Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = arginine building blocks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 832 KB  
Review
Metabolism and Nutrition of L-Glutamate and L-Glutamine in Ruminants
by Guoyao Wu, Fuller W. Bazer, Gregory A. Johnson, M. Carey Satterfield and Shannon E. Washburn
Animals 2024, 14(12), 1788; https://doi.org/10.3390/ani14121788 - 14 Jun 2024
Cited by 20 | Viewed by 6222
Abstract
Although both L-glutamate (Glu) and L-glutamine (Gln) have long been considered nutritionally nonessential in ruminants, these two amino acids have enormous nutritional and physiological importance. Results of recent studies revealed that extracellular Gln is extensively degraded by ruminal microbes, but extracellular Glu undergoes [...] Read more.
Although both L-glutamate (Glu) and L-glutamine (Gln) have long been considered nutritionally nonessential in ruminants, these two amino acids have enormous nutritional and physiological importance. Results of recent studies revealed that extracellular Gln is extensively degraded by ruminal microbes, but extracellular Glu undergoes little catabolism by these cells due to the near absence of its uptake. Ruminal bacteria hydrolyze Gln to Glu plus ammonia and, intracellularly, use both amino acids for protein synthesis. Microbial proteins and dietary Glu enter the small intestine in ruminants. Both Glu and Gln are the major metabolic fuels and building blocks of proteins, as well as substrates for the syntheses of glutathione and amino acids (alanine, ornithine, citrulline, arginine, proline, and aspartate) in the intestinal mucosa. In addition, Gln and aspartate are essential for purine and pyrimidine syntheses, whereas arginine and proline are necessary for the production of nitric oxide (a major vasodilator) and collagen (the most abundant protein in the body), respectively. Under normal feeding conditions, all diet- and rumen-derived Glu and Gln are extensively utilized by the small intestine and do not enter the portal circulation. Thus, de novo synthesis (e.g., from branched-chain amino acids and α-ketoglutarate) plays a crucial role in the homeostasis of Glu and Gln in the whole body but may be insufficient for maximal growth performance, production (e.g., lactation and pregnancy), and optimal health (particularly intestinal health) in ruminants. This applies to all types of feeding systems used around the world (e.g., rearing on a milk replacer before weaning, pasture-based production, and total mixed rations). Dietary supplementation with the appropriate doses of Glu or Gln [e.g., 0.5 or 1 g/kg body weight (BW)/day, respectively] can safely improve the digestive, endocrine, and reproduction functions of ruminants to enhance their productivity. Both Glu and Gln are truly functional amino acids in the nutrition of ruminants and hold great promise for improving their health and productivity. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

20 pages, 3034 KB  
Review
Enhancing Leukemia Treatment: The Role of Combined Therapies Based on Amino Acid Starvation
by Can Chen and Ji Zhang
Cancers 2024, 16(6), 1171; https://doi.org/10.3390/cancers16061171 - 16 Mar 2024
Cited by 9 | Viewed by 5300
Abstract
Cancer cells demand amino acids beyond their usage as “building blocks” for protein synthesis. As a result, targeting amino acid acquisition and utilization has emerged as a pivotal strategy in cancer treatment. In the setting of leukemia therapy, compelling examples of targeting amino [...] Read more.
Cancer cells demand amino acids beyond their usage as “building blocks” for protein synthesis. As a result, targeting amino acid acquisition and utilization has emerged as a pivotal strategy in cancer treatment. In the setting of leukemia therapy, compelling examples of targeting amino acid metabolism exist at both pre-clinical and clinical stages. This review focuses on summarizing novel insights into the metabolism of glutamine, asparagine, arginine, and tryptophan in leukemias, and providing a comprehensive discussion of perturbing their metabolism to improve the therapeutic outcomes. Certain amino acids, such as glutamine, play a vital role in the energy metabolism of cancer cells and the maintenance of redox balance, while others, such as arginine and tryptophan, contribute significantly to the immune microenvironment. Therefore, assessing the efficacy of targeting amino acid metabolism requires comprehensive strategies. Combining traditional chemotherapeutics with novel strategies to perturb amino acid metabolism is another way to improve the outcome in leukemia patients via overcoming chemo-resistance or promoting immunotherapy. In this review, we also discuss several ongoing or complete clinical trials, in which targeting amino acid metabolism is combined with other chemotherapeutics in treating leukemia. Full article
(This article belongs to the Special Issue Novel Combination Therapies for Acute Leukemia)
Show Figures

