Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = ar-hud

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1050 KB  
Review
IoT-Based Approaches to Personnel Health Monitoring in Emergency Response
by Jialin Wu, Yongqi Tang, Feifan He, Zhichao He, Yunting Tsai and Wenguo Weng
Sustainability 2026, 18(1), 365; https://doi.org/10.3390/su18010365 (registering DOI) - 30 Dec 2025
Abstract
The health and operational continuity of emergency responders are fundamental pillars of sustainable and resilient disaster management systems. These personnel operate in high-risk environments, exposed to intense physical, environmental, and psychological stress. This makes it crucial to monitor their health to safeguard their [...] Read more.
The health and operational continuity of emergency responders are fundamental pillars of sustainable and resilient disaster management systems. These personnel operate in high-risk environments, exposed to intense physical, environmental, and psychological stress. This makes it crucial to monitor their health to safeguard their well-being and performance. Traditional methods, which rely on intermittent, voice-based check-ins, are reactive and create a dangerous information gap regarding a responder’s real-time health and safety. To address this sustainability challenge, the convergence of the Internet of Things (IoT) and wearable biosensors presents a transformative opportunity to shift from reactive to proactive safety monitoring, enabling the continuous capture of high-resolution physiological and environmental data. However, realizing a field-deployable system is a complex “system-of-systems” challenge. This review contributes to the field of sustainable emergency management by analyzing the complete technological chain required to build such a solution, structured along the data workflow from acquisition to action. It examines: (1) foundational health sensing technologies for bioelectrical, biophysical, and biochemical signals; (2) powering strategies, including low-power design and self-powering systems via energy harvesting; (3) ad hoc communication networks (terrestrial, aerial, and space-based) essential for infrastructure-denied disaster zones; (4) data processing architectures, comparing edge, fog, and cloud computing for real-time analytics; and (5) visualization tools, such as augmented reality (AR) and heads-up displays (HUDs), for decision support. The review synthesizes these components by discussing their integrated application in scenarios like firefighting and urban search and rescue. It concludes that a robust system depends not on a single component but on the seamless integration of this entire technological chain, and highlights future research directions crucial for quantifying and maximizing its impact on sustainable development goals (SDGs 3, 9, and 11) related to health, sustainable cities, and resilient infrastructure. Full article
Show Figures

