Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (407)

Search Parameters:
Keywords = anti-liver fibrosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2024 KiB  
Article
Oxy210 Inhibits Hepatic Expression of Senescence-Associated, Pro-Fibrotic, and Pro-Inflammatory Genes in Mice During Development of MASH and in Hepatocytes In Vitro
by Feng Wang, Simon T. Hui, Frank Stappenbeck, Dorota Kaminska, Aldons J. Lusis and Farhad Parhami
Cells 2025, 14(15), 1191; https://doi.org/10.3390/cells14151191 - 2 Aug 2025
Viewed by 308
Abstract
Background: Senescence, a state of permanent cell cycle arrest, is a complex cellular phenomenon closely affiliated with age-related diseases and pathological fibrosis. Cellular senescence is now recognized as a significant contributor to organ fibrosis, largely driven by transforming growth factor beta (TGF-β) signaling, [...] Read more.
Background: Senescence, a state of permanent cell cycle arrest, is a complex cellular phenomenon closely affiliated with age-related diseases and pathological fibrosis. Cellular senescence is now recognized as a significant contributor to organ fibrosis, largely driven by transforming growth factor beta (TGF-β) signaling, such as in metabolic dysfunction-associated steatohepatitis (MASH), idiopathic pulmonary fibrosis (IPF), chronic kidney disease (CKD), and myocardial fibrosis, which can lead to heart failure, cystic fibrosis, and fibrosis in pancreatic tumors, to name a few. MASH is a progressive inflammatory and fibrotic liver condition that has reached pandemic proportions, now considered the largest non-viral contributor to the need for liver transplantation. Methods: We previously studied Oxy210, an anti-fibrotic and anti-inflammatory, orally bioavailable, oxysterol-based drug candidate for MASH, using APOE*3-Leiden.CETP mice, a humanized hyperlipidemic mouse model that closely recapitulates the hallmarks of human MASH. In this model, treatment of mice with Oxy210 for 16 weeks caused significant amelioration of the disease, evidenced by reduced hepatic inflammation, lipid deposition, and fibrosis, atherosclerosis and adipose tissue inflammation. Results: Here we demonstrate increased hepatic expression of senescence-associated genes and senescence-associated secretory phenotype (SASP), correlated with the expression of pro-fibrotic and pro-inflammatorygenes in these mice during the development of MASH that are significantly inhibited by Oxy210. Using the HepG2 human hepatocyte cell line, we demonstrate the induced expression of senescent-associated genes and SASP by TGF-β and inhibition by Oxy210. Conclusions: These findings further support the potential therapeutic effects of Oxy210 mediated in part through inhibition of senescence-driven hepatic fibrosis and inflammation in MASH and perhaps in other senescence-associated fibrotic diseases. Full article
Show Figures

Graphical abstract

23 pages, 4624 KiB  
Review
Farnesoid X Receptor (FXR) Agonists and Protein Kinase Regulation in NAFLD and NASH: Mechanisms and Therapeutic Potential
by Ayan Saha, Emily Wood, Luna Omeragic, Maya Minkara, Kethain Marma, Shipan Das Gupta and Jannatul Ferdoush
Kinases Phosphatases 2025, 3(3), 16; https://doi.org/10.3390/kinasesphosphatases3030016 - 11 Jul 2025
Viewed by 766
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common metabolic condition characterized by hepatic lipid deposits, insulin resistance, and inflammation which may progress to non-alcoholic steatohepatitis (NASH) and fibrosis. Protein kinases play an important role in NAFLD development by regulating metabolic and inflammatory pathways. [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is a common metabolic condition characterized by hepatic lipid deposits, insulin resistance, and inflammation which may progress to non-alcoholic steatohepatitis (NASH) and fibrosis. Protein kinases play an important role in NAFLD development by regulating metabolic and inflammatory pathways. Mitogen-activated protein kinases (MAPKs), protein kinase C (PKC), AMP-activated protein kinase (AMPK), phosphoinositide 3-kinase (PI3K)/AKT, and mechanistic target of rapamycin (mTOR) are all involved in NAFLD and NASH progression. Emerging evidence indicates that Farnesoid X Receptor (FXR) agonists have therapeutic potential by modulating bile acid metabolism, lipid balance, and inflammatory responses. This review examines the mechanistic interplay between FXR agonists and important protein kinases in NAFLD and NASH. FXR agonists activate AMPK, which promotes fatty acid oxidation and reduces hepatic steatosis. They also regulate MAPK signaling, which reduces c-Jun NH2-terminal kinase (JNK)- and p38 MAPK-mediated inflammation. Furthermore, FXR agonists activate the PI3K/AKT pathway, enhancing insulin sensitivity and modulating mTOR signaling to reduce hepatic fibrosis. Clinical studies in NAFLD/NASH indicate that FXR agonists confer metabolic and anti-inflammatory benefits, although optimizing efficacy and minimizing adverse effects remain challenging. Future studies should focus on combination therapies targeting FXR alongside specific kinases to improve therapeutic outcomes. This review highlights the potential of FXR agonists to modulate protein kinase signaling, opening new avenues for targeted NAFLD/NASH therapy. Full article
Show Figures

