Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (595)

Search Parameters:
Keywords = antiepileptics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 577 KiB  
Article
New Method for the Determination of Lamotrigine in Human Saliva Using SPE-LC-DAD
by Ewelina Dziurkowska, Aleksandra Michalak, Alina Plenis and Maciej Dziurkowski
Molecules 2025, 30(15), 3237; https://doi.org/10.3390/molecules30153237 - 1 Aug 2025
Viewed by 168
Abstract
(1) Background: The concentration of lamotrigine, an antiepileptic drug very often used in bipolar disorder, is most often determined in the blood, with many inconveniences. An alternative may be to use saliva as a diagnostic material for this purpose. The development of a [...] Read more.
(1) Background: The concentration of lamotrigine, an antiepileptic drug very often used in bipolar disorder, is most often determined in the blood, with many inconveniences. An alternative may be to use saliva as a diagnostic material for this purpose. The development of a method to determine lamotrigine in saliva as a biological material significantly improves patient comfort during sampling. The developed method uses solid-phase extraction for the isolation of the drug from saliva for the first time. (2) Methods: This study aimed to develop a method to determine lamotrigine in saliva using solid-phase extraction (SPE) for isolation and liquid chromatography with a diode array detector (LC-DAD) for quantitative analysis. (3) Results: The method was validated by determining its linearity in the concentration range 10–2000 ng/mL (R2 > 0.99), and the intra- and inter-day precision expressed as coefficient of variation (CV%) did not exceed 15%. (4) Conclusions: The developed method was used to determine the salivary concentration of lamotrigine in patients treated with the studied compound, confirming its usefulness in bipolar disorder (BD). Full article
Show Figures

Figure 1

12 pages, 1773 KiB  
Article
Low-Frequency rTMS and Diazepam Exert Synergistic Effects on the Excitability of an SH-SY5Y Model of Epileptiform Activity
by Ioannis Dardalas, Efstratios K. Kosmidis, Roza Lagoudaki, Vasilios K. Kimiskidis, Theodoros Samaras, Theodoros Moysiadis, Dimitrios Kouvelas and Chryssa Pourzitaki
Biomedicines 2025, 13(8), 1857; https://doi.org/10.3390/biomedicines13081857 - 30 Jul 2025
Viewed by 324
Abstract
Background/Objectives: Epilepsy is a brain condition that affects millions of people worldwide. Although there are many antiepileptic drugs with different mechanisms of action, many patients still fail to control their agonizing symptoms, a situation that highlights the need for more strategies to address [...] Read more.
Background/Objectives: Epilepsy is a brain condition that affects millions of people worldwide. Although there are many antiepileptic drugs with different mechanisms of action, many patients still fail to control their agonizing symptoms, a situation that highlights the need for more strategies to address this issue. In this in vitro study, we elucidated and characterized the alterations in intracellular Ca2+ levels in cell cultures where diazepam and repetitive transcranial magnetic stimulation were implemented, alone or in combination. Methods: Using the differentiated human-derived neuroblastoma cell line SH-SY5Y, we measured the alterations in intracellular Ca2+ levels under the impact of either low-frequency repetitive transcranial magnetic stimulation (1 Hz), diazepam (14 μM), or their combination. We used the Ca2+-sensitive fluorescent indicator Fluo-4 acetoxymethyl ester for calcium imaging, while neuronal excitation was achieved with 50 mM KCl. Results: The highest median fluorescence intensity increase (%ΔF/F = 24.80) was observed in control cell cultures, followed by rTMS cultures (%ΔF/F = 16.96) and diazepam cultures (%ΔF/F = 11.46). The lowest median fluorescence intensity value (%ΔF/F =−0.44) was observed when diazepam was used concomitantly with repetitive transcranial magnetic stimulation. Post hoc analysis assessed pairwise differences, showing statistically significant differentiation between the control group and all other groups. Additionally, statistically significant results were observed between repetitive transcranial magnetic stimulation or diazepam and their combination, but not between them. Conclusions: The combination of diazepam and repetitive transcranial magnetic stimulation resulted in the most significant reduction in intracellular Ca2+ levels, as indicated by the lowest fluorescence values compared with the control group. Individually, each treatment produced a notable but less pronounced effect. We conclude that both diazepam and low-frequency repetitive transcranial magnetic stimulation can control epileptiform activity in vitro, while their combination is the most effective treatment. Full article
(This article belongs to the Special Issue Epilepsy: From Mechanisms to Therapeutic Approaches)
Show Figures

