Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = anti-filarial compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
54 pages, 4287 KiB  
Review
Ethnobotany, Phytochemistry, and Biological Activity of Extracts and Non-Volatile Compounds from Lantana camara L. and Semisynthetic Derivatives—An Updated Review
by Jorge Ramírez, Chabaco Armijos, Nelson Espinosa-Ortega, Leydy Nathaly Castillo and Giovanni Vidari
Molecules 2025, 30(4), 851; https://doi.org/10.3390/molecules30040851 - 12 Feb 2025
Cited by 2 | Viewed by 1938
Abstract
Lantana camara L., commonly known as pigeon berry, is a herbaceous plant of growing scientific interest due to the high medicinal value. In fact, despite being categorized as an invasive species, it has been used for a long time to treat different diseases [...] Read more.
Lantana camara L., commonly known as pigeon berry, is a herbaceous plant of growing scientific interest due to the high medicinal value. In fact, despite being categorized as an invasive species, it has been used for a long time to treat different diseases thanks to the many biological activities. Triterpenes, flavonoids, phenylpropanoids, and iridoid glycosides are the bioactive compounds naturally occurring in L. camara that have demonstrated anticancer, antifilarial, nematocidal, antibacterial, insecticidal, antileishmanial, antifungal, anti-inflammatory, and antioxidant properties. The aim of this review is to update the information concerning the chemistry and biological activity of L. camara extracts and their constituents, including semisynthetic derivatives, revising the literature until June 2024. We believe that the data reported in this review clearly demonstrate the importance of the plant as a promising source of medicines and will therefore stimulate further investigations. Full article
Show Figures

Graphical abstract

21 pages, 2578 KiB  
Article
HRAMS Proteomics Insights on the Anti-Filarial Effect of Ocimum sanctum: Implications in Phytochemical-Based Drug-Targeting and Designing
by Ayushi Mishra, Vipin Kumar, Sunil Kumar, HariOm Singh and Anchal Singh
Proteomes 2025, 13(1), 2; https://doi.org/10.3390/proteomes13010002 - 27 Dec 2024
Viewed by 1440
Abstract
Lymphatic filariasis (LF) continues to impact 657 million individuals worldwide, resulting in lifelong and chronic impairment. The prevalent anti-filarial medications—DEC, albendazole, and ivermectin—exhibit limited adulticidal efficacy. Despite ongoing LF eradication programs, novel therapeutic strategies are essential for effective control. This study examines the [...] Read more.
Lymphatic filariasis (LF) continues to impact 657 million individuals worldwide, resulting in lifelong and chronic impairment. The prevalent anti-filarial medications—DEC, albendazole, and ivermectin—exhibit limited adulticidal efficacy. Despite ongoing LF eradication programs, novel therapeutic strategies are essential for effective control. This study examines the mechanism of action of Ocimum sanctum on the filarial parasites Setaria cervi via a synergistic biochemical and proteomics methodology. The ethanolic extract of Ocimum sanctum (EOS) demonstrated potential anti-filarial action in the MTT reduction experiment, with an LC50 value of 197.24 µg/mL. After EOS treatment, an elevation in lipid peroxidation (51.92%), protein carbonylation (48.99%), and NADPH oxidase (88.88%) activity, along with a reduction in glutathione (GSH) (−39.23%), glutathione reductase (GR) (−60.17%), and glutathione S transferase (GST) (−50.48%) activity, was observed. The 2D gel electrophoresis identified 20 decreased and 11 increased protein spots in the EOS-treated parasites relative to the control group. Additionally, in drug docking analysis, the EOS bioactive substances ursolic acid, rutin, and rosmarinic acid show a significant binding affinity with the principal differentially expressed proteins. This paper demonstrates, for the first time, that the anti-filarial efficacy of EOS is primarily facilitated by its impact on energy metabolism, antioxidant mechanisms, and stress response systems of the parasites. Full article
Show Figures

