Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (156)

Search Parameters:
Keywords = anti-PD-1 monoclonal antibodies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 5649 KiB  
Article
A Semi-Mechanistic Mathematical Model of Immune Tolerance Induction to Support Preclinical Studies of Human Monoclonal Antibodies in Rats
by Paridhi Gupta, Josiah T. Ryman, Vibha Jawa and Bernd Meibohm
Pharmaceutics 2025, 17(7), 845; https://doi.org/10.3390/pharmaceutics17070845 - 27 Jun 2025
Viewed by 328
Abstract
Background/Objectives: The administration of human monoclonal antibodies (mAb) in preclinical pharmacokinetics and toxicology studies often triggers an immune response, leading to the formation of anti-drug antibodies (ADA). To mitigate this effect, we have recently performed and reported on studies using short-term immunosuppressive regimens [...] Read more.
Background/Objectives: The administration of human monoclonal antibodies (mAb) in preclinical pharmacokinetics and toxicology studies often triggers an immune response, leading to the formation of anti-drug antibodies (ADA). To mitigate this effect, we have recently performed and reported on studies using short-term immunosuppressive regimens to induce prolonged immune tolerance towards a human mAb, erenumab, in rats. Here, we report on the development of a semi-mechanistic modeling approach that quantitatively integrates pharmacokinetic and immunogenicity assessments from immune tolerance induction studies to provide a framework for the simulation-based evaluation of different immune induction scenarios for the maintenance of prolonged immune tolerance towards human mAbs. Methods: The integrated pharmacokinetic/pharmacodynamic (PK/PD) modeling approach combined a semi-mechanistic model of the adaptive immune system to predict ADA formation kinetics with a population pharmacokinetic model to assess the impact of the time course of the ADA magnitude on the PK of erenumab in rats. Model-derived erenumab concentration–time profiles served as input for a quantitative system pharmacology-style semi-mechanistic model of the adaptive immune system to conceptualize the ADA response as a function of the kinetics of CD4+ T helper cells and T regulatory cells. Results: The model adequately described the observed ADA magnitude–time profiles in all treatment groups and reasonably simulated the kinetics of selected immune cells responsible for ADA formation. It also successfully captured the impact of tacrolimus/sirolimus immunomodulation on ADA formation, demonstrating that the regimen effectively suppressed ADA formations and induced immune tolerance. Conclusions: This work demonstrates the utility of modeling approaches to integrate pharmacokinetic and immunogenicity assessment data for the prospective planning of long-term toxicology studies to support the preclinical development of mAbs. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

14 pages, 1544 KiB  
Brief Report
Impact of Light-Chain Variants on the Expression of Therapeutic Monoclonal Antibodies in HEK293 and CHO Cells
by Alexander Veber, Dennis Lenau, Polyniki Gkragkopoulou, David Kornblüh Bauer, Ingo Focken, Wulf Dirk Leuschner, Christian Beil, Sandra Weil, Ercole Rao and Thomas Langer
Antibodies 2025, 14(3), 53; https://doi.org/10.3390/antib14030053 - 24 Jun 2025
Viewed by 511
Abstract
Recombinantly produced monoclonal antibodies (mabs) belong to the fastest growing class of biotherapeutics. In humans, antibodies are classified into five different classes: IgA, IgD, IgE, IgG and IgM. Most of the therapeutic mabs used in the clinic belong to the IgG class, albeit [...] Read more.
Recombinantly produced monoclonal antibodies (mabs) belong to the fastest growing class of biotherapeutics. In humans, antibodies are classified into five different classes: IgA, IgD, IgE, IgG and IgM. Most of the therapeutic mabs used in the clinic belong to the IgG class, albeit other antibody classes, e.g., IgM, have been evaluated in clinical stages. Antibodies are composed of heavy chains paired with a light chain. In IgM and IgA, an additional chain, the J-chain, is present. Two types of light chains exist in humans: the κ-light chain and the λ-light chain. The κ-light chain predominates in humans and is used in the vast majority of therapeutic IgG. The reason for the preference of the κ-light chain in humans is not known. Our study investigates whether light-chain selection influences the productivity of the clinically validated mabs adalimumab and trastuzumab. Both mabs were expressed as IgG and IgM with a κ- or a λ-light chain in HEK293 cells. Besides comparing the expression levels of the different mabs, we also evaluated whether the passage number of the cell line has an impact on product yield. In addition, the expressions of adalimumab, trastuzumab, an anti-CD38 and an anti-PD-L1-antibody were analyzed in HEK293 and CHO cells when both the κ- and λ-light chains are present. In summary, IgG outperformed IgM variants in expression efficacy, while light-chain selection had minimal impact on the overall expression levels. The yields of all mab variants were higher in fresh cells, despite cell cultures with a high cell passage number having higher cell densities and cell numbers at the time of harvest. The incorporation of a particular light chain occurred at similar rates in HEK293 and CHO cells. Full article
(This article belongs to the Section Antibody Discovery and Engineering)
Show Figures