Figure 1

15 pages, 1200 KiB  
Article
Effects of Levetiracetam Treatment on Hematological and Immune Systems in Children: A Single-Center Experience
by Yasemin Özkale, Pınar Kiper Mısırlıoğlu, İlknur Kozanoğlu and İlknur Erol
Children 2025, 12(8), 988; https://doi.org/10.3390/children12080988 - 28 Jul 2025
Viewed by 327
Abstract
Objective: The interactions between the central nervous system (CNS) and the immune system suggest that immune mechanisms may be effective in the pathogenesis of epilepsy and epileptic seizures. Although studies on the natural immune response and epilepsy are continuing, it is not yet [...] Read more.
Objective: The interactions between the central nervous system (CNS) and the immune system suggest that immune mechanisms may be effective in the pathogenesis of epilepsy and epileptic seizures. Although studies on the natural immune response and epilepsy are continuing, it is not yet clear whether the interaction of the current immune system is due to epilepsy itself or antiepileptic drugs (AEDs), since epileptic patients also use AEDs There are a limited number of studies that have reported an increased incidence of upper respiratory tract infections (URTIs) in patients during levetiracetam (LEV) treatment. Therefore, we aimed to report our experience regarding the effect of LEV monotherapy on the complete blood count (CBC), immunoglobulin (Ig) levels, and lymphocyte subgroups in the interictal period in children and adolescents with epilepsy. Methods: This study enrolled 31 children who presented with epilepsy and underwent LEV monotherapy for at least one year (patient group) and 43 healthy children (control group). The CBC parameters (hemoglobin (hb), lymphocytes, leukocytes, neutrophils, and platelets), Ig levels (IgA, IgM, IgG, and IgE), and lymphocyte subsets (CD3, CD4, CD8, CD4/CD8 ratio, CD19, CD56, NKT cells, and Treg cells) were measured and compared between the two groups. The patients were also investigated regarding the frequency and types of infections that they experienced in the first month and first year of the study, and these data were compared between the patient group and the control group. In addition, the same parameters and the frequency of infection were compared among the patient subgroups (focal and generalized seizures). Results: The results of the present study indicate that there were no significant differences in the CBC parameters, lymphocyte subsets, or Ig levels between the patient group and the control group. The comparison among the patient subgroups was similar; however, the CD4/CD8 ratio was lower in the patient subgroup with focal seizures. In addition, there were no significant differences in the frequency or type of infections experienced one month and one year of the study between the patient group and the control group, and likewise for the patient subgroups (focal and generalized seizures). Conclusions: The present study demonstrated that LEV monotherapy did not increase the incidence of infection, and there were no significant effects on the CBC or on the humoral or cellular immune system in epileptic children. These findings also suggest that the CD4/CD8 ratio among lymphocyte subgroups is lower in patients with focal seizures. However, the epilepsy subgroups had a relatively small sample size; therefore, further prospective studies involving a larger patient population are needed to establish the association between LEV monotherapy and lymphocyte subgroups in patients with epilepsy. Full article
(This article belongs to the Section Pediatric Allergy and Immunology)
Show Figures

Figure 1

16 pages, 577 KiB  
Review
Personalized Neonatal Therapy: Application of Magistral Formulas in Therapeutic Orphan Populations
by Wenwen Shao, Angela Gomez, Alejandra Alejano, Teresa Gil and María Cristina Benéitez
Pharmaceutics 2025, 17(8), 963; https://doi.org/10.3390/pharmaceutics17080963 - 25 Jul 2025
Viewed by 350
Abstract
This review explores the potential of magistral formulas (MFs) as a viable option to meet the needs of neonates, given the lack of adequate therapies for this vulnerable group. The scientific literature on medicines available for neonates is limited. The physiological differences between [...] Read more.
This review explores the potential of magistral formulas (MFs) as a viable option to meet the needs of neonates, given the lack of adequate therapies for this vulnerable group. The scientific literature on medicines available for neonates is limited. The physiological differences between neonates and adults make it difficult to formulate these medicines. In addition, there are a variety of difficulties in conducting research on neonates: few clinical trials are performed, and there is frequent use of unauthorized medicines. Pharmacokinetics in neonates was investigated in comparison to adults, and different aspects of the absorption, distribution, metabolism, and excretion were observed. One of the main problems is the different pharmacokinetics between the two populations. It is necessary to promote and allow research related to pediatric drug design, approve a specific authorization for use in age-appropriate dosage forms, and improve the quality and availability of information on drugs. This study focused on the MFs typically used for pediatrics, specifically for neonates, analyzing the pharmaceutical forms currently available and the presence of indications and dosage recommendations of the European Medicines Agency. Medications were classified according to therapeutic group, as antihypertensives, corticosteroids, and antiepileptics. The use of off-label medicines remains high in neonatal intensive care units and in primary healthcare, besides in the preparation of MFs by pharmacists. The shortage of medicines specifically designed and approved for neonates is a serious problem for society. Neonates continue to be treated, on numerous occasions, with off-label medicines. Studies and research should be expanded in this vulnerable population group. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