Figure 1

12 pages, 273 KB  
Article
Stimulant Treatment Gap in ADHD Patients with Heroin Use Disorder: Clinical and Behavioural Consequences
by Alessandro Pallucchini, Maurizio Varese, Irene Pergentini, Samuele Gemignani, Elisa Parapetto, Icro Maremmani and Angelo Giovanni Icro Maremmani
Int. J. Environ. Res. Public Health 2026, 23(1), 40; https://doi.org/10.3390/ijerph23010040 - 28 Dec 2025
Viewed by 84
Abstract
Background: Adults with attention-deficit/hyperactivity disorder (ADHD) often have comorbid substance use disorders (SUDs). In Italy, individuals with both ADHD and heroin use disorder (HUD) are usually treated in addiction services with opioid agonist therapy (OAT), but stimulant medications are rarely prescribed. This may [...] Read more.
Background: Adults with attention-deficit/hyperactivity disorder (ADHD) often have comorbid substance use disorders (SUDs). In Italy, individuals with both ADHD and heroin use disorder (HUD) are usually treated in addiction services with opioid agonist therapy (OAT), but stimulant medications are rarely prescribed. This may create a treatment gap for core ADHD symptoms. Aim: This study examined the clinical and behavioural profiles of ADHD patients with HUD who receive OAT but no stimulant treatment, compared to ADHD patients without opioid use disorder (ADHD/NoHUD) on standard pharmacotherapy. All participants were considered treatment responders in their respective services. Methods: Data were collected from two outpatient clinics and included 103 adult ADHD patients assessed using validated tools for symptom severity, emotional dysregulation, and global functioning. Differences between groups were analysed using univariate tests and logistic regression. Results: The ADHD+HUD group was significantly older and showed higher levels of emotional dysregulation, impulsivity, and current cocaine use. Despite clinical stability, these individuals presented a more severe psychopathological profile than their ADHD/NoHUD counterparts, who received stimulant-based treatment. Conclusions: Although limited by its cross-sectional nature and setting-related confounders, the study indicates that OAT alone may not be sufficient to manage neurodevelopmental symptoms in ADHD+HUD patients. Further research is necessary to assess the safety and efficacy of integrated stimulant-based treatments, ideally within dual disorder services combining psychiatric and addiction expertise. Full article
21 pages, 3768 KB  
Article
Spatial Plane Positioning of AR-HUD Graphics: Implications for Driver Inattentional Blindness in Navigation and Collision Warning Scenarios
by Menlong Ye and Jun Yin
Electronics 2025, 14(23), 4768; https://doi.org/10.3390/electronics14234768 - 4 Dec 2025
Viewed by 396
Abstract
In-vehicle Augmented Reality Head-Up Displays (AR-HUDs) enhance driving performance and experience by presenting critical information such as navigation cues and collision warnings. Although many studies have investigated the efficacy of AR-HUD navigation and collision warning interface designs, existing research has overlooked the critical [...] Read more.
In-vehicle Augmented Reality Head-Up Displays (AR-HUDs) enhance driving performance and experience by presenting critical information such as navigation cues and collision warnings. Although many studies have investigated the efficacy of AR-HUD navigation and collision warning interface designs, existing research has overlooked the critical interplay between graphic spatial positioning and safety risks arising from inattentional blindness. This study employed a single-factor within-subjects design, with Experiment 1 and Experiment 2 separately examining the impact of the spatial planar position (horizontal planar position, vertical planar position, mixed planar position) of AR-HUD navigation graphics and collision warning graphics on drivers’ inattentional blindness. The results revealed that the spatial planar position of AR-HUD navigation graphics has no significant effect on inattentional blindness behavior or reaction time. However, the horizontal planar position yielded the best user experience with low workload, followed by the mixed planar position. For AR-HUD collision warning graphics, their spatial planar position does not significantly influence the frequency of inattentional blindness; From the perspectives of workload and user experience, the vertical planar position of collision warning graphics provides the best experience with the lowest workload, while the mixed planar position demonstrates superior hedonic qualities. Overall, this study offers design guidelines for in-vehicle AR-HUD interfaces. Full article
Show Figures

Figure 1

21 pages, 27048 KB  
Article
Evaluating Rich Visual Feedback on Head-Up Displays for In-Vehicle Voice Assistants: A User Study
by Mahmoud Baghdadi, Dilara Samad-Zada and Achim Ebert
Multimodal Technol. Interact. 2025, 9(11), 114; https://doi.org/10.3390/mti9110114 - 16 Nov 2025
Viewed by 546
Abstract
In-vehicle voice assistants face usability challenges due to limitations in delivering feedback within the constraints of the driving environment. The presented study explores the potential of Rich Visual Feedback (RVF) on Head-Up Displays (HUDs) as a multimodal solution to enhance system usability. A [...] Read more.
In-vehicle voice assistants face usability challenges due to limitations in delivering feedback within the constraints of the driving environment. The presented study explores the potential of Rich Visual Feedback (RVF) on Head-Up Displays (HUDs) as a multimodal solution to enhance system usability. A user study with 32 participants evaluated three HUD User Interface (UI) designs: the AR Fusion UI, which integrates augmented reality elements for layered, dynamic information presentation; the Baseline UI, which displays only essential keywords; and the Flat Fusion UI, which uses conventional vertical scrolling. To explore HUD interface principles and inform future HUD design without relying on specific hardware, a simulated near-field overlay was used. Usability was measured using the System Usability Scale (SUS), and distraction was assessed with a penalty point method. Results show that RVF on the HUD significantly influences usability, with both content quantity and presentation style affecting outcomes. The minimal Baseline UI achieved the highest overall usability. However, among the two Fusion designs, the AR-based layered information mechanism outperformed the flat scrolling method. Distraction effects were not statistically significant, indicating the need for further research. These findings suggest RVF-enabled HUDs can enhance in-vehicle voice assistant usability, potentially contributing to safer, more efficient driving. Full article
Show Figures