Figure 1

17 pages, 7298 KiB  
Article
Michael Adduct of Sulfonamide Chalcone Targets Folate Metabolism in Brugia Malayi Parasite
by Priyanka S. Bhoj, Sandeep P. Bahekar, Shambhavi Chowdhary, Namdev S. Togre, Nitin P. Amdare, Lingaraj Jena, Kalyan Goswami and Hemant Chandak
Biomedicines 2023, 11(3), 723; https://doi.org/10.3390/biomedicines11030723 - 27 Feb 2023
Cited by 1 | Viewed by 1715
Abstract
A series of Michael adducts of malononitrile and sulfonamide chalcones were synthesized, characterized, and evaluated for their antifilarial activity. Out of 14 compounds, N-(4-(4,4-dicyano-3-p-tolylbutanoyl)phenyl)benzenesulfonamide showed favorable drug-likeness properties with marked antifilarial effects at micro-molar dosages. Apoptosis in Brugia malayi microfilariae was confirmed by [...] Read more.
A series of Michael adducts of malononitrile and sulfonamide chalcones were synthesized, characterized, and evaluated for their antifilarial activity. Out of 14 compounds, N-(4-(4,4-dicyano-3-p-tolylbutanoyl)phenyl)benzenesulfonamide showed favorable drug-likeness properties with marked antifilarial effects at micro-molar dosages. Apoptosis in Brugia malayi microfilariae was confirmed by EB/AO staining, MTT assay, and cytoplasmic cytochrome c ELISA. Since chalcone and folate synthesis pathways share the same substrate, we hypothesize a structural analogy-based inhibition of folate metabolism by this compound. Molecular docking against a pre-validated BmDHFR protein showed more favorable thermodynamic parameters than a positive control, epicatechin-3-gallate. The compound significantly suppressed the DHFR activity in a parasite extract in vitro. Our hypothesis is also supported by a significant reversal of DHFR inhibition by folate addition, which indicated a plausible mechanism of competitive inhibition. These results demonstrate that targeting filarial folate metabolism through DHFR with consequent apoptosis induction might be rewarding for therapeutic intervention. This study reveals a novel rationale of the structural analogy-based competitive inhibition of DHFR by Michael adducts of sulfonamide chalcones. Full article
Show Figures

Figure 1

24 pages, 2547 KiB  
Review
Pharmacotherapeutics Applications and Chemistry of Chalcone Derivatives
by Jagjit Singh Dhaliwal, Said Moshawih, Khang Wen Goh, Mei Jun Loy, Md. Sanower Hossain, Andi Hermansyah, Vijay Kotra, Nurolaini Kifli, Hui Poh Goh, Sachinjeet Kaur Sodhi Dhaliwal, Hayati Yassin and Long Chiau Ming
Molecules 2022, 27(20), 7062; https://doi.org/10.3390/molecules27207062 - 19 Oct 2022
Cited by 78 | Viewed by 9563
Abstract
Chalcones have been well examined in the extant literature and demonstrated antibacterial, antifungal, anti-inflammatory, and anticancer properties. A detailed evaluation of the purported health benefits of chalcone and its derivatives, including molecular mechanisms of pharmacological activities, can be further explored. Therefore, this review [...] Read more.
Chalcones have been well examined in the extant literature and demonstrated antibacterial, antifungal, anti-inflammatory, and anticancer properties. A detailed evaluation of the purported health benefits of chalcone and its derivatives, including molecular mechanisms of pharmacological activities, can be further explored. Therefore, this review aimed to describe the main characteristics of chalcone and its derivatives, including their method synthesis and pharmacotherapeutics applications with molecular mechanisms. The presence of the reactive α,β-unsaturated system in the chalcone’s rings showed different potential pharmacological properties, including inhibitory activity on enzymes, anticancer, anti-inflammatory, antibacterial, antifungal, antimalarial, antiprotozoal, and anti-filarial activity. Changing the structure by adding substituent groups to the aromatic ring can increase potency, reduce toxicity, and broaden pharmacological action. This report also summarized the potential health benefits of chalcone derivatives, particularly antimicrobial activity. We found that several chalcone compounds can inhibit diverse targets of antibiotic-resistance development pathways; therefore, they overcome resistance, and bacteria become susceptible to antibacterial compounds. A few chalcone compounds were more active than conventional antibiotics, like vancomycin and tetracycline. On another note, a series of pyran-fused chalcones and trichalcones can block the NF-B signaling complement system implicated in inflammation, and several compounds demonstrated more potent lipoxygenase inhibition than NSAIDs, such as indomethacin. This report integrated discussion from the domains of medicinal chemistry, organic synthesis, and diverse pharmacological applications, particularly for the development of new anti-infective agents that could be a useful reference for pharmaceutical scientists. Full article
Show Figures