Figure 1

18 pages, 3135 KiB  
Article
Obesity-Associated NAFLD Coexists with a Chronic Inflammatory Kidney Condition That Is Partially Mitigated by Short-Term Oral Metformin
by Amod Sharma, Reza Hakkak, Neriman Gokden, Neelam Joshi and Nirmala Parajuli
Nutrients 2025, 17(13), 2115; https://doi.org/10.3390/nu17132115 - 26 Jun 2025
Viewed by 612
Abstract
Background/Objectives: Chronic kidney disease (CKD) is twice as prevalent in individuals with obesity-associated non-alcoholic fatty liver disease (Ob-NAFLD), highlighting the need to determine the link and mechanisms of kidney injury as well as explore therapies. Metformin, a first-line treatment for type 2 diabetes, [...] Read more.
Background/Objectives: Chronic kidney disease (CKD) is twice as prevalent in individuals with obesity-associated non-alcoholic fatty liver disease (Ob-NAFLD), highlighting the need to determine the link and mechanisms of kidney injury as well as explore therapies. Metformin, a first-line treatment for type 2 diabetes, shows promise in managing NAFLD, but its renal benefits in Ob-NAFLD remain unclear. This study investigates the impact of Ob-NAFLD on kidney injury and assesses the potential protective effects of metformin. Methods: Five-week-old female Zucker rats (obese fa/fa and lean Fa/Fa) were fed an AIN-93G diet for 8 weeks to induce Ob-NAFLD, then fed the diet with Metformin for 10 weeks. Kidneys were collected for histopathological and biochemical analyses. Results: Histopathological studies showed increased tubular injury, mesangial matrix expansion, and fibrosis in kidneys with Ob-NAFLD compared to lean control (LC) rats. Immunohistochemistry further revealed an elevated macrophage and neutrophil infiltration and increased levels of nitrotyrosine and p22phox in Ob-NAFLD kidneys. Furthermore, Ob-NAFLD rat kidneys showed upregulation of TNF-α and CCL2 genes and increased levels of caspase-3 (total and cleaved). Interestingly, metformin treatment significantly decreased TNF-α mRNA and blunted nitrotyrosine levels, and modestly reduced immune cell infiltration in Ob-NAFLD. Conclusions: These findings indicate that Ob-NAFLD promotes CKD as evidenced by tubular injury, oxidative stress, inflammation, and fibrosis. While short-term metformin treatment showed anti-oxidative and anti-inflammatory effects in Ob-NAFLD, its impact on structural kidney damage was limited, highlighting the need for longer treatment or alternative therapeutics such as oxidant scavengers and anti-inflammatory drugs to effectively mitigate renal pathologies. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Figure 1

22 pages, 107288 KiB  
Article
Integration of Pseudotargeted Metabolomics and Microbiomics Reveals That Hugan Tablets Ameliorate NASH with Liver Fibrosis in Mice by Modulating Bile Acid Metabolism via the Gut Microbiome
by Wenran Dong, Ying Wang, Huajinzi Li, Huilin Ma, Yingxi Gong, Gan Luo and Xiaoyan Gao
Metabolites 2025, 15(7), 433; https://doi.org/10.3390/metabo15070433 - 24 Jun 2025
Viewed by 623
Abstract
Background/Objectives: Non-alcoholic steatohepatitis (NASH) carries a high risk of developing hepatic fibrosis. Hugan tablets (HGTs), a traditional Chinese medicine, have exhibited potent anti-hepatic fibrosis effects, though the underlying mechanisms remain unclarified. This study aims to assess the efficacy of HGTs against NASH-related [...] Read more.
Background/Objectives: Non-alcoholic steatohepatitis (NASH) carries a high risk of developing hepatic fibrosis. Hugan tablets (HGTs), a traditional Chinese medicine, have exhibited potent anti-hepatic fibrosis effects, though the underlying mechanisms remain unclarified. This study aims to assess the efficacy of HGTs against NASH-related liver fibrosis in mice and investigate the underlying mechanisms via the integration of pseudotargeted metabolomics and microbiomics. Methods: C57BL/6 mice were fed a choline-deficient, ethionine-supplemented (CDE) diet and treated with HGTs. The therapeutic effects of HGTs in CDE mice were assessed. The underlying mechanism of HGTs was investigated by the integration of microbiomics, a pseudo-sterile model, untargeted followed by pseudotargeted metabolomics, and molecular docking. Results: HGTs alleviated NASH-related hepatic fibrosis in CDE mice and restored the composition of the gut microbiota. The depletion of the gut microbiota eliminated the anti-hepatic fibrosis effect of HGTs. HGTs increased intestinal 7-ketolithocholic acid and tauroursodeoxycholic acid via 7α/β-hydroxysteroid dehydrogenase (7α/βHSDH), while reducing deoxycholic acid (DCA) and taurodeoxycholic acid through inhibition of bile acid 7α-dehydratase (BaiE), leading to lower hepatic DCA. Six intestinal components of HGTs interacted with 7αHSDH, 7βHSDH, and BaiE, which are expressed in the bacterial genera altered by HGTs. Conclusions: HGTs alleviate NASH fibrosis by reshaping the gut microbiome, acting on microbial BA-metabolizing enzymes, and regulating the BA metabolism in the liver and gut. Full article
(This article belongs to the Section Microbiology and Ecological Metabolomics)
Show Figures