Figure 1

22 pages, 4962 KB  
Article
Effects of Multimodal AR-HUD Navigation Prompt Mode and Timing on Driving Behavior
by Qi Zhu, Ziqi Liu, Youlan Li and Jung Euitay
J. Eye Mov. Res. 2025, 18(6), 63; https://doi.org/10.3390/jemr18060063 - 4 Nov 2025
Viewed by 893
Abstract
Current research on multimodal AR-HUD navigation systems primarily focuses on the presentation forms of auditory and visual information, yet the effects of synchrony between auditory and visual prompts as well as prompt timing on driving behavior and attention mechanisms remain insufficiently explored. This [...] Read more.
Current research on multimodal AR-HUD navigation systems primarily focuses on the presentation forms of auditory and visual information, yet the effects of synchrony between auditory and visual prompts as well as prompt timing on driving behavior and attention mechanisms remain insufficiently explored. This study employed a 2 (prompt mode: synchronous vs. asynchronous) × 3 (prompt timing: −2000 m, −1000 m, −500 m) within-subject experimental design to assess the impact of multimodal prompt synchrony and prompt distance on drivers’ reaction time, sustained attention, and eye movement behaviors, including average fixation duration and fixation count. Behavioral data demonstrated that both prompt mode and prompt timing significantly influenced drivers’ response performance (indexed by reaction time) and attention stability, with synchronous prompts at −1000 m yielding optimal performance. Eye-tracking results further revealed that synchronous prompts significantly enhanced fixation stability and reduced visual load, indicating more efficient information integration. Therefore, prompt mode and prompt timing significantly affect drivers’ perceptual processing and operational performance. Delivering synchronous auditory and visual prompts at −1000 m achieves an optimal balance between information timeliness and multimodal integration. This study recommends the following: (1) maintaining temporal consistency in multimodal prompts to facilitate perceptual integration and (2) controlling prompt distance within an intermediate range (−1000 m) to optimize the perception–action window, thereby improving the safety and efficiency of AR-HUD navigation systems. Full article
Show Figures

Graphical abstract

21 pages, 4223 KB  
Article
The Influence of Information Redundancy on Driving Behavior and Psychological Responses Under Different Fog and Risk Conditions: An Analysis of AR-HUD Interface Designs
by Junfeng Li, Kexin Chen and Mo Chen
Appl. Sci. 2025, 15(20), 11072; https://doi.org/10.3390/app152011072 - 15 Oct 2025
Viewed by 791
Abstract
Adverse road conditions, particularly foggy weather, significantly impair drivers’ abilities to gather information and make judgments in response to unexpected events. To investigate the impact of different Augmented Reality-Head-Up Display (AR-HUD) interfaces (words-only, symbols-only, and words + symbols) on driving behavior, this study [...] Read more.
Adverse road conditions, particularly foggy weather, significantly impair drivers’ abilities to gather information and make judgments in response to unexpected events. To investigate the impact of different Augmented Reality-Head-Up Display (AR-HUD) interfaces (words-only, symbols-only, and words + symbols) on driving behavior, this study simulated driving scenarios under varying visibility and risk levels in foggy conditions, measuring reaction time (RT), time-to-collision (TTC), the maximum lateral acceleration, the maximum longitudinal acceleration, and subjective data. The results indicated that risk levels significantly affected drivers’ RT, TTC, and maximum longitudinal and lateral accelerations. The three interfaces significantly differed in RT and TTC across different risk levels in heavy fog. In light fog, words-only and redundant interfaces significantly affected RT across different risk levels; words-only and symbols-only interfaces significantly affected TTC across different risk levels. In addition, participants responded faster when using text-related interfaces in the subject’s native language. After analyzing data on perceived usability across the three interfaces, the results indicated that under high-risk conditions, both in light fog and heavy fog, participants rated the redundant interface as having higher usability and preferred the redundant interfaces. Based on these findings, this paper proposes the following design strategies for AR-HUD visual interfaces: (1) Under low-risk foggy driving conditions, all three interface types are effective and applicable. (2) Under high-risk foggy driving conditions, redundant interface design is recommended. Although it may not significantly improve driving performance, this interface type was subjectively perceived as more useful and preferred by the subjects. The findings of this study provide support for design of AR-HUD interfaces, contributing to enhanced driving safety and human–machine interaction experience under complex meteorological conditions. This offers practical implications for the development and optimization of intelligent vehicle systems. Full article
Show Figures