15 pages, 1828 KiB  
Article
The Effect of Anti-Inflammatory Dimethylmalonic Acid on the Neurobehavioral Phenotype of a Neonatal ASD Model Induced by Antiepileptic Valproic Acid
by Xiuwen Zhou, Xiaowen Xu, Lili Li, Yiming Jin, Qing Wang, Xinxin Wang, Meifang Jin and Hong Ni
Biomedicines 2025, 13(7), 1765; https://doi.org/10.3390/biomedicines13071765 - 18 Jul 2025
Viewed by 360
Abstract
Background: Valproic acid (VPA) is a medication used to treat epilepsy, bipolar disorder, and migraine. If taken during pregnancy, it can cause neural tube defects (NTDs) and leads to offspring ASD behavioral phenotype. It has recently been found that early postnatal VPA [...] Read more.
Background: Valproic acid (VPA) is a medication used to treat epilepsy, bipolar disorder, and migraine. If taken during pregnancy, it can cause neural tube defects (NTDs) and leads to offspring ASD behavioral phenotype. It has recently been found that early postnatal VPA exposure can also induce the ASD phenotype, but the details of model production and intervention still need further investigation. Dimethylmalonic acid (DMM), a competitive inhibitor of succinate dehydrogenase, blocks the key element succinate of OXPHOS, decreasing the secretion of anti-inflammatory cytokines and ROS production. However, it is still unclear whether DMM is involved in the repair of developmental brain injuries. Objectives: The aim of this study was to evaluate the intervention effect and optimal dosage of DMM on behavioral phenotypes using a neonatal mouse VPA autism model. Methods: This experiment consists of two parts. The first part observed the effects of different concentrations of VPA on the development and neurobehavioral phenotype of mice. The second part determined the intervention effect of DMM on a developmental VPA autism model and determined the optimal therapeutic dose. Results: We found that the 40 mg/mL concentration had a greater impact on the neural reflex damage in mice. Moreover, DMM treatment can partially improve the neurobehavioral damage in the VPA model, and 20 mg/kg has the best intervention effect. Conclusions: This study provides valuable model construction data for further exploring the mechanism of DMM treatment for an ASD phenotype induced by VPA exposure in neonates. Full article
(This article belongs to the Special Issue Neuroinflammation and Neuroprotection)
Show Figures

Figure 1

18 pages, 3357 KiB  
Article
Evaluation of Antiepileptic Drugs’ Stability in Oral Fluid Samples
by João Martinho, Ana Y. Simão, Tiago Rosado and Eugenia Gallardo
Pharmaceuticals 2025, 18(7), 1049; https://doi.org/10.3390/ph18071049 - 17 Jul 2025
Viewed by 301
Abstract
Background/Objectives: Epilepsy affects approximately 50 million people worldwide, with antiepileptic drugs (AEDs) remaining the cornerstone of treatment. Due to their narrow therapeutic windows, AEDs are ideal candidates for therapeutic drug monitoring (TDM). Oral fluid is increasingly considered a viable alternative to blood and [...] Read more.
Background/Objectives: Epilepsy affects approximately 50 million people worldwide, with antiepileptic drugs (AEDs) remaining the cornerstone of treatment. Due to their narrow therapeutic windows, AEDs are ideal candidates for therapeutic drug monitoring (TDM). Oral fluid is increasingly considered a viable alternative to blood and urine, as it reflects the free (active) concentration of many AEDs. Its non-invasive collection, which does not require trained personnel, makes it particularly suitable for TDM in paediatric and geriatric populations. However, as samples are often stored for extended periods before analysis, analyte stability becomes a critical concern. This study aimed to evaluate the stability of four commonly used AEDs in dried saliva spot (DSS) samples. Methods: Phenobarbital, phenytoin, carbamazepine, and carbamazepine-10,11-epoxide were analysed in oral fluid samples collected via spitting and stored as DSSs. Quantification was performed using high-performance liquid chromatography with diode array detection (HPLC-DAD). Design of experiments tools were used to assess the effects of preservatives, storage temperatures, light exposure, and storage durations on analyte stability. Results: Optimal conditions were refrigeration in the dark, with a low concentration of ascorbic acid as preservative. Samples at 10 µg/mL remained stable for 14 days longer than those without preservative or reported in previous studies. Unexpectedly, at 0.5 µg/mL, analytes in samples without preservative showed greater stability. Conclusions: To our knowledge, this is the first study combining DSS and HPLC-DAD to assess the stability of these AEDs in oral fluid, providing valuable insights for non-invasive TDM strategies and supporting the feasibility of saliva-based monitoring in clinical settings. Full article
Show Figures