Figure 1

14 pages, 3481 KiB  
Article
Effect of 3-HBI on Liver Fibrosis via the TGF-β/SMAD2/3 Pathway on the Human Hepatic Stellate Cell Model
by Chavisa Khongpiroon, Watunyoo Buakaew, Paul J. Brindley, Saranyapin Potikanond, Krai Daowtak, Yordhathai Thongsri, Pachuenp Potup and Kanchana Usuwanthim
Int. J. Mol. Sci. 2025, 26(13), 6022; https://doi.org/10.3390/ijms26136022 - 23 Jun 2025
Viewed by 802
Abstract
Liver fibrosis can progress to irreversible cirrhosis if the underlying causes remain, and this can in turn develop into hepatocellular carcinoma (HCC). Despite these adverse outcomes, liver fibrosis can be reversed. Consequently, research has focused on substances that target liver fibrosis to prevent [...] Read more.
Liver fibrosis can progress to irreversible cirrhosis if the underlying causes remain, and this can in turn develop into hepatocellular carcinoma (HCC). Despite these adverse outcomes, liver fibrosis can be reversed. Consequently, research has focused on substances that target liver fibrosis to prevent or reduce its progression. This study deals with the potential anti-fibrotic action of 3-hydroxy-β-ionone (3-HBI), a bioactive compound found in many plants. To assess the putative effects of 3-HBI, pro-inflammatory cytokine production and the expression of genes and proteins associated with the TGF-β/SMAD2/3 pathway were monitored following exposure to 3-HBI. Initially, cells of the human hepatic stellate cell line LX-2 were treated with TGF-β1 to simulate fibrogenesis. Following the exposure of activated LX-2 cells to 3-HBI, the production of pro-fibrotic substances was significantly reduced. Molecular docking studies revealed that 3-HBI exhibited a high binding affinity for key proteins in the TGF-β/SMAD2/3 pathway. Analyses using qRT-PCR and Western blotting revealed that 3-HBI suppressed the expression of TIMP1, MMP2, MMP9, COL1A1, COL4A1, SMAD2, SMAD3, SMAD4, MMP2, and ACTA2. Together, these findings demonstrate that 3-HBI inhibited the activation of LX-2 cells and significantly reduced the proinflammatory responses triggered by TGF-β1. Accordingly, we confirmed the noteworthy potential of 3-HBI as a therapeutic agent to prevent and treat liver fibrosis, effected by its modulation of the TGF-β/SMAD2/3 signaling pathway. Full article
(This article belongs to the Special Issue Molecular Advances in Liver Fibrosis)
Show Figures

Figure 1

37 pages, 3650 KiB  
Review
Regulatory Mechanisms of Phenolic Acids in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Review
by Shengyu Zhang, Congcong Shen, Han Di, Yanhong Wang and Feng Guan
Antioxidants 2025, 14(7), 760; https://doi.org/10.3390/antiox14070760 - 20 Jun 2025
Viewed by 975
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), the leading chronic liver condition globally, constitutes a major etiological contributor to hepatocellular carcinoma (HCC). Its transition from steatosis to non-alcoholic steatohepatitis (NASH) involves progressive fibrosis, ultimately predisposing to HCC. The pathogenesis involves multifactorial interactions among genetic [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD), the leading chronic liver condition globally, constitutes a major etiological contributor to hepatocellular carcinoma (HCC). Its transition from steatosis to non-alcoholic steatohepatitis (NASH) involves progressive fibrosis, ultimately predisposing to HCC. The pathogenesis involves multifactorial interactions among genetic susceptibility, environmental triggers, and obesity-associated metabolic dysregulation. Crucially, the gut–liver axis serves as a pivotal regulatory mechanism in MASLD development. Current therapeutic strategies prioritize lifestyle interventions for metabolic syndrome management, while pharmacological options remain limited, underscoring the need for new therapies. Emerging evidence highlights phenolic acids—bioactive phytochemicals from medicinal plants—as multi-target agents against MASLD. These compounds demonstrate therapeutic efficacy via antioxidative modulation of stress, anti-inflammatory activity, and gut–liver axis regulation. This review synthesizes recent advances in natural phenolic acids for MASLD intervention, emphasizing their potential as preventive and therapeutic candidates. Their multimodal mechanisms may inform innovative drug development paradigms targeting MASLD pathogenesis. Full article
Show Figures