Figure 1

19 pages, 426 KB  
Article
Internal Dynamics and External Contexts: Evaluating Performance in U.S. Continuum of Care Homelessness Networks
by Jenisa R C and Hee Soun Jang
Systems 2025, 13(10), 880; https://doi.org/10.3390/systems13100880 - 8 Oct 2025
Viewed by 1375
Abstract
Understanding public service performance remains a persistent challenge, particularly when services are delivered through complex interorganizational networks. This difficulty is amplified in contexts addressing wicked problems such as homelessness, where needs are multifaceted, solutions are interdependent, and outcomes are hard to measure. In [...] Read more.
Understanding public service performance remains a persistent challenge, particularly when services are delivered through complex interorganizational networks. This difficulty is amplified in contexts addressing wicked problems such as homelessness, where needs are multifaceted, solutions are interdependent, and outcomes are hard to measure. In the United States, the Continuum of Care (CoC) system represents a federally mandated and HUD-funded network model designed to coordinate local responses to homelessness through collaborative governance. Despite its standardized structure and federal oversight, CoC’s performance varies significantly across regions. This study investigates the conditions that influence the CoC network’s performance, focusing on the delivery of Permanent Supportive Housing (PSH) services, a critical intervention for addressing chronic homelessness. It applies to a theoretical framework that combines Ansell and Gash’s collaborative governance model with Emerson et al.’s integrative framework. This approach allows for a comprehensive assessment of internal network factors such as board size, nonprofit leadership, and federal funding, as well as external system contexts including political orientation, income levels, and rent affordability. Drawing on regression analysis of data from 343 CoCs across the United States, the study shows that federal funding, favorable political climates, and larger board size are significant predictors of PSH availability, while nonprofit leadership and income levels are not. Findings highlight the importance of aligning internal governance and external context to improve network outcomes. Full article
Show Figures

Figure 1

27 pages, 6077 KB  
Article
Identification of Restoration Pathways for the Climate Adaptation of Wych Elm (Ulmus glabra Huds.) in Türkiye
by Derya Gülçin, Javier Velázquez, Víctor Rincón, Jorge Mongil-Manso, Ebru Ersoy Tonyaloğlu, Ali Uğur Özcan, Buse Ar and Kerim Çiçek
Land 2025, 14(7), 1391; https://doi.org/10.3390/land14071391 - 2 Jul 2025
Cited by 1 | Viewed by 1036
Abstract
Ulmus glabra Huds. is a mesophilic, montane broadleaf tree with high ecological value, commonly found in temperate riparian and floodplain forests across Türkiye. Its populations in Türkiye have declined due to anthropogenic disturbances and climatic pressures that cause habitat fragmentation and threaten the [...] Read more.
Ulmus glabra Huds. is a mesophilic, montane broadleaf tree with high ecological value, commonly found in temperate riparian and floodplain forests across Türkiye. Its populations in Türkiye have declined due to anthropogenic disturbances and climatic pressures that cause habitat fragmentation and threaten the species’ long-term survival. In this research, we used Maximum Entropy (MaxEnt) to build species distribution models (SDMs) and applied the Restoration Planner (RP) tool to identify and prioritize critical restoration sites under both current and projected climate scenarios (SSP245, SSP370, SSP585). The SDMs highlighted areas of high suitability, primarily along the Black Sea coast. Future projections show that habitat fragmentation and shifts in suitable areas are expected to worsen. To systematically compare restoration options across different future scenarios, we derived and applied four spatial network status indicators using the RP tool. Specifically, we calculated Restoration Pixels (REST_PIX), Average Distance of Restoration Pixels from the Network (AVDIST_RP), Change in Equivalent Connected Area (ΔECA), and Restoration Efficiency (EFFIC) using the RP tool. For the 1 <-> 2 restoration pathways, the highest efficiency (EFFIC = 38.17) was recorded under present climate conditions. However, the largest improvement in connectivity (ΔECA = 60,775.62) was found in the 4 <-> 5 pathway under the SSP585 scenario, though this required substantial restoration effort (REST_PIX = 385). Temporal analysis noted that the restoration action will have most effectiveness between 2040 and 2080, while between 2081 and 2100, increased habitat fragmentation can severely undermine ecological connectivity. The result indicates that incorporation of habitat suitability modeling into restoration planning can help to design cost-effective restoration actions for degraded land. Moreover, the approach used herein provides a reproducible framework for the enhancement of species sustainability and habitat connectivity under varying climate conditions. Full article
Show Figures