Figure 1

19 pages, 2508 KiB  
Article
Alkaloids with Anti-Onchocercal Activity from Voacanga africana Stapf (Apocynaceae): Identification and Molecular Modeling
by Smith B. Babiaka, Conrad V. Simoben, Kennedy O. Abuga, James A. Mbah, Rajshekhar Karpoormath, Dennis Ongarora, Hannington Mugo, Elvis Monya, Fidelis Cho-Ngwa, Wolfgang Sippl, Edric Joel Loveridge and Fidele Ntie-Kang
Molecules 2021, 26(1), 70; https://doi.org/10.3390/molecules26010070 - 25 Dec 2020
Cited by 14 | Viewed by 4327
Abstract
A new iboga-vobasine-type isomeric bisindole alkaloid named voacamine A (1), along with eight known compounds—voacangine (2), voacristine (3), coronaridine (4), tabernanthine (5), iboxygaine (6), voacamine (7), voacorine (8 [...] Read more.
A new iboga-vobasine-type isomeric bisindole alkaloid named voacamine A (1), along with eight known compounds—voacangine (2), voacristine (3), coronaridine (4), tabernanthine (5), iboxygaine (6), voacamine (7), voacorine (8) and conoduramine (9)—were isolated from the stem bark of Voacangaafricana. The structures of the compounds were determined by comprehensive spectroscopic analyses. Compounds 1, 2, 3, 4, 6, 7 and 8 were found to inhibit the motility of both the microfilariae (Mf) and adult male worms of Onchocerca ochengi, in a dose-dependent manner, but were only moderately active on the adult female worms upon biochemical assessment at 30 μM drug concentrations. The IC50 values of the isolates are 2.49–5.49 µM for microfilariae and 3.45–17.87 µM for adult males. Homology modeling was used to generate a 3D model of the O. ochengi thioredoxin reductase target and docking simulation, followed by molecular dynamics and binding free energy calculations attempted to offer an explanation of the anti-onchocercal structure–activity relationship (SAR) of the isolated compounds. These alkaloids are new potential leads for the development of antifilarial drugs. The results of this study validate the traditional use of V. africana in the treatment of human onchocerciasis. Full article
(This article belongs to the Special Issue Structure–Activity Relationships (SAR) of Natural Products)
Show Figures