Figure 1

13 pages, 983 KB  
Article
Synthesis of Novel Arginine Building Blocks with Increased Lipophilicity Compatible with Solid-Phase Peptide Synthesis
by Mladena Glavaš, Agata Gitlin-Domagalska, Natalia Ptaszyńska, Dominika Starego, Sylwia Freza, Dawid Dębowski, Aleksandra Helbik-Maciejewska, Anna Łęgowska, Chaim Gilon and Krzysztof Rolka
Molecules 2023, 28(23), 7780; https://doi.org/10.3390/molecules28237780 - 25 Nov 2023
Cited by 2 | Viewed by 3219
Abstract
Arginine, due to the guanidine moiety, increases peptides’ hydrophilicity and enables interactions with charged molecules, but at the same time, its presence in a peptide chain might reduce its permeability through biological membranes. This might be resolved by temporary coverage of the peptide [...] Read more.
Arginine, due to the guanidine moiety, increases peptides’ hydrophilicity and enables interactions with charged molecules, but at the same time, its presence in a peptide chain might reduce its permeability through biological membranes. This might be resolved by temporary coverage of the peptide charge by lipophilic, enzyme-sensitive alkoxycarbonyl groups. Unfortunately, such a modification of a guanidine moiety has not been reported to date and turned out to be challenging. Here, we present a new, optimized strategy to obtain arginine building blocks with increased lipophilicity that were successfully utilized in the solid-phase peptide synthesis of novel arginine vasopressin prodrugs. Full article
(This article belongs to the Special Issue Research of Organic Chemicals for Biological Applications)
Show Figures

Graphical abstract

28 pages, 416 KB  
Article
Revealing the Genetic Code Symmetries through Computations Involving Fibonacci-like Sequences and Their Properties
by Tidjani Négadi
Computation 2023, 11(8), 154; https://doi.org/10.3390/computation11080154 - 7 Aug 2023
Cited by 6 | Viewed by 9675
Abstract
In this work, we present a new way of studying the mathematical structure of the genetic code. This study relies on the use of mathematical computations involving five Fibonacci-like sequences; a few of their “seeds” or “initial conditions” are chosen according to the [...] Read more.
In this work, we present a new way of studying the mathematical structure of the genetic code. This study relies on the use of mathematical computations involving five Fibonacci-like sequences; a few of their “seeds” or “initial conditions” are chosen according to the chemical and physical data of the three amino acids serine, arginine and leucine, playing a prominent role in a recent symmetry classification scheme of the genetic code. It appears that these mathematical sequences, of the same kind as the famous Fibonacci series, apart from their usual recurrence relations, are highly intertwined by many useful linear relationships. Using these sequences and also various sums or linear combinations of them, we derive several physical and chemical quantities of interest, such as the number of total coding codons, 61, obeying various degeneracy patterns, the detailed number of H/CNOS atoms and the integer molecular mass (or nucleon number), in the side chains of the coded amino acids and also in various degeneracy patterns, in agreement with those described in the literature. We also discover, as a by-product, an accurate description of the very chemical structure of the four ribonucleotides uridine monophosphate (UMP), cytidine monophosphate (CMP), adenosine monophosphate (AMP) and guanosine monophosphate (GMP), the building blocks of RNA whose groupings, in three units, constitute the triplet codons. In summary, we find a full mathematical and chemical connection with the “ideal sextet’s classification scheme”, which we alluded to above, as well as with others—notably, the Findley–Findley–McGlynn and Rumer’s symmetrical classifications. Full article
(This article belongs to the Special Issue Computations in Mathematics, Mathematical Education, and Science)
Show Figures

Graphical abstract

16 pages, 2308 KB  
Article
Fluorescent Dynamic Covalent Polymers for DNA Complexation and Templated Assembly
by Clément Kotras, Maxime Leclercq, Maxime Roger, Camille Bouillon, Antonio Recupido, Aurélien Lebrun, Yannick Bessin, Philippe Gerbier, Sébastien Richeter, Sébastien Ulrich, Sébastien Clément and Mathieu Surin
Molecules 2022, 27(19), 6648; https://doi.org/10.3390/molecules27196648 - 6 Oct 2022
Cited by 2 | Viewed by 2685
Abstract
Dynamic covalent polymers (DCPs) offer opportunities as adaptive materials of particular interest for targeting, sensing and delivery of biological molecules. In this view, combining cationic units and fluorescent units along DCP chains is attractive for achieving optical probes for the recognition and delivery [...] Read more.
Dynamic covalent polymers (DCPs) offer opportunities as adaptive materials of particular interest for targeting, sensing and delivery of biological molecules. In this view, combining cationic units and fluorescent units along DCP chains is attractive for achieving optical probes for the recognition and delivery of nucleic acids. Here, we report on the design of acylhydrazone-based DCPs combining cationic arginine units with π-conjugated fluorescent moieties based on thiophene-ethynyl-fluorene cores. Two types of fluorescent building blocks bearing neutral or cationic side groups on the fluorene moiety are considered in order to assess the role of the number of cationic units on complexation with DNA. The (chir)optical properties of the building blocks, the DCPs, and their complexes with several types of DNA are explored, providing details on the formation of supramolecular complexes and on their stability in aqueous solutions. The DNA-templated formation of DCPs is demonstrated, which provides new perspectives on the assembly of fluorescent DCP based on the nucleic acid structure. Full article
Show Figures