Figure 1

15 pages, 6775 KiB  
Article
The Combination of CD300c Antibody with PD-1 Blockade Suppresses Tumor Growth and Metastasis by Remodeling the Tumor Microenvironment in Triple-Negative Breast Cancer
by Soyoung Kim, Ik-Hwan Han, Suin Lee, DaeHwan Park, Hyunju Lee, Jongyeob Kim, Joon Kim, Jae-Won Jeon and Hyunsu Bae
Int. J. Mol. Sci. 2025, 26(11), 5045; https://doi.org/10.3390/ijms26115045 - 23 May 2025
Viewed by 557
Abstract
Triple-negative breast cancer (TNBC) is an aggressive cancer characterized by a high risk of recurrence, invasiveness, metastatic potential, and poor prognosis. Tumor-associated macrophages (TAMs), particularly M2-like TAMs, contribute to TNBC progression by promoting an immunosuppressive tumor microenvironment (TME), highlighting the need for TME [...] Read more.
Triple-negative breast cancer (TNBC) is an aggressive cancer characterized by a high risk of recurrence, invasiveness, metastatic potential, and poor prognosis. Tumor-associated macrophages (TAMs), particularly M2-like TAMs, contribute to TNBC progression by promoting an immunosuppressive tumor microenvironment (TME), highlighting the need for TME remodeling. This study aimed to evaluate the therapeutic efficacy of co-administering CL7, a CD300c monoclonal antibody that induces M1 macrophage polarization, and anti-PD-1, an immune checkpoint inhibitor, in TNBC. To establish a TNBC model, 4T1 cells were inoculated into the fourth left mammary gland of mice. CL7 and anti-PD-1 were intravenously administered twice a week. Flow cytometry and RT-PCR were performed to assess the immunotherapeutic effects, and lung metastases were evaluated by the Hematoxylin and Eosin staining of lung tissues. Tumor growth was significantly reduced in the combination treatment group (CL7 and anti-PD-1) compared to both the PBS and monotherapy groups. Additionally, the combination treatment increased M1 macrophages and activated CD8+ T and NK cells in the tumor, while significantly suppressing lung metastases. These findings suggest that the combination of CL7 and anti-PD- therapy has the potential to treat TNBC by remodeling the TME. Full article
(This article belongs to the Special Issue Bioactive Compounds and Their Anticancer Effects)
Show Figures

Figure 1

18 pages, 2073 KiB  
Article
PD-L1-Targeting Nanoparticles for the Treatment of Triple-Negative Breast Cancer: A Preclinical Model
by Wendy K. Nevala, Liyi Geng, Hui Xie, Noah A. Stueven and Svetomir N. Markovic
Int. J. Mol. Sci. 2025, 26(7), 3295; https://doi.org/10.3390/ijms26073295 - 2 Apr 2025
Viewed by 1104
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer. Common treatments following surgical resection include PD-1-targeting checkpoint inhibitors (pembrolizumab), as 20% of tumors are PD-L1 positive with or without systemic chemotherapy. Over the last several years, our laboratory has developed [...] Read more.
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer. Common treatments following surgical resection include PD-1-targeting checkpoint inhibitors (pembrolizumab), as 20% of tumors are PD-L1 positive with or without systemic chemotherapy. Over the last several years, our laboratory has developed nano-immune conjugates (NIC) in which hydrophobic chemotherapy drugs like paclitaxel (PTX) and SN38, the active metabolite of irinotecan, are made water soluble by formulating them into albumin-based nanoparticles (nab) that are hydrophobically linked to various IgG1 monoclonal antibodies, creating an antigen-targetable nano-immune conjugate. To date, we have successfully tested PTX containing NICs linked to either VEGF- or CD20-targeted antibodies in two phase I clinical trials against multiple relapsed ovarian/uterine cancer or non-Hodgkin’s lymphoma, respectively. Herein, we describe a novel NIC created with either PTX or SN38 that is coated with anti-PD-L1-targeting antibodies for the treatment of a preclinical model of TNBC. In vitro testing suggests that the chemotherapy drug and antibody retain their toxicity and ligand binding capability in the context of the NIC. Furthermore, both the PTX and SN-38 NIC demonstrate superior anti-tumor efficacy relative to antibody and chemotherapy drugs alone in a PD-L1 + MDA-MB-231 human TNBC xenograft model, which could translate clinically to patients with TNBC. Full article
(This article belongs to the Special Issue Particles, Vesicles and Small Structures)
Show Figures

