Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = apotirucallane-type triterpenoid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 7517 KiB  
Review
Insecticidal Triterpenes in Meliaceae III: Plant Species, Molecules, and Activities in Munronia–Xylocarpus
by Meihong Lin, Xiaohui Liu, Jiaxin Chen, Jiguang Huang and Lijuan Zhou
Int. J. Mol. Sci. 2024, 25(14), 7818; https://doi.org/10.3390/ijms25147818 - 17 Jul 2024
Cited by 1 | Viewed by 1833
Abstract
Plants of the Meliaceae family have long attracted researchers’ interest due to their various insecticidal activities, with triterpenes being the main active ingredients. In this paper, we discuss 93 triterpenoids with insecticidal activity from 37 insecticidal plant species of 15 genera (Munronia [...] Read more.
Plants of the Meliaceae family have long attracted researchers’ interest due to their various insecticidal activities, with triterpenes being the main active ingredients. In this paper, we discuss 93 triterpenoids with insecticidal activity from 37 insecticidal plant species of 15 genera (Munronia, Neobeguea, Pseudocedrela, Nymania, Quivisia, Ruagea, Dysoxylum, Soymida, Lansium, Sandoricum, Walsura, Trichilia, Swietenia, Turraea, and Xylocarpus) in the family Meliaceae. Among these genera, Trichilia deserves further research, with twelve species possessing insecticidal activity. The 93 insecticidal molecules included 27 ring-seco limonoids (comprising 1 ring A-seco group chemical, 1 ring B-seco group chemical, 5 ring D-seco group chemicals, 14 rings A,B-seco group chemicals, 5 rings B,D-seco group chemicals, and 1 rings A,B,D-seco group chemical), 22 ring-intact limonoids (comprising 5 cedrelone-class chemicals, 6 trichilin-class chemicals, 7 havanensin-class chemicals, 2 azadirone-class chemicals, 1 vilasinin-class chemical, and 1 other chemical), 33 2,30-linkage chemicals (comprising 25 mexicanolide-class chemicals and 8 phragmalin-class chemicals), 3 1,n-linkage-group chemicals, 3 onoceranoid-type triterpenoids, 2 apotirucallane-type terpenoids, 2 kokosanolide-type tetranortriterpenoids, and 1 cycloartane triterpene. In particular, 59 molecules showed antifeedant activity, 30 molecules exhibited poisonous effects, and 9 molecules possessed growth regulatory activity. Particularly, khayasin, beddomei lactone, 3β,24,25-trihydroxycycloartane, humilinolides A–E and methyl-2-hydroxy-3β-isobutyroxy-1-oxomeliac-8(30)-enate showed excellent insecticidal activities, which were comparable to that of azadirachtin and thus deserved more attention. Moreover, it was noteworthy that various chemicals (such as 12α-diacetoxywalsuranolide, 11β,12α-diacetoxycedrelone, 1α,7α,12α-triacetoxy-4α-carbomethoxy-11β-hydroxy-14β,15β-epoxyhavanensin, and 11-epi-21-hydroxytoonacilide, etc.) from Turraea showed excellent insecticidal activity. Specially, the insecticidal activity of khayasin from Neobeguea against the coconut leaf beetle were similar to that of rotenone. Therefore, it was a promising candidate insecticide for the control of the coconut leaf beetle. Full article
(This article belongs to the Special Issue Latest Review Papers in Biochemistry 2024)
Show Figures