Figure 1

10 pages, 220 KiB  
Article
Clinical Characterization of Autoimmune Hepatic Involvement in Sjogren’s Disease: A Retrospective Cohort Study in Korea
by Youngjae Park, Jennifer Jooha Lee, Ji Hyeon Ju, Wan-Uk Kim, Sung-Hwan Park and Seung-Ki Kwok
Int. J. Mol. Sci. 2025, 26(12), 5734; https://doi.org/10.3390/ijms26125734 - 15 Jun 2025
Viewed by 558
Abstract
Sjogren’s disease (SjD) is a systemic autoimmune disease primarily affecting the exocrine glands. Systemic manifestations, including hepatic involvement, are increasingly recognized. This study aimed to delineate the clinical features and associated factors of autoimmune hepatic involvement in SjD. A retrospective analysis was conducted [...] Read more.
Sjogren’s disease (SjD) is a systemic autoimmune disease primarily affecting the exocrine glands. Systemic manifestations, including hepatic involvement, are increasingly recognized. This study aimed to delineate the clinical features and associated factors of autoimmune hepatic involvement in SjD. A retrospective analysis was conducted on patients diagnosed with SjD at Seoul St. Mary’s Hospital over the past 10 years. Autoimmune hepatic involvement was defined by fulfilling diagnostic criteria for autoimmune hepatitis (AIH) or primary biliary cholangitis (PBC). Clinical, serological, and demographic data were obtained from medical records. Among 1119 patients with SjD, 51 (4.6%) had autoimmune hepatic involvement. AIH (64.7%) was the most common type, followed by PBC (27.5%) and overlapping disease (7.8%). Compared to those without hepatic involvement, affected patients were older at diagnosis (p = 0.003) and showed higher frequencies of thrombocytopenia, splenomegaly, anti-centromere antibody (ACA), and elevated antinuclear antibody titers as measured by indirect immunofluorescence (IFI-HEp-2) (all p < 0.001). Multivariable analysis identified splenomegaly, elevated IFI-HEp-2 titer, and ACA positivity as independent factors associated with hepatic involvement. Most patients responded well to immunosuppressive therapy, with only a small proportion (15.7%) progressing to liver fibrosis. Autoimmune hepatic involvement is relatively uncommon but clinically meaningful in patients with SjD. Full article
26 pages, 1150 KiB  
Review
Therapeutic Potential of Ellagic Acid in Liver Diseases
by Karolina Wojtunik-Kulesza, Przemysław Niziński, Anna Krajewska, Tomasz Oniszczuk, Maciej Combrzyński and Anna Oniszczuk
Molecules 2025, 30(12), 2596; https://doi.org/10.3390/molecules30122596 - 15 Jun 2025
Viewed by 1154
Abstract
Ellagic acid (EA) is a natural polyphenol found in various fruits, nuts, and mushrooms. It exhibits a variety of biological activities, including potent antioxidant, anti-inflammatory, anti-obesity, and neuroprotective properties. EA exerts hepatoprotective effects through multiple mechanisms, including (1) scavenging reactive oxygen species (ROS) [...] Read more.
Ellagic acid (EA) is a natural polyphenol found in various fruits, nuts, and mushrooms. It exhibits a variety of biological activities, including potent antioxidant, anti-inflammatory, anti-obesity, and neuroprotective properties. EA exerts hepatoprotective effects through multiple mechanisms, including (1) scavenging reactive oxygen species (ROS) and enhancing endogenous antioxidant defenses (e.g., by activating Nrf2/ARE), (2) modulating inflammatory signaling pathways (e.g., inhibiting NF-κB, TNF-α, and IL-6), and (3) regulating apoptosis (e.g., downregulating the Bax/Bcl-2 ratio) and fibrosis (e.g., inhibiting TGF-β/Smad signaling). Despite its promising preclinical efficacy, the clinical applicability of EA is currently limited by its poor bioavailability. This could potentially be overcome by advanced delivery systems or by directly administering its active microbial metabolites, known as urolithins. EA and its derivatives also modulate the gut microbiota, promoting the growth of beneficial species and reducing gut permeability and hepatic inflammation. Preliminary clinical trials and other emerging evidence suggest that EA may reduce liver inflammation, oxidative stress, and metabolic dysregulation. However, more extensive human studies are needed to confirm its efficacy and safety in managing liver disease. This review highlights the therapeutic potential of EA in the treatment of liver diseases, particularly metabolic-dysfunction-associated steatotic liver disease (MASLD). Full article
Show Figures