Figure 1

18 pages, 3040 KiB  
Article
Preclinical Characterization of Efficacy and Pharmacodynamic Properties of Finotonlimab, a Humanized Anti-PD-1 Monoclonal Antibody
by Yunqi Yao, Xiaoning Yang, Jing Li, Erhong Guo, Huiyu Wang, Chunyun Sun, Zhangyong Hong, Xiao Zhang, Jilei Jia, Rui Wang, Juan Ma, Yaqi Dai, Mingjing Deng, Chulin Yu, Lingling Sun and Liangzhi Xie
Pharmaceuticals 2025, 18(3), 395; https://doi.org/10.3390/ph18030395 - 12 Mar 2025
Viewed by 1346
Abstract
Background/Objectives: Finotonlimab (SCTI10A) is a humanized anti-PD-1 antibody tested in Phase III trials for several solid tumor types. Methods: This study characterized the in vitro and in vivo efficacy, Fc-mediated effector function, and non-clinical PK/PD properties of finotonlimab. Results: The results [...] Read more.
Background/Objectives: Finotonlimab (SCTI10A) is a humanized anti-PD-1 antibody tested in Phase III trials for several solid tumor types. Methods: This study characterized the in vitro and in vivo efficacy, Fc-mediated effector function, and non-clinical PK/PD properties of finotonlimab. Results: The results demonstrated that finotonlimab is effective in stimulating human T cell function in vitro and exhibits marked antitumor efficacy in vivo using both PD-1-humanized and PBMC-reconstructed mouse models. Additionally, finotonlimab exhibited minimal impact on the activation of effector cells via Fc receptor-dependent pathways, potentially facilitating PD-1+ T cell killing. In cynomolgus monkeys, finotonlimab exhibited a nonlinear pharmacokinetic (PK) profile in a dose-dependent manner, and a receptor occupancy rate of approximately 90% was observed at 168 h following a single administration of 1 mg/kg. Finotonlimab’s PK profile (especially Cmax) was better than that of marketed antibodies. Following a 13-week successive administration of finotonlimab, a pharmacodynamic analysis revealed that a sustained mean receptor occupancy of PD-1 molecules on circulating T cells remained at or above 93% for up to 8 weeks, even at a dose of 3 mg/kg, and that there were higher antibody accumulations in different dose groups. Conclusions: Taken together, the preclinical findings are promising and provide the groundwork for evaluating the efficacy and pharmacodynamic characteristics of finotonlimab in clinical trials. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

16 pages, 1517 KiB  
Review
Glycoscience in Advancing PD-1/PD-L1-Axis-Targeted Tumor Immunotherapy
by Qiyue Sun and Senlian Hong
Int. J. Mol. Sci. 2025, 26(3), 1238; https://doi.org/10.3390/ijms26031238 - 31 Jan 2025
Viewed by 2719
Abstract
Immune checkpoint blockade therapy, represented by anti-PD-1/PD-L1 monoclonal antibodies, has significantly changed the immunotherapy landscape. However, the treatment is still limited by unsatisfactory response rates, immune-related adverse effects, and drug resistance. Current studies have established that glycosylation, a common post-translational modification, is crucial [...] Read more.
Immune checkpoint blockade therapy, represented by anti-PD-1/PD-L1 monoclonal antibodies, has significantly changed the immunotherapy landscape. However, the treatment is still limited by unsatisfactory response rates, immune-related adverse effects, and drug resistance. Current studies have established that glycosylation, a common post-translational modification, is crucial in promoting cancer progression and immune invasion. Targeting aberrant glycosylation in cancers presents precision medicine regimens for monitoring cancer progression and developing personalized medicine. Notably, the immune checkpoints PD-1 and PD-L1 are highly glycosylated, which affects PD-1/PD-L1 interaction and the binding of anti-PD-1/PD-L1 monoclonal antibodies. Recent achievements in glycoscience to enhance patient outcomes, referred to as glycotherapy, have underscored their high potency in advancing PD-1/PD-L1 blockade therapies, i.e., glycoengineered antibodies with improved binding toward PD-1/PD-L1, pharmaceutic inhibitors for core fucosylation and sialylation, and synergistic treatment with the antibody–sialidase conjugate. This review briefly introduces the PD-1/PD-L1 axis and glycosylation and highlights the fundamental and applied advances in glycoscience that improve PD-1/PD-L1 immunoblockade therapies. Full article
(This article belongs to the Special Issue The Role of Glycans in Immune Regulation)
Show Figures