Figure 1

12 pages, 2803 KiB  
Article
Terpenoids from the Seeds of Toona sinensis and Their Ability to Attenuate High Glucose-Induced Oxidative Stress and Inflammation in Rat Glomerular Mesangial Cells
by Ying Chen, Hong Gao, Xiaoxiao Liu, Jinyi Zhou, Yijin Jiang, Feng Wang, Rongshen Wang and Wanzhong Li
Molecules 2022, 27(18), 5784; https://doi.org/10.3390/molecules27185784 - 7 Sep 2022
Cited by 9 | Viewed by 2234
Abstract
Toona sinensis (A. Juss.) Roem is an edible medicinal plant that belongs to the genus Toona within the Meliaceae family. It has been confirmed to display a wide variety of biological activities. During our continuous search for active constituents from the seeds of [...] Read more.
Toona sinensis (A. Juss.) Roem is an edible medicinal plant that belongs to the genus Toona within the Meliaceae family. It has been confirmed to display a wide variety of biological activities. During our continuous search for active constituents from the seeds of T. sinensis, two new acyclic diterpenoids (12), together with five known limonoid-type triterpenoids (37), five known apotirucallane-type triterpenoids (812), and three known cycloartane-type triterpenoids (1315), were isolated and characterized. Their structures were identified based on extensive spectroscopic experiments, including nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass spectra (HR-ESI-MS), and electronic circular dichroism (ECD), as well as the comparison with those reported in the literature. We compared these findings to those reported in the literature. Compounds 5, 8, and 1314 were isolated from the genus Toona, and compounds 11 and 15 were obtained from T. sinensis for the first time. The antidiabetic nephropathy effects of isolated compounds against high glucose-induced oxidative stress and inflammation in rat glomerular mesangial cells (GMCs) were assessed in vitro. The results showed that new compounds 1 and 2 could significantly increase the levels of Nrf-2/HO-1 and reduce the levels of NF-κB, TNF-α, and IL-6 at concentrations of 30 μM. These results suggest that compounds 1 and 2 might prevent the occurrence and development of diabetic nephropathy (DN) and facilitate the research and development of new antioxidant and anti-inflammatory drugs suitable for the prevention and treatment of DN. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

11 pages, 4537 KiB  
Article
Two New Apotirucallane-Type Triterpenoids from the Pericarp of Toona sinensis and Their Ability to Reduce Oxidative Stress in Rat Glomerular Mesangial Cells Cultured under High-Glucose Conditions
by Di Liu, Rong-shen Wang, Lu-lu Xuan, Xiao-hong Wang and Wan-zhong Li
Molecules 2020, 25(4), 801; https://doi.org/10.3390/molecules25040801 - 12 Feb 2020
Cited by 10 | Viewed by 3282
Abstract
Hyperglycemia is a strong risk factor for chronic complications of diabetes. Hyperglycemic conditions foster not only the production of reactive oxygen species (ROS), but also the consumption of antioxidants, leading to oxidative stress and promoting the occurrence and progression of complications. During our [...] Read more.
Hyperglycemia is a strong risk factor for chronic complications of diabetes. Hyperglycemic conditions foster not only the production of reactive oxygen species (ROS), but also the consumption of antioxidants, leading to oxidative stress and promoting the occurrence and progression of complications. During our continuous search for antioxidant constituents from the pericarp of Toona sinensis (A. Juss.) Roem, we isolated two previously unreported apotirucallane-type triterpenoids, toonasinensin A (1) and toonasinensin B (2), together with five known apotirucallane-type triterpenoids (37) and two known cycloartane-type triterpenoids (89) from the pericarp. Compounds 89 were obtained from T. sinensis for the first time. Their structures were characterized based on interpretation of spectroscopic data (1D, 2D NMR, high-resolution electrospray ionization mass spectra, HR-ESI-MS) and comparison to previous reports. Compounds (2, 4, 6, 7, and 9) were able to inhibit proliferation against rat glomerular mesangial cells (GMCs) cultured under high-glucose conditions within a concentration of 80 μM. Compounds (2, 6, and 7) were tested for antioxidant activity attributable to superoxide dismutase (SOD), malondialdehyde (MDA), and ROS in vitro, and the results showed that compounds (2, 6, and 7) could significantly increase the levels of SOD and reduce the levels of MDA and ROS. The current studies showed that apotirucallane-type triterpenoids (2, 6, and 7) might have the antioxidant effects against diabetic nephropathy. Full article
(This article belongs to the Collection Triterpenes and Triterpenoids)
Show Figures