Figure 1

17 pages, 1642 KiB  
Review
Defenestration of Liver Sinusoidal Endothelial Cells: The Trigger of Liver Fibrosis
by Juntao Zhou, Jianqiao Wang, Lijuan Zhang, Chengliang Zhang and Cheng Tian
Pharmaceuticals 2025, 18(6), 893; https://doi.org/10.3390/ph18060893 - 14 Jun 2025
Viewed by 807
Abstract
Liver fibrosis is a common pathological manifestation of various chronic liver diseases, distinguished by the excessive accumulation of the extracellular matrix. If unresolved, liver fibrosis can progress to cirrhosis or hepatocellular carcinoma. Fenestrae are important structures of liver sinusoidal endothelial cells (LSECs) regulating [...] Read more.
Liver fibrosis is a common pathological manifestation of various chronic liver diseases, distinguished by the excessive accumulation of the extracellular matrix. If unresolved, liver fibrosis can progress to cirrhosis or hepatocellular carcinoma. Fenestrae are important structures of liver sinusoidal endothelial cells (LSECs) regulating hepatic substance exchange, immune response and hemodynamics. The loss of this structure is usually accompanied by dysfunction of LSECs, which disrupts normal liver physiology by impairing hepatic substance exchange, compromising liver microcirculation, and activating hepatic stellate cells (HSCs). This cascade of events ultimately contributes to the onset and development of liver fibrosis. Oxidative stress, impairment of the NO signaling pathway, actin–myosin complex remodeling and pathological angiogenesis are considered to be the main mechanisms underlying LSEC defenestration. Recently, research on the treatment of LSEC defenestration has made notable progress, and findings suggest a potential value in the application of anti-fibrotic therapies. This article expounds the important correlation between defenestration of LSECs and liver fibrosis, while also reviews therapeutic agents and approaches targeting this pathological process. Full article
(This article belongs to the Special Issue Pharmacotherapy of Liver Fibrosis and Hepatitis: Recent Advances)
Show Figures

Graphical abstract

16 pages, 599 KiB  
Review
Disease-Specific Novel Role of Growth Differentiation Factor 15 in Organ Fibrosis
by Harshal Sawant and Alip Borthakur
Int. J. Mol. Sci. 2025, 26(12), 5713; https://doi.org/10.3390/ijms26125713 - 14 Jun 2025
Viewed by 775
Abstract
Growth Differentiation Factor 15 (GDF15), also known as non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) or macrophage inhibitory cytokine 1 (MIC-1), is a stress- and inflammation-induced cytokine distantly related to the TGF-β superfamily. Its highly elevated levels showed close association with various pathological conditions, making [...] Read more.
Growth Differentiation Factor 15 (GDF15), also known as non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) or macrophage inhibitory cytokine 1 (MIC-1), is a stress- and inflammation-induced cytokine distantly related to the TGF-β superfamily. Its highly elevated levels showed close association with various pathological conditions, making it an emerging biomarker of disease prognosis. However, most GDF15-mediated effects under normal physiology and various pathological conditions are poorly understood. This is partly because the only known GDF15 receptor is exclusively localized in the brain, and how GDF15 functions peripherally is currently unknown. Mounting recent evidence has shown GDF15’s critical role in fibrosis in multiple organs, such as the liver, lung, and kidney. Evidence further suggests that it can either contribute to fibrosis by promoting inflammation and fibroblast activation or confer protective effects by modulating the immune response and mitigating fibrosis severity. Thus, the exact role of GDF15 in fibrosis can vary depending on the organ involved and the specific disease context. For example, increased GDF15 in idiopathic pulmonary fibrosis (IPF) promotes fibrosis via fibroblast activation and collagen deposition. Conversely, GDF15 might have a protective role in liver fibrosis, with decreased GDF15 levels causing increased fibrosis severity, while GDF15 treatment ameliorates fibrosis. Due to its close association with fibrosis, GDF15 is being investigated as a potential biomarker for disease severity and monitoring treatment response. However, further research unraveling its mechanisms of action is needed to explore the potential of GDF15 as a therapeutic target for treating fibrosis, either by modulating its expression or utilizing its immunomodulatory properties. This review marshals the limited studies addressing the recently appreciated differential role of GDF15 in regulating the fibrotic process in different organs. The review also discusses the aspects of further research needed to highlight GDF 15 as a novel predictor and therapeutic target for fibrosis in different organs. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