Figure 1

19 pages, 614 KiB  
Review
A Canadian Perspective on Systemic Therapy for Recurrent or Metastatic Nasopharyngeal Carcinoma
by Anna Spreafico, Eric Winquist, Cheryl Ho, Brian O’Sullivan, Nathaniel Bouganim, Neil Chua, Sarah Doucette, Lillian L. Siu and Desiree Hao
Curr. Oncol. 2025, 32(1), 48; https://doi.org/10.3390/curroncol32010048 - 17 Jan 2025
Viewed by 2103
Abstract
Although the majority of patients with nasopharyngeal carcinoma (NPC) present with early-stage or locoregional disease that can be treated with definitive radiotherapy, approximately 20% of patients experience disease recurrence, and 15% present with metastatic disease that is not amenable to curative therapy. Management [...] Read more.
Although the majority of patients with nasopharyngeal carcinoma (NPC) present with early-stage or locoregional disease that can be treated with definitive radiotherapy, approximately 20% of patients experience disease recurrence, and 15% present with metastatic disease that is not amenable to curative therapy. Management of patients with recurrent or metastatic (r/m) NPC who are not candidates for local salvage therapy is challenging in Canada, as there is uncertainty in extrapolating evidence that is largely generated from Southeast China to non-endemic regions such as Canada. Currently, treatment options in Canada are limited to chemotherapy regimens that can only achieve short-term response and prolongation of survival. The addition of anti-PD-1 monoclonal antibodies to chemotherapy has been shown to extend progression-free survival in recurrent r/m NPC compared to chemotherapy alone; however, approval of PD-1 inhibitors in Canada has lagged behind other jurisdictions where NPC is non-endemic. This paper reviews the current systemic treatment landscape for r/m NPC in Canada, highlights unmet treatment needs for patients who are not candidates for curative therapy, and discusses the challenges and opportunities that lie in emerging therapies. Full article
(This article belongs to the Section Head and Neck Oncology)
Show Figures

Figure 1

18 pages, 2911 KiB  
Article
Flow Cytometric Assessment of FcγRIIIa-V158F Polymorphisms and NK Cell Mediated ADCC Revealed Reduced NK Cell Functionality in Colorectal Cancer Patients
by Phillip Schiele, Stefan Kolling, Stanislav Rosnev, Charlotte Junkuhn, Anna Luzie Walter, Jobst Christian von Einem, Sebastian Stintzing, Wenzel Schöning, Igor Maximilian Sauer, Dominik Paul Modest, Kathrin Heinrich, Lena Weiss, Volker Heinemann, Lars Bullinger, Marco Frentsch and Il-Kang Na
Cells 2025, 14(1), 32; https://doi.org/10.3390/cells14010032 - 31 Dec 2024
Viewed by 1916
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells is a key mechanism in anti-cancer therapies with monoclonal antibodies, including cetuximab (EGFR-targeting) and avelumab (PDL1-targeting). Fc gamma receptor IIIa (FcγRIIIa) polymorphisms impact ADCC, yet their clinical relevance in NK cell functionality remains debated. We developed [...] Read more.
Antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells is a key mechanism in anti-cancer therapies with monoclonal antibodies, including cetuximab (EGFR-targeting) and avelumab (PDL1-targeting). Fc gamma receptor IIIa (FcγRIIIa) polymorphisms impact ADCC, yet their clinical relevance in NK cell functionality remains debated. We developed two complementary flow cytometry assays: one to predict the FcγRIIIa-V158F polymorphism using a machine learning model, and a 15-color flow cytometry panel to assess antibody-induced NK cell functionality and cancer-immune cell interactions. Samples were collected from healthy donors and metastatic colorectal cancer (mCRC) patients from the FIRE-6-Avelumab phase II study. The machine learning model accurately predicted the FcγRIIIa-V158F polymorphism in 94% of samples. FF homozygous patients showed diminished cetuximab-mediated ADCC compared to VF or VV carriers. In mCRC patients, NK cell dysfunctions were evident as impaired ADCC, decreased CD16 downregulation, and reduced CD137/CD107a induction. Elevated PD1+ NK cell levels, reduced lysis of PDL1-expressing CRC cells and improved NK cell activation in combination with the PDL1-targeting avelumab indicate that the PD1-PDL1 axis contributes to impaired cetuximab-induced NK cell function. Together, these optimized assays effectively identify NK cell dysfunctions in mCRC patients and offer potential for broader application in evaluating NK cell functionality across cancers and therapeutic settings. Full article
(This article belongs to the Special Issue Advances in the Study of Natural Killer (NK) Cells)
Show Figures