Figure 1

18 pages, 1685 KB  
Article
Click-Free Synthesis of a Multivalent Tricyclic Peptide as a Molecular Transporter
by Sumit Kumar, Dindyal Mandal, Shaima Ahmed El-Mowafi, Saghar Mozaffari, Rakesh Kumar Tiwari and Keykavous Parang
Pharmaceutics 2020, 12(9), 842; https://doi.org/10.3390/pharmaceutics12090842 - 3 Sep 2020
Cited by 9 | Viewed by 4815
Abstract
The cellular delivery of cell-impermeable and water-insoluble molecules remains an ongoing challenge to overcome. Previously, we reported amphipathic cyclic peptides c[WR]4 and c[WR]5 consisting of alternate arginine and tryptophan residues as nuclear-targeting molecular transporters. These peptides contain an optimal [...] Read more.
The cellular delivery of cell-impermeable and water-insoluble molecules remains an ongoing challenge to overcome. Previously, we reported amphipathic cyclic peptides c[WR]4 and c[WR]5 consisting of alternate arginine and tryptophan residues as nuclear-targeting molecular transporters. These peptides contain an optimal balance of positive charge and hydrophobicity, which is required for interactions with the phospholipid bilayer to facilitate their application as a drug delivery system. To further optimize them, we synthesized and evaluated a multivalent tricyclic peptide as an efficient molecular transporter. The monomeric cyclic peptide building blocks were synthesized using Fmoc/tBu solid-phase chemistry and cyclization in the solution and conjugated with each other through an amide bond to afford the tricyclic peptide, which demonstrated modest antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli (E. coli) with a minimum inhibitory concentration (MIC) of 64–128 µg/mL. The tricyclic peptide was found to be nontoxic up to 30 µM in the breast cancer cell lines (MDA-MB-231). The presence of tricyclic peptide enhanced cellular uptakes of fluorescently-labeled phosphopeptide (F’-GpYEEI, 18-fold), anti-HIV drugs (lamivudine (F’-3TC), emtricitabine (F’-FTC), and stavudine (F’-d4T), 1.7–12-fold), and siRNA (3.3-fold) in the MDA-MB-231 cell lines. Full article
(This article belongs to the Special Issue Peptide-Based Drug Delivery Systems)
Show Figures

Graphical abstract

24 pages, 6528 KB  
Article
Cerebellar Cells Self-Assemble into Functional Organoids on Synthetic, Chemically Crosslinked ECM-Mimicking Peptide Hydrogels
by Zbigniev Balion, Vytautas Cėpla, Nataša Svirskiene, Gytis Svirskis, Kristina Druceikaitė, Hermanas Inokaitis, Justina Rusteikaitė, Ignas Masilionis, Gintarė Stankevičienė, Tadas Jelinskas, Artūras Ulčinas, Ayan Samanta, Ramūnas Valiokas and Aistė Jekabsone
Biomolecules 2020, 10(5), 754; https://doi.org/10.3390/biom10050754 - 12 May 2020
Cited by 34 | Viewed by 7540
Abstract
Hydrogel-supported neural cell cultures are more in vivo-relevant compared to monolayers formed on glass or plastic substrates. However, there is a lack of synthetic microenvironment available for obtaining standardized and easily reproducible cultures characterized by tissue-mimicking cell composition, cell–cell interactions, and functional networks. [...] Read more.
Hydrogel-supported neural cell cultures are more in vivo-relevant compared to monolayers formed on glass or plastic substrates. However, there is a lack of synthetic microenvironment available for obtaining standardized and easily reproducible cultures characterized by tissue-mimicking cell composition, cell–cell interactions, and functional networks. Synthetic peptides representing the biological properties of the extracellular matrix (ECM) proteins have been reported to promote the adhesion-driven differentiation and functional maturation of neural cells. Thus, such peptides can serve as building blocks for engineering a standardized, all-synthetic environment. In this study, we have compared the effect of two chemically crosslinked hydrogel compositions on primary cerebellar cells: collagen-like peptide (CLP), and CLP with an integrin-binding motif arginine-glycine-aspartate (CLP-RGD), both conjugated to polyethylene glycol molecular templates (PEG-CLP and PEG-CLP-RGD, respectively) and fabricated as self-supporting membranes. Both compositions promoted a spontaneous organization of primary cerebellar cells into tissue-like clusters with fast-rising Ca2+ signals in soma, reflecting action potential generation. Notably, neurons on PEG-CLP-RGD had more neurites and better synaptic efficiency compared to PEG-CLP. For comparison, poly-L-lysine-coated glass and plastic surfaces did not induce formation of such spontaneously active networks. Additionally, contrary to the hydrogel membranes, glass substrates functionalized with PEG-CLP and PEG-CLP-RGD did not sufficiently support cell attachment and, subsequently, did not promote functional cluster formation. These results indicate that not only chemical composition but also the hydrogel structure and viscoelasticity are essential for bioactive signaling. The synthetic strategy based on ECM-mimicking, multifunctional blocks in registry with chemical crosslinking for obtaining tissue-like mechanical properties is promising for the development of fast and well standardized functional in vitro neural models and new regenerative therapies. Full article
Show Figures