Graphical abstract

21 pages, 4209 KiB  
Article
The Upregulation of L1CAM by SVHRSP Mitigates Neuron Damage, Spontaneous Seizures, and Cognitive Dysfunction in a Kainic Acid-Induced Rat Model of Epilepsy
by Zhen Li, Biying Ge, Haoqi Li, Chunyao Huang, Yunhan Ji, Melitta Schachner, Shengming Yin, Sheng Li and Jie Zhao
Biomolecules 2025, 15(7), 1032; https://doi.org/10.3390/biom15071032 - 17 Jul 2025
Viewed by 473
Abstract
Temporal lobe epilepsy (TLE) is a common drug-resistant form of epilepsy, often accompanied by cognitive and emotional disturbances, highlighting the urgent need for novel therapies. Scorpion Venom Heat-Resistant Synthetic Peptide (SVHRSP), isolated and synthetically derived from scorpion venom, has shown anti-epileptic and neuroprotective [...] Read more.
Temporal lobe epilepsy (TLE) is a common drug-resistant form of epilepsy, often accompanied by cognitive and emotional disturbances, highlighting the urgent need for novel therapies. Scorpion Venom Heat-Resistant Synthetic Peptide (SVHRSP), isolated and synthetically derived from scorpion venom, has shown anti-epileptic and neuroprotective potential. This study evaluated the anti-epileptic effects of SVHRSP in a kainic acid (KA)-induced TLE rat model. Our results demonstrated that SVHRSP (0.81 mg/kg/day) reduced the frequency and severity of spontaneous seizures. Behavioral tests showed improved cognitive performance in the novel object recognition, object location, and T-maze tasks, as well as reduced anxiety-like behavior in the open-field test. Moreover, SVHRSP mitigated hippocampal neuronal loss and glial activation. Transcriptomic analysis indicated that SVHRSP upregulates genes involved in adhesion molecule-triggered and axon guidance pathways. Western blotting and immunofluorescence further confirmed that SVHRSP restored dendritic (MAP2), axonal (NFL), and synaptic (PSD95) marker expression, elevated the functionally important L1CAM fragment (L1-70), and increased myelin basic protein-induced serine protease activity responsible for L1-70 generation. Blockade of L1CAM expression diminished the neuroprotective effects of SVHRSP, suggesting a critical role for L1CAM-mediated synapse functions. This study is the first to reveal the therapeutic potential of SVHRSP in TLE via L1CAM-associated mechanisms. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