Figure 1

29 pages, 9628 KiB  
Review
The Role of YY1 in the Regulation of LAG-3 Expression in CD8 T Cells and Immune Evasion in Cancer: Therapeutic Implications
by Adam Merenstein, Loiy Obeidat, Apostolos Zaravinos and Benjamin Bonavida
Cancers 2025, 17(1), 19; https://doi.org/10.3390/cancers17010019 - 25 Dec 2024
Cited by 4 | Viewed by 1657
Abstract
The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive [...] Read more.
The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive to immune therapeutics. Such treatments resulted in significant clinical responses and the prolongation of survival in a subset of patients. However, not all patients responded to CPIs, due to various mechanisms of immune resistance. One such mechanism is that, in addition to PD-1 expression on CD8 T cells, other inhibitory receptors exist, such as Lymphocyte Activation Gene 3 (LAG-3), T cell Immunoglobulin Mucin 3 (TIM3), and T cell immunoreceptor with Ig and ITIM domains (TIGIT). These inhibitory receptors might be active in the presence of the above approved CPIs. Clearly, it is clinically challenging to block all such inhibitory receptors simultaneously using conventional antibodies. To circumvent this difficulty, we sought to target a potential transcription factor that may be involved in the molecular regulation of more than one inhibitory receptor. The transcription factor Yin Yang1 (YY1) was found to regulate the expression of PD-1, LAG-3, and TIM3. Therefore, we hypothesized that targeting YY1 in CD8 T cells should inhibit the expression of these receptors and, thus, prevent the inactivation of the anti-tumor CD8 T cells by these receptors, by corresponding ligands to tumor cells. This strategy should result in the prevention of immune evasion, leading to the inhibition of tumor growth. In addition, this strategy will be particularly effective in a subset of cancer patients who were unresponsive to approved CPIs. In this review, we discuss the regulation of LAG-3 by YY1 as proof of principle for the potential use of targeting YY1 as an alternative therapeutic approach to preventing the immune evasion of cancer. We present findings on the molecular regulations of both YY1 and LAG-3 expressions, the direct regulation of LAG-3 by YY1, the various approaches to targeting YY1 to evade immune evasion, and their clinical challenges. We also present bioinformatic analyses demonstrating the overexpression of LAG-3, YY1, and PD-L1 in various cancers, their associations with immune infiltrates, and the fact that when LAG-3 is hypermethylated in its promoter region it correlates with a better overall survival. Hence, targeting YY1 in CD8 T cells will result in restoring the anti-tumor immune response and tumor regression. Notably, in addition to the beneficial effects of targeting YY1 in CD8 T cells to inhibit the expression of inhibitory receptors, we also suggest targeting YY1 overexpressed in the tumor cells, which will also inhibit PD-L1 expression and other YY1-associated pro-tumorigenic activities. Full article
(This article belongs to the Special Issue Cancer Immunotherapy in Clinical and Translational Research)
Show Figures

