96. [Google Scholar] [CrossRef] - Chen, Y.; Yan, J.; Mihalache, D. Stable flat-top solitons and peakons in the 𝓟𝓣-symmetric δ-signum potentials and nonlinear media. Chaos
**2019**, 29, 083108. [Google Scholar] [CrossRef] - Marques, F.; Negrini, O.; da Silva, A.J. A new simple class of superpotentials in SUSY quantum mechanics. J. Phys. A Math. Theor.
**2012**, 45, 115307. [Google Scholar] [CrossRef] - Rath, B.; Mallick, P.; Akande, J.; Mohapatra, P.P.; Adja, D.K.K.; Koudahoun, L.H.; Kpomahou, Y.J.F.; Monsia, M.D.; Sahoo, R.R. A General type of Liénard Second Order Differential Equation: Classical and Quantum Mechanical Study. Proc. Indian Natl. Sci. Acad.
**2017**, 83, 935–940. [Google Scholar] - Von Roos, O. Position-dependent effective masses in semiconductor theory. Phys. Rev. B
**1983**, 27, 7547. [Google Scholar] [CrossRef] - Von Roos, O.; Mavromatis, H. Position-dependent effective masses in semiconductor theory. II. Phys. Rev. B
**1985**, 31, 2294. [Google Scholar] [CrossRef] - Rath, B.; Mavromatis, H.A. Energy-level calculation through modified Hill determinant approach: For general oscillator. Indian J. Phys.
**1999**, 73B, 641. [Google Scholar] - Killingbeck, J.P.; Scott, T.; Rath, B. A matrix method for power series potentials. J. Phys. A Math. Gen.
**2000**, 33, 6999. [Google Scholar] [CrossRef] - Jones, H.F. Comment on Solvable model of bound states in the continuum (BIC) in on dimension (2019, 94, 105214). Phys. Scr.
**2021**, 96, 087001. [Google Scholar] [CrossRef] - Zettili, N. Quantum Mechanics: Concepts and Applications, 2nd ed.; John Wiley: New York, NY, USA, 2001; p. 37. [Google Scholar]
- Da Costa, B.G.; Da Silva, G.A.C.; Gomez, I.S. Supersymmetric quantum mechanics and coherent states for a deformed oscillator with position-dependent effective mass. J. Math. Phys.
**2021**, 62, 092101. [Google Scholar] [CrossRef] - Asad, J.; Mallick, P.; Samei, M.E.; Rath, B.; Mohapatra, P.; Shanak, H.; Jarrar, R. Reply to Comment on “Asymmetric Variation of a Finite Mass Harmonic Like Oscillator”. Results Phys.
**2022**, 32, 105148. [Google Scholar] [CrossRef] - Mathews, P.M.; Lakshmanan, M. On a unique nonlinear oscillator. Q. Appl. Math.
**1974**, 32, 215–218. [Google Scholar] [CrossRef] [Green Version] - Ahmed, Z.; Kumar, S.; Ghosh, D.; Goswami, T. Solvable model of bound states in the continuum (BIC) in one dimension. Phys. Scr.
**2019**, 94, 105214. [Google Scholar] [CrossRef] [Green Version]

**Figure 4.**Phase portrait of the PDM Hamiltonian associated with single well potential for $\lambda $ = 0.01.

**Figure 5.**Phase portrait of the PDM Hamiltonian associated with single well potential for $\lambda $ = 0.1.

**Figure 6.**Energy eigenvalues of the PDM Hamiltonian associated with single potential for $\lambda =0.01$.

**Figure 8.**Phase portrait of the PDM Hamiltonian associated with double well potential for $\lambda $ = 0.01.

**Figure 9.**Phase portrait of the PDM Hamiltonian associated with double well potential for $\lambda $ = 0.1.

**Figure 10.**Energy eigenvalues of the PDM Hamiltonian associated with double well potential for $\lambda =0.01$.

**Figure 12.**Phase portrait of the PDM Hamiltonian associated with Gaussian single well type potential for (

**a**) $\lambda $ = 0.01 and (

**b**) $\lambda $ = 0.1.

**Figure 13.**Energy eigenvalues of the PDM Hamiltonian associated with Gaussian single well type potential for $\lambda =0.01$.

**Figure 15.**Phase portrait of the PDM Hamiltonian associated with Rath potential for (

**a**) $\lambda $ = 0.01 and (

**b**) $\lambda $ = 0.1.

**Figure 16.**Energy eigenvalues of the PDM Hamiltonian associated with Rath potential for $\lambda =0.01$.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rath, B.; Mallick, P.; Asad, J.; Wannan, R.; Jarrar, R.; Shanak, H.
An Asymmetric Model Position Dependent Mass: Quantum Mechanical Study. *Axioms* **2023**, *12*, 318.
https://doi.org/10.3390/axioms12040318

**AMA Style**

Rath B, Mallick P, Asad J, Wannan R, Jarrar R, Shanak H.
An Asymmetric Model Position Dependent Mass: Quantum Mechanical Study. *Axioms*. 2023; 12(4):318.
https://doi.org/10.3390/axioms12040318

**Chicago/Turabian Style**

Rath, Biswanath, Pravanjan Mallick, Jihad Asad, Rania Wannan, Rabab Jarrar, and Hussein Shanak.
2023. "An Asymmetric Model Position Dependent Mass: Quantum Mechanical Study" *Axioms* 12, no. 4: 318.
https://doi.org/10.3390/axioms12040318