Figure 1

10 pages, 3193 KB  
Article
Optical Film with Microstructures to Regulate Viewing Angle of HUDs
by Qibin Feng, Xiangjun Li, Chunhui Chen, Guoqiang Lv and Zi Wang
Micromachines 2025, 16(6), 714; https://doi.org/10.3390/mi16060714 - 16 Jun 2025
Viewed by 768
Abstract
Head-up displays (HUDs) can effectively enhance driving safety by projecting information—such as speed and maps—onto the windshield, thereby reducing blind spots caused by drivers looking down. As drivers need to observe road conditions within a wider horizontal viewing field, and considering that the [...] Read more.
Head-up displays (HUDs) can effectively enhance driving safety by projecting information—such as speed and maps—onto the windshield, thereby reducing blind spots caused by drivers looking down. As drivers need to observe road conditions within a wider horizontal viewing field, and considering that the observed angle in a vertical direction is relatively small, it becomes reasonable for an HUD to present a larger horizontal viewing angle than vertical viewing angle. This paper proposes a method to independently regulate the horizontal and vertical viewing angles. The original microstructure morphology is modeled as an ellipsoid, and the curvatures of the ellipsoid’s major and minor axes are calculated according to the required viewing angles. The simulation results show that the horizontal viewing angle corresponding to 85% of the maximum luminance increases from 2° without the film to 20° with the film, while the vertical viewing angle increases from 2° to 8°. The optical film with the designed microstructures is prepared and measured. The practical measurement results indicate that the tested horizontal and vertical viewing angles exhibit significant differentiation. At 85% of the maximum luminance, the horizontal viewing angle increases from 2° without the film to 23° with the film, while the vertical viewing angle increases from 2° to 10°. These results meet the requirements for independently regulating horizontal and vertical viewing angles and widening the horizontal viewing angle. Full article
Show Figures

Figure 1

18 pages, 319 KB  
Review
The Role of Tau in Neuronal Function and Neurodegeneration
by Gonzalo Emiliano Aranda-Abreu, Fausto Rojas-Durán, María Elena Hernández-Aguilar, Deissy Herrera-Covarrubias, Luis Isauro García-Hernández, María Rebeca Toledo-Cárdenas and Donají Chi-Castañeda
Neurol. Int. 2025, 17(5), 75; https://doi.org/10.3390/neurolint17050075 - 13 May 2025
Cited by 5 | Viewed by 3806
Abstract
Tau protein plays a pivotal role in maintaining neuronal structure and function through its regulation of microtubule stability and neuronal polarity. Encoded by the MAPT gene, Tau exists in multiple isoforms due to alternative mRNA splicing, with differential expression in the central and [...] Read more.
Tau protein plays a pivotal role in maintaining neuronal structure and function through its regulation of microtubule stability and neuronal polarity. Encoded by the MAPT gene, Tau exists in multiple isoforms due to alternative mRNA splicing, with differential expression in the central and peripheral nervous systems. In healthy neurons, tau mRNA is selectively localized and translated in axons, a process tightly regulated by untranslated regions (UTRs) and RNA-binding proteins such as HuD and FMRP. Pathologically, Tau undergoes hyperphosphorylation, misfolding, and aggregation, which contribute to neurodegeneration in a range of disorders collectively known as tauopathies. Alzheimer’s disease (AD) is the most prevalent tauopathy, where abnormal Tau accumulation in the temporal and frontal lobes correlates with cognitive decline and behavioral symptoms. Other tauopathies, including Progressive Supranuclear Palsy (PSP), Corticobasal Degeneration (CBD), Frontotemporal Dementia with Parkinsonism (FTDP-17), and Pick’s disease, are distinguished by the predominance of specific Tau isoforms (3R or 4R), cellular distribution, and affected brain regions. Notably, astroglial tauopathies highlight the pathological role of Tau accumulation in glial cells, expanding the understanding of neurodegeneration beyond neurons. Despite advances in imaging biomarkers (e.g., Tau-PET) and molecular diagnostics, effective disease-modifying therapies for tauopathies remain elusive. Ongoing research targets Tau through immunotherapies, splicing modulators, kinase inhibitors, and antisense oligonucleotides, aiming to mitigate Tau pathology and its deleterious effects. Understanding the multifaceted roles of Tau in neuronal and glial contexts is critical for developing future therapeutic strategies against tauopathies. Full article
10 pages, 5172 KB  
Communication
Floral Closure in Lesser Celandine (Ficaria verna) Protects Anthers from Pollen Flushing and Preserves Pollen Viability
by Pavol Prokop, Zuzana Provazník and Kristián Tučník
Plants 2025, 14(10), 1437; https://doi.org/10.3390/plants14101437 - 11 May 2025
Cited by 1 | Viewed by 805
Abstract
Flower closure is a widespread yet understudied trait that may serve multiple functions in the success of plant reproduction. In this study, we investigated the role of flower closure in protecting pollen from rain-induced loss in lesser celandine (Ficaria verna Huds., 1762), [...] Read more.
Flower closure is a widespread yet understudied trait that may serve multiple functions in the success of plant reproduction. In this study, we investigated the role of flower closure in protecting pollen from rain-induced loss in lesser celandine (Ficaria verna Huds., 1762), an early-flowering species vulnerable to spring rains. Through simulated and natural rain experiments, we found that the flowers that were prevented from closing retained significantly fewer pollen grains compared to the control flowers. This demonstrates that flower closure effectively protects pollen from rain-induced flushing, thus enhancing reproductive success. Furthermore, flowers that were prevented from closing had fewer viable pollen grains than control flowers. We propose that the evolution of petal movement in F. verna was primarily driven by pressures favoring petal movement that protected pollen, with secondary contributions from herbivore avoidance. Flowers are unable to discriminate between low luminosity caused by cloudy weather and night, thus responding to both. Future studies should explore the relative importance of primary and secondary evolutionary drivers of flower closure across species, particularly in early-flowering plants facing complex environmental challenges. Full article
(This article belongs to the Special Issue Plant Behavioral Ecology)
Show Figures