20 pages, 2657 KiB  
Article
Terpinen-4-ol Targets HIF-1α/TGF-β1/TNF-α Axis to Attenuate Ethanol-Induced Hepatotoxicity: Network Pharmacology and In Vitro Validation
by Tariq G. Alsahli, Maryam Khalid, Muhammad Nasir Hayat Malik and Saud O. Alshammari
Medicina 2025, 61(6), 1048; https://doi.org/10.3390/medicina61061048 - 6 Jun 2025
Viewed by 641
Abstract
Background and Objective: Alcoholic liver disease (ALD) is a major health burden caused by chronic alcohol consumption, leading to oxidative stress, inflammation, and fibrosis. Current treatments are limited, highlighting the need for novel therapeutic agents. This study investigated the hepatoprotective effects of ‘Terpinen-4-ol [...] Read more.
Background and Objective: Alcoholic liver disease (ALD) is a major health burden caused by chronic alcohol consumption, leading to oxidative stress, inflammation, and fibrosis. Current treatments are limited, highlighting the need for novel therapeutic agents. This study investigated the hepatoprotective effects of ‘Terpinen-4-ol (T4OL)’, a natural monoterpene from tea tree oil, against ethanol-induced liver injury, focusing on its molecular and cellular mechanisms. Materials and Methods: Network pharmacology and molecular docking were employed to predict T4OL’s interaction with ALD-associated targets. Human HepG2 cells were used to validate the in silico findings. Cells were exposed to ethanol (8%) prior to treatment with T4OL or silymarin (SIL), and cytotoxicity was assessed through MTT, crystal violet, and trypan blue assays. Moreover, ELISA and qPCR were conducted to evaluate antioxidant, inflammatory, and fibrotic markers. Results: Network pharmacology analysis suggested that T4OL exerts its hepatoprotective effects by suppressing inflammatory and fibrotic mediators (HIF-1α, TGF-β1, and TNF-α). Docking studies also exhibited a strong binding affinity of T4OL to key ALD targets, with docking scores comparable to SIL. In addition, T4OL (13–1300 µM) dose-dependently protected HepG2 cells from ethanol-induced damage, restoring viability by up to 80% at 650 µM. It significantly elevated antioxidant levels (GSH by 2.5-fold, SOD by 1.8-fold) and suppressed pro-inflammatory and fibrotic markers (IL-6, COL1A1, TIMP-1) by 40–60%. At higher concentrations (650–1300 µM), T4OL outperformed SIL in cytoprotection and anti-fibrotic effects. Conclusions: T4OL mitigates ethanol-induced liver injury by targeting oxidative stress, inflammation, and fibrosis pathways, demonstrating superior efficacy to SIL at optimal doses. Its multi-target action supports its potential as a therapeutic candidate for ALD. Full article
Show Figures

Graphical abstract

15 pages, 3055 KiB  
Article
Ivermectin Attenuates Methotrexate-Induced Liver Fibrosis by Reducing TGF-β and Syndecan-1 Expression
by Cengiz Dibekoğlu, Kubilay Kemertaş, Hatice Aygun and Oytun Erbaş
Medicina 2025, 61(6), 1036; https://doi.org/10.3390/medicina61061036 - 4 Jun 2025
Viewed by 748
Abstract
Background and Objectives: Methotrexate (MTX) is widely used in clinical settings but is often associated with hepatotoxic side effects, including oxidative stress, inflammation, and fibrosis. Novel therapeutic strategies are needed to mitigate MTX-induced liver injury. This study aimed to evaluate the hepatoprotective effects [...] Read more.
Background and Objectives: Methotrexate (MTX) is widely used in clinical settings but is often associated with hepatotoxic side effects, including oxidative stress, inflammation, and fibrosis. Novel therapeutic strategies are needed to mitigate MTX-induced liver injury. This study aimed to evaluate the hepatoprotective effects of ivermectin in a rat model of MTX-induced hepatotoxicity. Materials and Methods: Thirty male Wistar albino rats were randomly divided into three groups (n = 10 per group): control (saline only), MTX (single intraperitoneal dose of 20 mg/kg MTX), and MTX + ivermectin (20 mg/kg MTX + 0.5 mg/kg/day ivermectin for 10 days). At the end of the experiment, blood and liver tissues were collected for histopathological and biochemical evaluation, including ALT, malondialdehyde (MDA), TGF-β, and syndecan-1 levels. Results: MTX administration significantly increased plasma and hepatic MDA, TGF-β, syndecan-1, and ALT levels, alongside histological evidence of necrosis, fibrosis, and inflammatory infiltration (p < 0.001 vs. control). Ivermectin treatment significantly attenuated these alterations, with reductions in MDA (both plasma and liver), TGF-β, syndecan-1, and ALT levels (p < 0.05–0.001 vs. MTX). Histological scoring also revealed improved liver architecture and decreased necrosis, fibrosis, and leukocyte infiltration. Conclusions: Ivermectin demonstrates a strong hepatoprotective effect against MTX-induced liver injury, likely through antioxidant, anti-inflammatory, antifibrotic, and endothelial-protective mechanisms. These findings support the repurposing potential of ivermectin in mitigating drug-induced hepatic damage. Full article
(This article belongs to the Section Gastroenterology & Hepatology)
Show Figures