19 pages, 2355 KiB  
Article
Multistage Molecular Simulations, Design, Synthesis, and Anticonvulsant Evaluation of 2-(Isoindolin-2-yl) Esters of Aromatic Amino Acids Targeting GABAA Receptors via π-π Stacking
by Santiago González-Periañez, Fabiola Hernández-Rosas, Carlos Alberto López-Rosas, Fernando Rafael Ramos-Morales, Jorge Iván Zurutuza-Lorméndez, Rosa Virginia García-Rodríguez, José Luís Olivares-Romero, Rodrigo Rafael Ramos-Hernández, Ivette Bravo-Espinoza, Abraham Vidal-Limon and Tushar Janardan Pawar
Int. J. Mol. Sci. 2025, 26(14), 6780; https://doi.org/10.3390/ijms26146780 - 15 Jul 2025
Viewed by 461
Abstract
Epilepsy remains a widespread neurological disorder, with approximately 30% of patients showing resistance to current antiepileptic therapies. To address this unmet need, a series of 2-(isoindolin-2-yl) esters derived from natural amino acids were designed and evaluated for their potential interaction with the GABA [...] Read more.
Epilepsy remains a widespread neurological disorder, with approximately 30% of patients showing resistance to current antiepileptic therapies. To address this unmet need, a series of 2-(isoindolin-2-yl) esters derived from natural amino acids were designed and evaluated for their potential interaction with the GABAA receptor. Sixteen derivatives were subjected to in silico assessments, including physicochemical and ADMET profiling, virtual screening–ensemble docking, and enhanced sampling molecular dynamics simulations (metadynamics calculations). Among these, compounds derived from the aromatic amino acids, phenylalanine, tyrosine, tryptophan, and histidine, exhibited superior predicted affinity, attributed to π–π stacking interactions at the benzodiazepine binding site of the GABAA receptor. Based on computational performance, the tyrosine and tryptophan derivatives were synthesized and further assessed in vivo using the pentylenetetrazole-induced seizure model in zebrafish (Danio rerio). The tryptophan derivative produced comparable behavioral seizure reduction to the reference drug diazepam at the tested concentrations. The results implies that aromatic amino acid-derived isoindoline esters are promising anticonvulsant candidates and support the hypothesis that π–π interactions may play a critical role in modulating GABAA receptor binding affinity. Full article
(This article belongs to the Special Issue Computational Studies in Drug Design and Discovery)
Show Figures

Graphical abstract

25 pages, 1696 KiB  
Review
Illustrating the Pathogenesis and Therapeutic Approaches of Epilepsy by Targeting Angiogenesis, Inflammation, and Oxidative Stress
by Lucy Mohapatra, Deepak Mishra, Alok Shiomurti Tripathi, Sambit Kumar Parida and Narahari N. Palei
Neuroglia 2025, 6(3), 26; https://doi.org/10.3390/neuroglia6030026 - 11 Jul 2025
Viewed by 465
Abstract
Epilepsy is one of the most prevalent chronic medical conditions that really can affect individuals at any age. A broader study of the pathogenesis of the epileptic condition will probably serve as the cornerstone for the development of new antiepileptic remedies that aim [...] Read more.
Epilepsy is one of the most prevalent chronic medical conditions that really can affect individuals at any age. A broader study of the pathogenesis of the epileptic condition will probably serve as the cornerstone for the development of new antiepileptic remedies that aim to treat epilepsy symptomatically as well as prevent the epileptogenesis process or regulate its progression. Cellular changes in the brain include oxidative stress, neuroinflammation, inflammatory cell invasion, angiogenesis, and extracellular matrix associated changes. The extensive molecular profiling of epileptogenic tissue has revealed details on the molecular pathways that might start and sustain cellular changes. In healthy brains, epilepsy develops because of vascular disruptions, such as blood–brain barrier permeability and pathologic angiogenesis. Key inflammatory mediators are elevated during epileptic seizures, increasing the risk of recurrent seizures and resulting in secondary brain injury. Prostaglandins and cytokines are well-known inflammatory mediators in the brain and, after seizures, their production is increased. These inflammatory mediators may serve as therapeutic targets in the clinical research of novel antiepileptic medications. The functions of inflammatory mediators in epileptogenesis are covered in this review. Oxidative stress also plays a significant role in the pathogenesis of various neurological disorders, specifically epilepsy. Antioxidant therapy seems to be crucial for treating epileptic patients, as it prevents neuronal death by scavenging excess free radicals formed during the epileptic condition. The significance of antioxidants in mitochondrial dysfunction prevention and the relationship between oxidative stress and inflammation in epileptic patients are the major sections covered in this review. Full article
Show Figures