Figure 1

26 pages, 3229 KiB  
Review
Advances in Antiwolbachial Drug Discovery for Treatment of Parasitic Filarial Worm Infections
by Malina A. Bakowski and Case W. McNamara
Trop. Med. Infect. Dis. 2019, 4(3), 108; https://doi.org/10.3390/tropicalmed4030108 - 18 Jul 2019
Cited by 28 | Viewed by 6391
Abstract
The intracellular bacteria now known as Wolbachia were first described in filarial worms in the 1970s, but the idea of Wolbachia being used as a macrofilaricidal target did not gain wide attention until the early 2000s, with research in filariae suggesting the requirement [...] Read more.
The intracellular bacteria now known as Wolbachia were first described in filarial worms in the 1970s, but the idea of Wolbachia being used as a macrofilaricidal target did not gain wide attention until the early 2000s, with research in filariae suggesting the requirement of worms for the endosymbiont. This new-found interest prompted the eventual organization of the Anti-Wolbachia Consortium (A-WOL) at the Liverpool School of Tropical Medicine, who, among others have been active in the field of antiwolbachial drug discovery to treat filarial infections. Clinical proof of concept studies using doxycycline demonstrated the utility of the antiwolbachial therapy, but efficacious treatments were of long duration and not safe for all infected. With the advance of robotics, automation, and high-speed computing, the search for superior antiwolbachials shifted away from smaller studies with a select number of antibiotics to high-throughput screening approaches, centered largely around cell-based phenotypic screens due to the rather limited knowledge about, and tools available to manipulate, this bacterium. A concomitant effort was put towards developing validation approaches and in vivo models supporting drug discovery efforts. In this review, we summarize the strategies behind and outcomes of recent large phenotypic screens published within the last 5 years, hit compound validation approaches and promising candidates with profiles superior to doxycycline, including ones positioned to advance into clinical trials for treatment of filarial worm infections. Full article
(This article belongs to the Special Issue Drug Discovery and Development for Tropical Diseases)
Show Figures

Figure 1

19 pages, 828 KiB  
Article
Anti-Onchocerca and Anti-Caenorhabditis Activity of a Hydro-Alcoholic Extract from the Fruits of Acacia nilotica and Some Proanthocyanidin Derivatives
by Jacqueline Dikti Vildina, Justin Kalmobe, Boursou Djafsia, Thomas J. Schmidt, Eva Liebau and Dieudonne Ndjonka
Molecules 2017, 22(5), 748; https://doi.org/10.3390/molecules22050748 - 6 May 2017
Cited by 27 | Viewed by 6119
Abstract
Acacia nilotica fruits with high tannin content are used in the northern parts of Cameroon as anti-filarial remedies by traditional healers. In this study, the hydro-alcoholic fruit extract (crude extract (CE)) and, one of the main constituents in its most active fractions, (+)-catechin-3- [...] Read more.
Acacia nilotica fruits with high tannin content are used in the northern parts of Cameroon as anti-filarial remedies by traditional healers. In this study, the hydro-alcoholic fruit extract (crude extract (CE)) and, one of the main constituents in its most active fractions, (+)-catechin-3-O-gallate (CG), as well as four related proanthocyanidins, (−)-epicatechin-3-O-gallate (ECG), (+)-gallocatechin (GC), (−)-epigallocatechin (EGC) and (−)-epigallocatechin-3-O-gallate (EGCG), were assessed for their potential in vitro anthelmintic properties against the free-living model organism Caenorhabditis elegans and against the cattle filarial parasite Onchocerca ochengi. Worms were incubated in the presence of different concentrations of fruit extract, fractions and pure compounds. The effects on mortality were monitored after 48 h. The plant extract and all of the pure tested compounds were active against O. ochengi (LC50 ranging from 1.2 to 11.5 µg/mL on males) and C. elegans (LC50 ranging from 33.8 to 350 µg/mL on wild type). While high LC50 were required for the effects of the compounds on C. elegans, very low LC50 were required against O. ochengi. Importantly, tests for acute oral toxicity (lowest dose: 10 mg/kg) in Wistar rats demonstrated that crude extract and pure compounds were non-toxic and safe to use. Additionally, the results of cytotoxicity tests with the Caco-2 cell line (CC50 ranging from 47.1 to 93.2 µg/mL) confirmed the absence of significant toxicity of the crude extract and pure compounds. These results are in good accordance with the use of A. nilotica against nematode infections by traditional healers, herdsmen and pastoralists in Cameroon. Full article
Show Figures

Figure 1

Back to TopTop