Figure 1

21 pages, 5674 KB  
Article
Reality Head-Up Display Navigation Design in Extreme Weather Conditions: Enhancing Driving Experience in Rain and Fog
by Qi Zhu and Ziqi Liu
Electronics 2025, 14(9), 1745; https://doi.org/10.3390/electronics14091745 - 25 Apr 2025
Cited by 5 | Viewed by 2074
Abstract
This study investigates the impact of extreme weather conditions (specifically heavy rain and fog) on drivers’ situational awareness by analyzing variations in illumination levels. The primary objective is to identify optimal color wavelengths for low-light environments, thereby providing a theoretical foundation for the [...] Read more.
This study investigates the impact of extreme weather conditions (specifically heavy rain and fog) on drivers’ situational awareness by analyzing variations in illumination levels. The primary objective is to identify optimal color wavelengths for low-light environments, thereby providing a theoretical foundation for the design of augmented reality head-up display in adverse weather conditions. A within-subjects experimental design was employed with 26 participants in a simulated driving environment. Participants were exposed to different illumination levels and AR-HUD colors. Eye-tracking metrics, including fixation duration, visit duration, and fixation count, were recorded alongside situational awareness ratings to assess cognitive load and information processing efficiency. The results revealed that the yellow AR-HUD significantly enhanced situational awareness and reduced cognitive load in foggy conditions. While subjective assessments indicated no substantial effect of lighting conditions, objective measurements demonstrated the superior effectiveness of the yellow AR-HUD under foggy weather. These findings suggest that yellow AR-HUD navigation icons are more suitable for extreme weather environments, offering potential improvements in driving performance and overall road safety. Full article
Show Figures

