Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = antenna phase center

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10557 KiB  
Article
The RF–Absolute Gradient Method for Localizing Wheat Moisture Content’s Abnormal Regions with 2D Microwave Scanning Detection
by Dong Dai, Zhenyu Wang, Hao Huang, Xu Mao, Yehong Liu, Hao Li and Du Chen
Agriculture 2025, 15(15), 1649; https://doi.org/10.3390/agriculture15151649 - 31 Jul 2025
Viewed by 194
Abstract
High moisture content (MC) harms wheat storage quality and readily leads to mold growth. Accurate localization of abnormal/high-moisture regions enables early warning, ensuring proper storage and reducing economic losses. The present study introduces the 2D microwave scanning method and investigates a novel localization [...] Read more.
High moisture content (MC) harms wheat storage quality and readily leads to mold growth. Accurate localization of abnormal/high-moisture regions enables early warning, ensuring proper storage and reducing economic losses. The present study introduces the 2D microwave scanning method and investigates a novel localization method for addressing such a challenge. Both static and scanning experiments were performed on a developed mobile and non-destructive microwave detection system to quantify the MC of wheat and then locate abnormal moisture regions. For quantifying the wheat’s MC, a dual-parameter wheat MC prediction model with the random forest (RF) algorithm was constructed, achieving a high accuracy (R2 = 0.9846, MSE = 0.2768, MAE = 0.3986). MC scanning experiments were conducted by synchronized moving waveguides; the maximum absolute error of MC prediction was 0.565%, with a maximum relative error of 3.166%. Furthermore, both one- and two-dimensional localizing methods were proposed for localizing abnormal moisture regions. The one-dimensional method evaluated two approaches—attenuation value and absolute attenuation gradient—using computer simulation technology (CST) modeling and scanning experiments. The experimental results confirmed the superior performance of the absolute gradient method, with a center detection error of less than 12 mm in the anomalous wheat moisture region and a minimum width detection error of 1.4 mm. The study performed two-dimensional antenna scanning and effectively imaged the high-MC regions using phase delay analysis. The imaging results coincide with the actual locations of moisture anomaly regions. This study demonstrated a promising solution for accurately localizing the wheat’s abnormal/high-moisture regions with the use of an emerging microwave transmission method. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

20 pages, 5129 KiB  
Article
Multi-Band Analog Radio-over-Fiber Mobile Fronthaul System for Indoor Positioning, Beamforming, and Wireless Access
by Hang Yang, Wei Tian, Jianhua Li and Yang Chen
Sensors 2025, 25(7), 2338; https://doi.org/10.3390/s25072338 - 7 Apr 2025
Viewed by 640
Abstract
In response to the urgent demands of the Internet of Things for precise indoor target positioning and information interaction, this paper proposes a multi-band analog radio-over-fiber mobile fronthaul system. The objective is to obtain the target’s location in indoor environments while integrating remote [...] Read more.
In response to the urgent demands of the Internet of Things for precise indoor target positioning and information interaction, this paper proposes a multi-band analog radio-over-fiber mobile fronthaul system. The objective is to obtain the target’s location in indoor environments while integrating remote beamforming capabilities to achieve wireless access to the targets. Vector signals centered at 3, 4, 5, and 6 GHz for indoor positioning and centered at 30 GHz for wireless access are generated centrally in the distributed unit (DU) and fiber-distributed to the active antenna unit (AAU) in the multi-band analog radio-over-fiber mobile fronthaul system. Target positioning is achieved by radiating electromagnetic waves indoors through four omnidirectional antennas in conjunction with a pre-trained neural network, while high-speed wireless communication is realized through a phased array antenna (PAA) comprising four antenna elements. Remote beamforming for the PAA is implemented through the integration of an optical true time delay pool in the multi-band analog radio-over-fiber mobile fronthaul system. This integration decouples the weight control of beamforming from the AAU, enabling centralized control of beam direction at the DU and thereby reducing the complexity and cost of the AAU. Simulation results show that the average accuracy of localization classification can reach 86.92%, and six discrete beam directions are achieved via the optical true time delay pool. In the optical transmission layer, when the received optical power is 10 dBm, the error vector magnitudes (EVMs) of vector signals in all frequency bands remain below 3%. In the wireless transmission layer, two beam directions were selected for verification. Once the beam is aligned with the target device at maximum gain and the received signal is properly processed, the EVM of millimeter-wave vector signals remains below 11%. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