Figure 1

23 pages, 643 KiB  
Article
The Prognostic Value of Tumor Fibrosis in Patients Undergoing Hepatic Metastasectomy for Colorectal Cancer: A Retrospective Pooled Analysis
by Xavier Hernández-Yagüe, Santiago López-Ben, Joan Martínez-Sancho, Maria Rosa Ortíz-Durán, Margarida Casellas-Robert, Ana Aula-Olivar, Cristina Meléndez-Muñoz, Maria Buxó Pujolràs, Bernardo Queralt-Merino and Joan Figueras i Felip
Cancers 2025, 17(11), 1870; https://doi.org/10.3390/cancers17111870 - 3 Jun 2025
Viewed by 517
Abstract
Background: Colorectal cancer (CRC) is a significant global health burden, with liver metastases representing a key prognostic factor. Neoadjuvant chemotherapy (NAC) has improved outcomes in metastatic CRC (mCRC), and tumor regression is commonly assessed using the Rubbia–Brandt classification. The Poultsides classification defines ≥40% [...] Read more.
Background: Colorectal cancer (CRC) is a significant global health burden, with liver metastases representing a key prognostic factor. Neoadjuvant chemotherapy (NAC) has improved outcomes in metastatic CRC (mCRC), and tumor regression is commonly assessed using the Rubbia–Brandt classification. The Poultsides classification defines ≥40% fibrosis as an independent prognostic factor, particularly in patients treated with cetuximab (45.71%). However, the predictive value of this threshold remains under debate, warranting further investigation. Methods: This study evaluates the extent of fibrosis (≥40%) induced by NAC plus anti-epidermal growth factor receptor (anti-EGFR) therapy vs. NAC plus anti-vascular endothelial growth factor (anti-VEGF) therapy in mCRC patients. It also examines the prognostic relevance of the Poultsides and Rubbia–Brandt classifications. A total of 108 patients undergoing liver resection for CRC metastases were included. Statistical analyses were performed using SPSS 28.0 version and R software 4.5 version to compare fibrosis rates and survival outcomes. Results: From September 2005 to January 2023, 108 patients were analyzed: 54 received chemotherapy plus anti-EGFR (Cohort 1), and 54 received chemotherapy plus anti-VEGF (Cohort 2). Fibrosis was significantly higher in Cohort 1 (median 40.0%, IQR: 25.4–53.2) than in Cohort 2 (median 20.6%, IQR: 8.07–36.9), p < 0.001. Overall survival was similar between both cohorts (p = 0.96), with a median follow-up of 41.6 months. Conclusions: Anti-EGFR therapy is associated with greater fibrosis than anti-VEGF, despite similar survival outcomes. The Poultsides classification may be a useful prognostic tool for resected liver metastases in mCRC. Full article
(This article belongs to the Section Clinical Research of Cancer)
Show Figures