Figure 1

10 pages, 2493 KiB  
Case Report
A Rare Case of a Malignant Proliferating Trichilemmal Tumor: A Molecular Study Harboring Potential Therapeutic Significance and a Review of Literature
by Mokhtar H. Abdelhammed, Hanna Siatecka, A. Hafeez Diwan, Christie J. Finch, Angela D. Haskins, David J. Hernandez and Ya Xu
Dermatopathology 2024, 11(4), 354-363; https://doi.org/10.3390/dermatopathology11040038 - 10 Dec 2024
Cited by 1 | Viewed by 1948
Abstract
Malignant proliferating trichilemmal tumors (MPTTs), arising from the external root sheath of hair follicles, are exceptionally rare, with limited documentation of their genetic alterations. We present a case of a 64-year-old African American woman who initially presented with a gradually enlarging nodule on [...] Read more.
Malignant proliferating trichilemmal tumors (MPTTs), arising from the external root sheath of hair follicles, are exceptionally rare, with limited documentation of their genetic alterations. We present a case of a 64-year-old African American woman who initially presented with a gradually enlarging nodule on her posterior scalp. An initial biopsy at an outside hospital suggested metastatic adenocarcinoma or squamous cell carcinoma (SCC) of an uncertain origin. A subsequent wide local excision revealed a 2.0 cm tumor demonstrating characteristic trichilemmal keratinization, characterized by an abrupt transition from the nucleated epithelium to a laminated keratinized layer, confirming MPTT. Immunohistochemistry demonstrated diffuse p53 expression, patchy CD 34 expression, focal HER2 membranous expression, and patchy p16 staining (negative HPV ISH). A molecular analysis identified TP53 mutation and amplifications in the ERBB2 (HER2), BRD4, and TYMS. Additional gene mutations of uncertain significance included HSPH1, ATM, PDCD1 (PD-1), BARD1, MSH3, LRP1B, KMT2C (MLL3), GNA11, and RUNX1. Assessments for the homologous recombination deficiency, PD-L1 expression, gene rearrangement, altered splicing, and DNA mismatch repair gene expression were negative. The confirmation of ERBB2 (HER2) amplification in the MPTT through a molecular analysis suggests potential therapeutic avenues involving anti-HER2 monoclonal antibodies. The presence of the TP53 mutation, without the concurrent gene mutations typically observed in SCC, significantly aided in this differential diagnosis. Full article
Show Figures

Figure 1

10 pages, 671 KiB  
Commentary
Turning Cancer Immunotherapy to the Emerging Immune Checkpoint TIGIT: Will This Break Through the Limitations of the Legacy Approach?
by Haozhe Cui and Eyad Elkord
Vaccines 2024, 12(12), 1306; https://doi.org/10.3390/vaccines12121306 - 22 Nov 2024
Cited by 1 | Viewed by 2297
Abstract
The discovery of immune checkpoints (ICs) has pushed cancer treatment into the next era. As an emerging immune checkpoint, the TIGIT/CD155 axis inhibits the cytotoxicity of T and NK cells through multiple pathways. Immune checkpoint inhibitors (ICIs) targeting TIGIT are hopefully expected to [...] Read more.
The discovery of immune checkpoints (ICs) has pushed cancer treatment into the next era. As an emerging immune checkpoint, the TIGIT/CD155 axis inhibits the cytotoxicity of T and NK cells through multiple pathways. Immune checkpoint inhibitors (ICIs) targeting TIGIT are hopefully expected to address the issue of unresponsiveness to anti-PD-(L)1 monoclonal antibodies (mAbs) by combination therapy. This paper presents insights on the expression, structure and mechanism of action of TIGIT, as well as the principles and methods of designing mAbs targeting TIGIT and their clinical data. The advantages and disadvantages of targeting TIGIT using mAbs, bispecific and tri-specific antibodies (bsAbs and tsAbs), peptides, and compounds, in addition to potential combination therapies of anti-TIGIT with anti-PD-1 or cancer vaccines, are addressed. Finally, perspectives on current immunotherapies targeting TIGIT are discussed. Full article
Show Figures