Figure 1

18 pages, 14857 KiB  
Article
Valproic Acid Promotes the Differentiation of Satellite Glial Cells into Neurons via the pH-Dependent Pathway
by Dongyan Wang, Wenrun Kang, Jinhui Zhang, Jianwei Xu, Ruyi Wang, Xiangdan Xiao, Chao Wei, Wenfeng Yu and Junhou Lu
Biomolecules 2025, 15(7), 986; https://doi.org/10.3390/biom15070986 - 11 Jul 2025
Viewed by 355
Abstract
Valproic acid (VPA) is a widely prescribed antiepileptic agent whose teratogenic potential has been recognized. In recent years, VPA has been shown to promote neuronal regeneration; however, the exact molecular mechanisms are not fully understood. This study elucidates the pH-dependent pathway through which [...] Read more.
Valproic acid (VPA) is a widely prescribed antiepileptic agent whose teratogenic potential has been recognized. In recent years, VPA has been shown to promote neuronal regeneration; however, the exact molecular mechanisms are not fully understood. This study elucidates the pH-dependent pathway through which VPA promotes the differentiation of satellite glial cells (SGCs) into neurons. We observed sustained intracellular pH elevation during the VPA-induced neural differentiation of SGCs, and the modulation of intracellular pH was shown to influence this differentiation process. Then, we found that VPA regulates intracellular pH through NHE1 (sodium–hydrogen exchanger 1), and that the pharmacological inhibition of NHE1 not only attenuated intracellular pH elevation but also substantially impaired VPA-induced neuronal differentiation. Finally, our results showed that the elevated intracellular pH promoted the neuronal differentiation of SGCs by activating β-catenin signaling. These findings provide novel insights into the mechanisms of VPA-induced neurogenesis, advancing our understanding of its pharmacological profile and informing its potential therapeutic application in neuronal regeneration strategies. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

25 pages, 1374 KiB  
Article
Investigation into Safety Profiles of Antiepileptic Drugs and Identification of Predictors for Serious Adverse Events: Insights from National Pharmacovigilance Data
by Soo Hyeon Lee, Dae Hyeon Sung, Euna Cho, Jeongah Min, Sooyoung Shin and Yeo Jin Choi
Pharmaceuticals 2025, 18(7), 1013; https://doi.org/10.3390/ph18071013 - 7 Jul 2025
Viewed by 405
Abstract
Backgrounds/Objectives: This study aims to comprehensively characterize the prevalence and severity of antiepileptic drug (AED)-induced adverse drug events (ADEs) and to identify predictors strongly associated with serious adverse events (SAEs) in both general and geriatric populations. Methods: This cross-sectional study investigated AED-related ADEs [...] Read more.
Backgrounds/Objectives: This study aims to comprehensively characterize the prevalence and severity of antiepileptic drug (AED)-induced adverse drug events (ADEs) and to identify predictors strongly associated with serious adverse events (SAEs) in both general and geriatric populations. Methods: This cross-sectional study investigated AED-related ADEs reported to the KIDS KAERS DB from January 2014 to December 2023. Disproportionality analysis was performed to detect the association between reported SAEs, and multiple logistic regression was conducted to identify predictors associated with SAEs. Cox’s proportional hazard model was utilized to assess ADE duration in elderly patients aged 60 years and older. Results: More than 50% of 36,809 AED-related ADEs were reported in elderly patients aged 60 years and older, and the prevalence of SAEs was 3.78%. ADEs associated with endocrine disorders had the highest likelihood of SAEs being reported (ROR 15.30), followed by hematological disorders. The predictors associated with elevated SAE risks in the elderly were male sex (OR 1.91; 95% CI 1.62–2.27), aging (OR 1.17; 95% CI 1.04–1.31), and certain AEDs. However, the concomitant administration of acid-suppressive therapy (AST) and opioids was associated with a lower risk of SAEs in the elderly population. Elderly patients not receiving concomitant AST were less likely to experience prolonged ADE duration (HR 0.28, 95% CI 0.07–1.15); however, no substantial differences in ADE duration were observed with the concomitant use of opioids. Conclusions: This study implies significant variability in the frequency, severity, and duration of ADEs depending on the type of AEDs, patient demographics, and concomitant medication use. Full article
Show Figures