Figure 1

10 pages, 1259 KB  
Article
Controlled Synthesis of Linear Polyamidoamino Acids
by Federica Ferruti, Jenny Alongi, Amedea Manfredi, Elisabetta Ranucci and Paolo Ferruti
Polymers 2019, 11(8), 1324; https://doi.org/10.3390/polym11081324 - 8 Aug 2019
Cited by 7 | Viewed by 4303
Abstract
Polyamidoamino acids (PAACs) are synthetic polymers prepared by the polyaddition of bisacrylamides with natural α-amino acids, which in the process maintain both their chirality and their amphoteric nature. This polymerization process is slow, but has the merits of taking place in water and [...] Read more.
Polyamidoamino acids (PAACs) are synthetic polymers prepared by the polyaddition of bisacrylamides with natural α-amino acids, which in the process maintain both their chirality and their amphoteric nature. This polymerization process is slow, but has the merits of taking place in water and of neither involving protection/de-protection steps nor releasing by-products. However, it leads to polydisperse polymers and, using α-amino acids mixtures, random copolymers. This paper presents a step-by-step polyaddition process leading to homo- and copolymeric PAACs with controlled sequences and controlled molecular weights. It exploits the much different rates of the two Michael addition steps of NH2 of α-amino acids with acrylamides, and the low solubility in organic solvents of the α-amino acid addition products. As a proof of principle, the controlled synthesis of the PAAC from l-arginine and N,N′-methylenebisacrylamide was performed up to a monodisperse product with 11 monomeric units and molecular weight 1840. This synthetic procedure was also tested with l-alanine. All intermediates were isolated and characterized. Noticeably, all of them were α,ω-difunctionalized with either acrylamides or sec-amines and were, in fact, building blocks with potential for preparing complex macromolecular architectures. In a first instance, copolymers with controlled sequences of amidoamine- and amidoamino acid units were prepared. Full article
(This article belongs to the Special Issue Bioinspired and Biomimetic Polymers)
Show Figures

Graphical abstract

13 pages, 3057 KB  
Article
Fabrication of Thermo-Responsive Molecular Layers from Self-Assembling Elastin-Like Oligopeptides Containing Cell-Binding Domain for Tissue Engineering
by Tomoyuki Koga, Kazuhiro Nakamoto, Koji Odawara, Tomoo Matsuoka and Nobuyuki Higashi
Polymers 2015, 7(1), 134-146; https://doi.org/10.3390/polym7010134 - 19 Jan 2015
Cited by 18 | Viewed by 8116
Abstract
Novel thermo-responsive elastin-like oligopeptides containing cell-binding epitope (Arg-Gly-Asp-Ser sequence); arginine-glycine-aspartic acid-serine (RGDS)-elastin-like peptides (ELP) and RGDS-deg-ELP; were newly prepared as building blocks of self-assembled molecular layer for artificial extra cellular matrix. A detailed analysis of the conformation of the oligo(ELP)s in [...] Read more.
Novel thermo-responsive elastin-like oligopeptides containing cell-binding epitope (Arg-Gly-Asp-Ser sequence); arginine-glycine-aspartic acid-serine (RGDS)-elastin-like peptides (ELP) and RGDS-deg-ELP; were newly prepared as building blocks of self-assembled molecular layer for artificial extra cellular matrix. A detailed analysis of the conformation of the oligo(ELP)s in water and their self-assembling behavior onto hydrophobic surfaces were performed by using circular dichroism, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy and water contact angle measurements. The experimental results revealed that both oligo(ELP)s self-assembled onto hydrophobic surfaces and formed molecular layers based on their thermo-responsive conformational change from hydrous random coil to dehydrated β-turn structure. Effective cell adhesion and spreading behaviors were observed on these self-assembled oligo(ELP) layers. In addition, attached cells were found to be recovered successfully as a cell-sheet by temperature-induced disassembly of oligo(ELP) layer. This achievement provides an important insight to construct novel oligopeptide-based nano-surfaces for the design of smart artificial extra-cellular matrix. Full article
(This article belongs to the Special Issue Stimuli-Responsive Polymers and Colloids)
Show Figures

Graphical abstract

Back to TopTop