Figure 1

19 pages, 4301 KB  
Article
Black-Grass Monitoring Using Hyperspectral Image Data Is Limited by Between-Site Variability
by Robert M. Goodsell, Shaun Coutts, William Oxford, Helen Hicks, David Comont, Robert P. Freckleton and Dylan Z. Childs
Remote Sens. 2024, 16(24), 4749; https://doi.org/10.3390/rs16244749 - 20 Dec 2024
Cited by 2 | Viewed by 1407
Abstract
Many important ecological processes play out over large geographic ranges, and accurate large-scale monitoring of populations is a requirement for their effective management. Of particular interest are agricultural weeds, which cause widespread economic and ecological damage. However, the scale of weed population data [...] Read more.
Many important ecological processes play out over large geographic ranges, and accurate large-scale monitoring of populations is a requirement for their effective management. Of particular interest are agricultural weeds, which cause widespread economic and ecological damage. However, the scale of weed population data collection is limited by an inevitable trade-off between quantity and quality. Remote sensing offers a promising route to the large-scale collection of population state data. However, a key challenge is to collect high enough resolution data and account for between-site variability in environmental (i.e., radiometric) conditions that may make prediction of population states in new data challenging. Here, we use a multi-site hyperspectral image dataset in conjunction with ensemble learning techniques in an attempt to predict densities of an arable weed (Alopecurus myosuroides, Huds) across an agricultural landscape. We demonstrate reasonable predictive performance (using the geometric mean score-GMS) when classifiers are used to predict new data from the same site (GMS = 0.74-low density, GMS = 0.74-medium density, GMS = 0.7-High density). However, even using flexible ensemble techniques to account for variability in spectral data, we show that out-of-field predictive performance is poor (GMS = 0.06-low density, GMS = 0.13-medium density, GMS = 0.08-High density). This study highlights the difficulties in identifying weeds in situ, even using high quality image data from remote sensing. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

31 pages, 6039 KB  
Article
Design and Evaluation of Ecological Interface of Driving Warning System Based on AR-HUD
by Jun Ma, Yuhui Li and Yuanyang Zuo
Sensors 2024, 24(24), 8010; https://doi.org/10.3390/s24248010 - 15 Dec 2024
Cited by 3 | Viewed by 4025
Abstract
As the global traffic environment becomes increasingly complex, driving safety issues have become more prominent, making manual-response driving warning systems (DWSs) essential. Augmented reality head-up display (AR-HUD) technology can project information directly, enhancing driver attention; however, improper design may increase cognitive load and [...] Read more.
As the global traffic environment becomes increasingly complex, driving safety issues have become more prominent, making manual-response driving warning systems (DWSs) essential. Augmented reality head-up display (AR-HUD) technology can project information directly, enhancing driver attention; however, improper design may increase cognitive load and affect safety. Thus, the design of AR-HUD driving warning interfaces must focus on improving attention and reducing cognitive load. Currently, systematic research on AR-HUD DWS interfaces is relatively scarce. This paper proposes an ecological interface cognitive balance design strategy for AR-HUD DWS based on cognitive load theory and environmental interface design theory. The research includes developing design models, an integrative framework, and experimental validation suitable for warning scenarios. Research results indicate that the proposed design effectively reduces cognitive load and significantly decreases driver response and comprehension times, outperforming existing interfaces. This design strategy and framework possess promotional value, providing theoretical references and methodological guidance for AR-HUD warning interface research. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

10 pages, 2638 KB  
Perspective
Minimally Invasive Approaches to Spinal Cerebrospinal Fluid Leak Repair: Current Strategies and a Novel Technique
by Adham M. Khalafallah, Bhavjeet S. Sanghera, Michael Kader, James V. Boddu and Timur Urakov
J. Pers. Med. 2024, 14(11), 1090; https://doi.org/10.3390/jpm14111090 - 4 Nov 2024
Viewed by 3119
Abstract
Spinal cerebrospinal fluid (CSF) leaks can be caused by tears in the dura and are challenging to treat. Traditional methods of treating spinal CSF leakage include nonsurgical management, epidural blood patches (EBP), and direct surgical repair. Minimally invasive surgery (MIS) is rapidly progressing [...] Read more.
Spinal cerebrospinal fluid (CSF) leaks can be caused by tears in the dura and are challenging to treat. Traditional methods of treating spinal CSF leakage include nonsurgical management, epidural blood patches (EBP), and direct surgical repair. Minimally invasive surgery (MIS) is rapidly progressing within neurosurgery due to its advantages for patient safety and comfort. Existing MIS techniques to spine surgery utilize a rigid endoscope, which has limitations when reaching smaller areas requiring greater degrees of visualization. The simultaneous use of a flexible endoscope and wearable heads-up display (wHUD) improves access and visualization in these small areas while allowing the surgeon to maintain optimal ergonomics. In this article, we review minimally invasive approaches to spine surgery and the management of spinal CSF leaks. We also demonstrate a novel minimally invasive technique utilizing flexible endoscopy and a wHUD to treat a case of recurrent CSF leak. We describe the successful utilization of this technology and provide the groundwork for future practitioners to incorporate this approach into their practice. Full article
Show Figures

Figure 1

Back to TopTop