Figure 1

17 pages, 4737 KiB  
Article
Soluble Siglec-9 Improves Intestinal Barrier Function in a Mouse Model of Metabolic Dysfunction-Associated Steatohepatitis
by Hisanori Muto, Fumitaka Mizuno, Takashi Honda, Shinya Yokoyama, Taku Tanaka, Kenta Yamamoto, Takanori Ito, Norihiro Imai, Yoji Ishizu, Kiyoshi Sakai, Hideharu Hibi, Masatoshi Ishigami and Hiroki Kawashima
Metabolites 2025, 15(6), 366; https://doi.org/10.3390/metabo15060366 - 30 May 2025
Viewed by 726
Abstract
Background/Objectives: Metabolic dysfunction-associated steatohepatitis (MASH), characterized by liver inflammation, fibrosis, and fat accumulation, can develop into cirrhosis and liver cancer. Despite its increasing prevalence worldwide, there are few established therapies for advanced MASH. We previously demonstrated that stem cells from human exfoliated deciduous [...] Read more.
Background/Objectives: Metabolic dysfunction-associated steatohepatitis (MASH), characterized by liver inflammation, fibrosis, and fat accumulation, can develop into cirrhosis and liver cancer. Despite its increasing prevalence worldwide, there are few established therapies for advanced MASH. We previously demonstrated that stem cells from human exfoliated deciduous teeth-conditioned media (SHED-CM) exerted therapeutic effects in a MASH mouse model. The gut–liver axis is thought to be associated with liver disease progression, and soluble Siglec-9 (sSiglec-9), an immunoinhibitory receptor, is a key protein in SHED-CM that induces anti-inflammatory macrophages and has intestinal epithelial protective effects. Therefore, we evaluated sSiglec-9’s role in intestinal barrier protection in MASH mice. Methods: We evaluated sSiglec-9 effects on intestinal barrier function using in vitro Caco-2 cell monolayers injured by TNF-α and IFN-γ. For the MASH mouse model, male C57BL/6J mice were given a Western diet and high-sugar solution orally; to induce liver injury, CCl4 was intraperitoneally administered for 12 weeks. Mice were treated weekly with 10 ng/g sSiglec-9 or vehicle. Intestinal permeability was assessed by blood 4 kDa FITC-dextran concentration, and intestinal transcriptomes and liver histology were analyzed. Results: sSiglec-9 decreased intestinal permeability and liver inflammation in MASH mice. sSiglec-9 and SHED-CM reduced 4 kDa FITC-dextran permeability in injured Caco-2 cells, and sSiglec-9 significantly reduced intestinal permeability and modulated expression of 34 intestinal genes. The NAFLD Activity Score indicated significantly reduced inflammation following sSiglec-9 treatment. Conclusions: sSiglec-9 may protect intestinal barrier function by mitigating mucosal inflammation. sSiglec-9 treatment may represent a novel therapeutic approach for MASH via gut–liver axis modulation. Full article
(This article belongs to the Special Issue Liver Injury and Regeneration—Metabolic Research)
Show Figures

Figure 1

30 pages, 7740 KiB  
Article
Protective Effects of Lotus Seedpod Extract on Hepatic Lipid and Glucose Metabolism via AMPK-Associated Mechanisms in a Mouse Model of Metabolic Syndrome and Oleic Acid-Induced HepG2 Cells
by Hui-Hsuan Lin, Pei-Rong Yu, Chiao-Yun Tseng, Ming-Shih Lee and Jing-Hsien Chen
Antioxidants 2025, 14(5), 595; https://doi.org/10.3390/antiox14050595 - 16 May 2025
Viewed by 889
Abstract
Metabolic syndrome (MetS) poses considerable toxicological risks due to its association with an increased likelihood of metabolic dysfunction-associated steatotic liver disease (MASLD), and is characterized by hypertension, hyperglycemia, dyslipidemia, and obesity. This study aimed to investigate the therapeutic potential of flavonoid-rich lotus seedpod [...] Read more.
Metabolic syndrome (MetS) poses considerable toxicological risks due to its association with an increased likelihood of metabolic dysfunction-associated steatotic liver disease (MASLD), and is characterized by hypertension, hyperglycemia, dyslipidemia, and obesity. This study aimed to investigate the therapeutic potential of flavonoid-rich lotus seedpod extract (LSE) in alleviating MetS and MASLD-related hepatic disturbances. In vivo, mice subjected to a high-fat diet (HFD) and streptozotocin (STZ) injection were supplemented with LSE or simvastatin for 6 weeks. Obesity indicators included body weight and epididymal fat, while insulin resistance was measured by fasting serum glucose, serum insulin, homeostasis model assessment–insulin resistance index (HOMA-IR), and oral glucose tolerance (OGTT). Also, the levels of serum lipid profiles and blood pressure were evaluated. Adipokines, proinflammatory cytokines, liver fat droplets, and peri-portal fibrosis were analyzed to clarify the mechanism of MetS. LSE significantly reduced the HFD/STZ-induced MetS markers better than simvastatin, as demonstrated by hypoglycemic, hypolipidemic, antioxidant, and anti-inflammatory effects. In vitro, LSE improved oleic acid (OA)-triggered phenotypes of MASLD in hepatocyte HepG2 cells by reducing lipid accumulation and enhancing cell viability. This effect might be mediated through proteins involved in lipogenesis that are downregulated by adenosine monophosphate-activated protein kinase (AMPK). In addition, LSE reduced reactive oxygen species (ROS) generation and glycogen levels, as demonstrated by enhancing insulin signaling involving reducing insulin receptor substrate-1 (IRS-1) Ser307 phosphorylation and increasing glycogen synthase kinase 3 beta (GSK3β) and protein kinase B (PKB) expression. These benefits were dependent on AMPK activation, as confirmed by the AMPK inhibitor compound C. These results indicate that LSE exhibits protective effects against MetS-caused toxicological disturbances in hepatic carbohydrate and lipid metabolism, potentially contributing to its efficacy in preventing MASLD or MetS. Full article
(This article belongs to the Special Issue Oxidative Stress and Liver Disease)
Show Figures

Graphical abstract

Back to TopTop