Figure 1

14 pages, 2475 KiB  
Article
Generation, Characterization, and Preclinical Studies of a Novel NKG2A-Targeted Antibody BRY805 for Cancer Immunotherapy
by Yaqiong Zhou, Yiru Wang, Jinfeng Liang, Jing Qian, Zhenhua Wu, Zhangzhao Gao, Jian Qi, Shanshan Zhu, Na Li, Yao Chen, Gang Chen, Lei Nie, Tingting Guo and Haibin Wang
Antibodies 2024, 13(4), 93; https://doi.org/10.3390/antib13040093 - 20 Nov 2024
Viewed by 2086
Abstract
Immuno-oncology has revolutionized cancer treatment, with NKG2A emerging as a novel target for immunotherapy. The blockade of NKG2A using the immune checkpoint inhibitor (ICI) monalizumab has been shown to enhance the responses of both NK cells and CD8+ T cells. However, monalizumab has [...] Read more.
Immuno-oncology has revolutionized cancer treatment, with NKG2A emerging as a novel target for immunotherapy. The blockade of NKG2A using the immune checkpoint inhibitor (ICI) monalizumab has been shown to enhance the responses of both NK cells and CD8+ T cells. However, monalizumab has demonstrated limited efficacy in in vitro cytotoxic assays and clinical trials. In our study, we discovered and characterized a novel anti-NKG2A antibody, BRY805, which exhibits high specificity for the human CD94/NKG2A heterodimer complex and does not bind to the activating NKG2C receptor. In vitro cytotoxicity assays demonstrated that BRY805 effectively activated NK92 cells and primary NK cells, thereby enhancing the cytotoxic activity of effector cells against cancer cells overexpressing HLA-E, with significantly greater efficacy compared to monalizumab. Furthermore, BRY805 exhibited synergistic antitumor activity when combined with PD-L1 monoclonal antibodies. In a mouse xenograft model, BRY805 showed superior tumor control relative to monalizumab and demonstrated a favorable safety profile in non-human primate studies. Full article
Show Figures

Figure 1

12 pages, 3097 KiB  
Article
Development of a Mammalian Cell Line for Stable Production of Anti-PD-1
by Erika Csató-Kovács, Pál Salamon, Szilvia Fikó-Lászlo, Krisztina Kovács, Alice Koka, Mónika András-Korodi, Emőke Antal, Emília Brumă, Brigitta Tőrsők, Szilárd Gudor, Ildikó Miklóssy, Kálmán Csongor Orbán, Csilla Albert, Emese Éva Bálint and Beáta Albert
Antibodies 2024, 13(4), 82; https://doi.org/10.3390/antib13040082 - 3 Oct 2024
Cited by 2 | Viewed by 3092
Abstract
Background/Objectives: Immune checkpoint blockade, particularly targeting the programmed cell death 1 (PD-1) receptor, is a promising strategy in cancer immunotherapy. The interaction between PD-1 and its ligands, PD-L1 and PD-L2, is crucial in immune evasion by tumors. Blocking this interaction with monoclonal antibodies [...] Read more.
Background/Objectives: Immune checkpoint blockade, particularly targeting the programmed cell death 1 (PD-1) receptor, is a promising strategy in cancer immunotherapy. The interaction between PD-1 and its ligands, PD-L1 and PD-L2, is crucial in immune evasion by tumors. Blocking this interaction with monoclonal antibodies like Nivolumab can restore anti-tumor immunity. This study aims to develop a stable expression system for Nivolumab-based anti-PD-1 in the Chinese Hamster Ovary (CHO) DG44 cell line using two different expression vector systems with various signal sequences. Methods: The heavy chain (HC) and light chain (LC) of Nivolumab were cloned into two expression vectors, pOptiVEC and pcDNA3.3. Each vector was engineered with two distinct signal sequences, resulting in the creation of eight recombinant plasmids. These plasmids were co-transfected into CHO DG44 cells in different combinations, allowing for the assessment of stable antibody production. Results: Both pOptiVEC and pcDNA3.3 vectors were successful in stably integrating and expressing the Nivolumab-based anti-PD-1 antibody in CHO DG44 cells. This study found that the choice of signal sequence significantly influenced the quantity of antibodies produced. The optimization of production conditions further enhanced antibody yield, indicating the potential for large-scale production. Conclusions: This study demonstrates that both pOptiVEC and pcDNA3.3 expression systems are effective for the stable production of Nivolumab-based anti-PD-1 in CHO DG44 cells. Signal sequences play a critical role in determining the expression levels, and optimizing production conditions can further increase antibody yield, supporting future applications in cancer immunotherapy. Full article
Show Figures