Graphical abstract

16 pages, 250 KiB  
Article
Electrocardiographic Markers of Sudden Unexpected Death Risk in Pediatric Epilepsy: A Comparative Study of Generalized and Focal Seizures
by Serra Karaca, Doruk Özbingöl, Pelin Karaca Özer, Mustafa Lütfi Yavuz, Kemal Nişli, Kazım Öztarhan, Çisem Duman Kayar, Ceyda Öney and Edibe Pempegül Yıldız
Diagnostics 2025, 15(13), 1622; https://doi.org/10.3390/diagnostics15131622 - 26 Jun 2025
Viewed by 452
Abstract
Background/Objectives: Sudden unexpected death in epilepsy (SUDEP) is a major cause of mortality in pediatric epilepsy. Cardiac arrhythmias, possibly reflected by electrocardiographic (ECG) abnormalities, are thought to contribute significantly to SUDEP risk. This study aimed to evaluate ECG indices associated with an [...] Read more.
Background/Objectives: Sudden unexpected death in epilepsy (SUDEP) is a major cause of mortality in pediatric epilepsy. Cardiac arrhythmias, possibly reflected by electrocardiographic (ECG) abnormalities, are thought to contribute significantly to SUDEP risk. This study aimed to evaluate ECG indices associated with an increased risk of both atrial and ventricular arrhythmias and sudden cardiac death in pediatric patients with generalized and focal seizures, excluding those with underlying channelopathies. Materials and Methods: Pediatric patients aged 0–18 years with generalized or focal epilepsy followed at our center between October 2024 and April 2025 were enrolled. Comprehensive cardiac evaluations, including echocardiography and 12-lead ECG, were conducted. Patients with channelopathies, structural heart defects, or significant congenital heart disease were excluded. ECG parameters—QT dispersion (QT Disp), corrected QT interval (QTc), QTc dispersion (QTc Disp), P-wave dispersion (P Disp), and T peak-T end interval (Tp-e)—were analyzed across epilepsy subgroups and compared to healthy controls. Effects of antiepileptic drug (AED) use and gender were also assessed. Results: A total of 151 participants were included (generalized: n = 51; focal: n = 50; controls: n = 50). QTc and Tp-e intervals were prolonged in both epilepsy groups compared to controls (p = 0.001 and p = 0.036, respectively), however, they fell within the conventional parameters. AED use was associated with further prolongation of QTc (p = 0.035) and Tp-e (p = 0.037), these metrics were similarly found to be within the established normative boundaries. Phenobarbital and lamotrigine users showed the longest QTc, albeit not statistically significant. Males with generalized seizures had longer maximum P-wave duration (P Max) than females (p = 0.009). A moderate correlation was found between Tp-e and QTc (r = 0.557, p = 0.001). Conclusions: Although there are findings in our study that may suggest a relationship between SUDEP and arrhythmia according to electrocardiographic markers associated with arrhythmia risk, larger and prospective studies with long-term follow-up are needed in the future. Full article
(This article belongs to the Special Issue Diagnostic Imaging in Neurological Diseases)
14 pages, 3140 KiB  
Article
Human Stem Cell-Derived Neural Organoids for the Discovery of Antiseizure Agents
by Hamed Salmanzadeh and Robert F. Halliwell
Receptors 2025, 4(3), 12; https://doi.org/10.3390/receptors4030012 - 20 Jun 2025
Viewed by 661
Abstract
Background: The development of cerebral organoids created from human pluripotent stem cells in 3D culture may greatly improve the discovery of neuropsychiatric medicines. Methods: In the current study we differentiated neural organoids from a human pluripotent stem cell line in vitro, [...] Read more.
Background: The development of cerebral organoids created from human pluripotent stem cells in 3D culture may greatly improve the discovery of neuropsychiatric medicines. Methods: In the current study we differentiated neural organoids from a human pluripotent stem cell line in vitro, recorded the development of neurophysiological activity using multielectrode arrays (MEAs) and characterized the neuropharmacology of synaptic signaling over 8 months in vitro. In addition, we investigated the ability of these organoids to display epileptiform activity in response to a convulsant agent and the effects of antiseizure medicines to inhibit this abnormal activity. Results: Single and bursts of action potentials from individual neurons and network bursts were recorded on the MEA plates and significantly increased and became more complex from week 7 to week 30, consistent with neural network formation. Neural spiking was reduced by the Na channel blocker tetrodotoxin but increased by the inhibitor of KV7 potassium channels XE991, confirming the involvement of voltage-gated sodium and potassium channels in action potential activity. The GABA antagonists bicuculline and picrotoxin each increased the spike rate, consistent with inhibitory synaptic signaling. In contrast, the glutamate receptor antagonist kynurenic acid inhibited the spike rate, consistent with excitatory synaptic transmission in the organoids. The convulsant 4-aminopyridine increased spiking, bursts and synchronized firing, consistent with epileptiform activity in vitro. The anticonvulsants carbamazepine, ethosuximide and diazepam each inhibited this epileptiform neural activity. Conclusions: Together, our data demonstrate that neural organoids form inhibitory and excitatory synaptic circuits, generate epileptiform activity in response to a convulsant agent and detect the antiseizure properties of diverse antiepileptic drugs, supporting their value in drug discovery. Full article
Show Figures