Figure 1

18 pages, 4895 KiB  
Article
Mangrove Tirucallane- and Apotirucallane-Type Triterpenoids: Structure Diversity of the C-17 Side-Chain and Natural Agonists of Human Farnesoid/Pregnane–X–Receptor
by Zhong-Ping Jiang, Zhi-Lin Luan, Ruo-Xi Liu, Qun Zhang, Xiao-Chi Ma, Li Shen and Jun Wu
Mar. Drugs 2018, 16(12), 488; https://doi.org/10.3390/md16120488 - 6 Dec 2018
Cited by 22 | Viewed by 4178
Abstract
Ten new triterpenoid compounds with structure diversity of the C-17 side-chain, including nine tirucallanes, named xylocarpols A–E (15) and agallochols A–D (69), and an apotirucallane, named 25-dehydroxy protoxylogranatin B (10), were isolated from [...] Read more.
Ten new triterpenoid compounds with structure diversity of the C-17 side-chain, including nine tirucallanes, named xylocarpols A–E (15) and agallochols A–D (69), and an apotirucallane, named 25-dehydroxy protoxylogranatin B (10), were isolated from the mangrove plants Xylocarpus granatum, Xylocarpus moluccensis, and Excoecaria agallocha. The structures of these compounds were established by HR-ESIMS and extensive one-dimensional (1D) and two-dimensional (2D) NMR investigations. The absolute configurations of 1 and 2 were unequivocally determined by single-crystal X-ray diffraction analyses, conducted with Cu Kα radiation; whereas those of 4, 68 were assigned by a modified Mosher’s method and the comparison of experimental electronic circular dichroism (ECD) spectra. Most notably, 5, 6, 7, and 9 displayed potent activation effects on farnesoid–X–receptor (FXR) at the concentration of 10.0 μM; 10 exhibited very significant agonistic effects on pregnane–X–receptor (PXR) at the concentration of 10.0 nM. Full article
(This article belongs to the Special Issue Bioactive Compounds from Mangroves and Their-Associated Microbes)
Show Figures

Graphical abstract

10 pages, 736 KiB  
Article
Tetranortriterpenes and Limonoids from the Roots of Aphanamixis polystachya
by Ching-Jie Lin, I-Wen Lo, Yu-Chi Lin, Shun-Ying Chen, Ching-Te Chien, Yao-Haur Kuo, Tsong-Long Hwang, Shorong-Shii Liou and Ya-Ching Shen
Molecules 2016, 21(9), 1167; https://doi.org/10.3390/molecules21091167 - 2 Sep 2016
Cited by 10 | Viewed by 6463
Abstract
Phytochemical investigation of the acetone extract from the roots of Aphanamixis polystachya resulted in isolation of four new tetranortriterpenes (14) in addition to one protolimonoid (methyl-1ξ,7R-diacetoxy-23R,25-dihydroxy-20S,24R-21,24-epoxy-3,4-seco-apotirucall-4(28),14(15)-diene-3-oate (5)), five known [...] Read more.
Phytochemical investigation of the acetone extract from the roots of Aphanamixis polystachya resulted in isolation of four new tetranortriterpenes (14) in addition to one protolimonoid (methyl-1ξ,7R-diacetoxy-23R,25-dihydroxy-20S,24R-21,24-epoxy-3,4-seco-apotirucall-4(28),14(15)-diene-3-oate (5)), five known limonoids (rohituka 3 (6), rohituka 7 (7), nymania 1 (8), rubrin G (9), prieurianin (10)) and a steroid (2,3-dihydroxy-5-pregnan-16-one (11)). Their structures were determined by spectroscopic analyses, including 2D-NMR (COSY, HMQC, HMBC, and NOESY) and high-resolution electrospray ionization mass spectrometry (HRESIMS). Cytotoxic and anti-inflammatory activities of these compounds were evaluated. Compounds 4 and 5 showed significant inhibition against superoxide generation and elastase release by human neutrophils in response to (formyl-l-methionyl-l-leucyl-l-phenylalanine/cytochalasin B) (FMLP/CB). Full article
(This article belongs to the Collection Triterpenes and Triterpenoids)
Show Figures

Figure 1

Back to TopTop