Graphical abstract

15 pages, 770 KiB  
Review
Immune Checkpoints and Cellular Landscape of the Tumor Microenvironment in Non-Melanoma Skin Cancer (NMSC)
by Ahmed M. Mousa, Alexander H. Enk, Jessica C. Hassel and Robin Reschke
Cells 2024, 13(19), 1615; https://doi.org/10.3390/cells13191615 - 26 Sep 2024
Cited by 8 | Viewed by 4617
Abstract
Non-melanoma skin cancer (NMSC) is primarily categorized into basal cell carcinoma (BCC), the most prevalent form of skin cancer, and cutaneous squamous cell carcinoma (cSCC), the second most common type. Both BCC and cSCC represent a significant health burden, particularly in immunocompromised individuals [...] Read more.
Non-melanoma skin cancer (NMSC) is primarily categorized into basal cell carcinoma (BCC), the most prevalent form of skin cancer, and cutaneous squamous cell carcinoma (cSCC), the second most common type. Both BCC and cSCC represent a significant health burden, particularly in immunocompromised individuals and the elderly. The immune system plays a pivotal role in the development and progression of NMSC, making it a critical focus for therapeutic interventions. This review highlights key immunological targets in BCC and cSCC, with a focus on immune checkpoint molecules such as PD-1/PD-L1 and CTLA-4, which regulate T cell activity and contribute to immune evasion. This review also highlights anti-tumor immune cell subsets within the tumor microenvironment (TME), such as tumor-infiltrating lymphocytes (TILs) and dendritic cells. Additionally, it examines the immunosuppressive elements of the TME, including regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and cancer-associated fibroblasts (CAFs), as well as their roles in NMSC progression and resistance to therapy. Emerging strategies targeting these immune elements, such as monoclonal antibodies, are also discussed for their potential to enhance anti-tumor immune responses and improve clinical outcomes. By elucidating the immunological landscape of BCC and cSCC and drawing comparisons to melanoma, this review highlights the transformative potential of immunotherapy in treating these malignancies. Full article
Show Figures

Figure 1

16 pages, 3849 KiB  
Article
Autophagy Blockage Up-Regulates HLA-Class-I Molecule Expression in Lung Cancer and Enhances Anti-PD-L1 Immunotherapy Efficacy
by Erasmia Xanthopoulou, Ioannis Lamprou, Achilleas G. Mitrakas, Georgios D. Michos, Christos E. Zois, Alexandra Giatromanolaki, Adrian L. Harris and Michael I. Koukourakis
Cancers 2024, 16(19), 3272; https://doi.org/10.3390/cancers16193272 - 26 Sep 2024
Cited by 2 | Viewed by 1869
Abstract
Background/Objectives: Immune checkpoint inhibitors have an established role in non-small cell lung cancer (NSCLC) therapy. The loss of HLA-class-I expression allows cancer cell evasion from immune surveillance, disease progression, and failure of immunotherapy. The restoration of HLA-class-I expression may prove to be a [...] Read more.
Background/Objectives: Immune checkpoint inhibitors have an established role in non-small cell lung cancer (NSCLC) therapy. The loss of HLA-class-I expression allows cancer cell evasion from immune surveillance, disease progression, and failure of immunotherapy. The restoration of HLA-class-I expression may prove to be a game-changer in current immunotherapy strategies. Autophagic activity has been recently postulated to repress HLA-class-I expression in cancer cells. Methods: NSCLC cell lines (A549 and H1299) underwent late-stage (chloroquine and bafilomycin) and early-stage autophagy blockage (ULK1 inhibitors and MAP1LC3A silencing). The HLA-class-I expression was assessed with flow cytometry, a Western blot, and RT-PCR. NSCLC tissues were examined for MAP1LC3A and HLA-class-I expression using double immunohistochemistry. CD8+ T-cell cytotoxicity was examined in cancer cells pre-incubated with chloroquine and anti-PD-L1 monoclonal antibodies (Moabs); Results: A striking increase in HLA-class-I expression following incubation with chloroquine, bafilomycin, and IFNγ was noted in A549 and H1299 cancer cells, respectively. This effect was further confirmed in CD133+ cancer stem cells. HLA-class-I, β2-microglobulin, and TAP1 mRNA levels remained stable. Prolonged exposure to chloroquine further enhanced HLA-class-I expression. Similar results were noted following exposure to a ULK1 and a PIKfyve inhibitor. Permanent silencing of the MAP1LC3A gene resulted in enhanced HLA-class-I expression. In immunohistochemistry experiments, double LC3A+/HLA-class-I expression was seldom. Pre-incubation of H1299 cancer cells with chloroquine and anti-PD-L1 MoAbs increased the mean % of apoptotic/necrotic cells from 2.5% to 18.4%; Conclusions: Autophagy blockers acting either at late or early stages of the autophagic process may restore HLA-class-I-mediated antigen presentation, eventually leading to enhanced immunotherapy efficacy. Full article
Show Figures

Graphical abstract

Back to TopTop