Figure 1

6 pages, 180 KiB  
Case Report
Brainstem Encephalitis: An Atypical Manifestation of Zika Virus Infection in Brazil
by Mateus Santana do Rosário, Pedro Antonio Pereira de Jesus, Italo Andrade Barbosa Lima, Marcos Vinicius Oliveira Francisco, Cleiton Silva Santos, Lorena Cunha Martins, Luiza Vieira Luedy Trindade, Ricardo Khouri and Isadora Cristina de Siqueira
Viruses 2025, 17(6), 864; https://doi.org/10.3390/v17060864 - 18 Jun 2025
Viewed by 467
Abstract
Zika virus (ZIKV), once considered a relatively benign pathogen, has emerged as a cause of severe neurological complications, including Guillain-Barrè Syndrome and encephalitis. This report presents the case of a 21-year-old Brazilian woman who initially presented with fever, rash, and arthralgia. Seven days [...] Read more.
Zika virus (ZIKV), once considered a relatively benign pathogen, has emerged as a cause of severe neurological complications, including Guillain-Barrè Syndrome and encephalitis. This report presents the case of a 21-year-old Brazilian woman who initially presented with fever, rash, and arthralgia. Seven days later, she developed confusion, speech impairment, and gait disturbance. Following a tonic-clonic seizure, neurological examination revealed dysphonia, dysarthria and facial palsy, suggestive of brainstem involvement. ZIKV infection was detected by positive IgM serology and a plaque reduction neutralization test. The patient was treated with corticosteroids and antiepileptic drugs, leading to substantial clinical improvement, and discharge after 25 days of hospitalization. This case underscores the neuroinvasive potential of ZIKV and highlights the importance of early recognition and management of atypical neurological manifestations. It also reinforces the need to consider ZIKV in the differential diagnosis of encephalitis, particularly in endemic regions, and contributes to the growing understanding of ZIKV neurotropism and possible therapeutic approaches for severe presentations. Full article
(This article belongs to the Special Issue Mosquito-Borne Encephalitis Viruses)
9 pages, 227 KiB  
Case Report
Mixed Segmental Uniparental Disomy of Chromosome 15q11-q1 Coexists with Homozygous Variant in GNB5 Gene in Child with Prader–Willi and Lodder–Merla Syndrome
by Tomasz Marczyk, Maria Libura, Beata Wikiera, Magdalena Góralska, Agnieszka Pollak, Marlena Telenga, Rafał Płoski and Robert Śmigiel
Genes 2025, 16(6), 689; https://doi.org/10.3390/genes16060689 - 5 Jun 2025
Viewed by 687
Abstract
Background: Uniparental disomy (UPD) refers to the condition in which both chromosomes (or part of chromosome) of a pair are inherited from the same parent. There are two types of UPD: uniparental isodisomy (both chromosomes inherited from one parent are identical copies) and [...] Read more.
Background: Uniparental disomy (UPD) refers to the condition in which both chromosomes (or part of chromosome) of a pair are inherited from the same parent. There are two types of UPD: uniparental isodisomy (both chromosomes inherited from one parent are identical copies) and uniparental heterodisomy (two different chromosomes are inherited from one parent). UPD presents two primary developmental risks: recessive trait inheritance or an imprinting disorder. These risks may coexist, leading to an ultra-rare comorbidity. Managing the comorbidities associated with rare diseases presents unique clinical challenges. Results: The existence of such phenomena is evidenced by our case report of a boy who was ultimately diagnosed with two rare diseases: Prader–Willi syndrome (PWS), due to the maternal uniparental disomy of chromosome 15 (UPD), and autosomal recessive Lodder–Merla type 1 syndrome, linked to a novel pathogenic variant in the G protein subunit β 5 (GNB5) gene, as detailed in this paper. Conclusions: An unusual or severe phenotype in a patient diagnosed with PWS should invariably prompt the consideration of a comorbid genetic disease attributable to genes located in the PWS critical region of chromosome 15q, or elsewhere on chromosome 15. In cases of epileptic encephalopathy with cardiac arrhythmia, prompt consultation with a cardiologist and comprehensive genetic testing are essential to reduce the risks associated with untreated arrhythmia and ensure the provision of appropriate and safe anti-epileptic therapy. The presented case provides further support for the hypothesis that uniparental disomy may serve as an underlying cause of Lodder–Merla syndrome. This underscores the significance of comprehensive genetic testing, encompassing parental testing and familial cascade testing (in selected cases where there is consanguinity, or the likelihood of close common ancestral background between partners) to establish the recurrence risk. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Back to TopTop