19 pages, 5010 KiB  
Article
Quad-Beam 4 × 2 Array Antenna for Millimeter-Wave 5G Applications
by Parveez Shariff Bhadravathi Ghouse, Tanweer Ali, Pallavi R. Mane, Sameena Pathan, Sudheesh Puthenveettil Gopi, Bal S. Virdee, Jaume Anguera and Prashant M. Prabhu
Electronics 2025, 14(5), 1056; https://doi.org/10.3390/electronics14051056 - 6 Mar 2025
Viewed by 975
Abstract
This article presents the design of a novel, compact, 4 × 2 planar-array antenna that provides quad-beam radiation in the broadside direction, and it enhances coverage and serviceability for millimeter-wave applications. The antenna utilizes a corporate (parallel) feed network to deliver equal power [...] Read more.
This article presents the design of a novel, compact, 4 × 2 planar-array antenna that provides quad-beam radiation in the broadside direction, and it enhances coverage and serviceability for millimeter-wave applications. The antenna utilizes a corporate (parallel) feed network to deliver equal power and phase to all elements. Non-uniform element spacing in the two orthogonal planes, exceeding 0.5λ1 (λ1 being the wavelength at 30 GHz), results in a quad-beam radiation pattern. Two beams are formed in the xz-plane and two in the yz-plane, oriented at angles of θ=±54°. However, this spacing leads to null radiation at the center and splits the radiation energy, reducing the overall gain. The measured half-power beamwidth (HPBW) is 30° in the xz-plane and 35° in the yz-plane, with X-polarization levels of −20.5 dB and −26 dB, respectively. The antenna achieves a bandwidth of 28.5–31.1 GHz and a peak gain of 10.6 dBi. Furthermore, increasing the aperture size enhances the gain and narrows the beamwidth by replicating the structure and tuning the feed network. These features make the proposed antenna suitable for 5G wireless communication systems. Full article
Show Figures

Figure 1

22 pages, 42077 KiB  
Article
A Spoofing Detection and Direction-Finding Approach for Global Navigation Satellite System Signals Using Off-the-Shelf Anti-Jamming Antennas
by Ruimin Jin, Junkun Yan, Xiang Cui, Huiyun Yang, Weimin Zhen, Mingyue Gu, Guangwang Ji, Longjiang Chen and Haiying Li
Remote Sens. 2025, 17(5), 864; https://doi.org/10.3390/rs17050864 - 28 Feb 2025
Cited by 1 | Viewed by 1217
Abstract
Global Navigation Satellite System (GNSS) spoofing induces the target receiver to obtain the wrong positioning and timing results, which is very harmful. It is necessary to develop high-precision GNSS spoofing detection and associated direction-finding methods. In order to achieve sensitive and high-precision direction-finding [...] Read more.
Global Navigation Satellite System (GNSS) spoofing induces the target receiver to obtain the wrong positioning and timing results, which is very harmful. It is necessary to develop high-precision GNSS spoofing detection and associated direction-finding methods. In order to achieve sensitive and high-precision direction-finding for GNSS spoofing, it is necessary to realize the spoofing signal detection in the capture phase. This paper first proposes a method of GNSS spoofing detection, based on machine learning, that extracts features in the capture phase, which realizes various types of spoofing detection such as matching power, carrier phase alignment, and frequency locking. Notably, existing spoofing-direction-finding methods are mainly based on dedicated antenna arrays, which incur high costs and are not conducive to large-scale deployments. The basis of the spoofing detection proposed by this paper consists of a differential phase-center correction method, which is proposed in the context of an off-the-shelf anti-jamming array antenna, which effectively reduces the impact of the phase-center jitter introduced by the mutual coupling between antenna arrays on the direction-finding. The publicly accessible Texas Spoofing Test Battery (TEXBAT) dataset and actual measured data are both used for test verification. The results demonstrate that the proposed spoofing detection method can achieve success rates of over 97% on the TEXBAT dataset and more than 96% on the measured dataset, and the accuracy of the proposed direction-finding method can reach 1°, which can realize the effective detection and direction-finding of GNSS spoofing. Full article
Show Figures

Figure 1

14 pages, 10104 KiB  
Article
A Compact and Wideband Beam-Scanning Antenna Array Based on SICL Butler Matrix
by Zhu Hua, Chuang Gao, Jiejun Peng, Shuting Fan and Zhengfang Qian
Electronics 2025, 14(4), 757; https://doi.org/10.3390/electronics14040757 - 15 Feb 2025
Cited by 1 | Viewed by 601
Abstract
A compact and wideband beamforming antenna array based on a substrate-integrated coaxial line (SICL) Butler matrix at 60 GHz is proposed in this paper. The cavity-backed patch antenna loading double-ridged horn antenna is designed to enhance a gain of 5.4 dB and a [...] Read more.
A compact and wideband beamforming antenna array based on a substrate-integrated coaxial line (SICL) Butler matrix at 60 GHz is proposed in this paper. The cavity-backed patch antenna loading double-ridged horn antenna is designed to enhance a gain of 5.4 dB and a bandwidth of 2.7 GHz. Different phase centers of double-ridged horn elements are formed into a non-uniform array to reduce sidelobes by −7.9 dB. By introducing the defected ground structure (DGS) for a broadband coupler, a rotationally symmetric SICL Butler matrix is designed with a 55–70 GHz bandwidth and compact dimensions of 63 × 65 × 0.512 mm3. To validate the design, a prototype was fabricated and measured. The experimental results show a wideband −10 dB impedance bandwidth of 23.3% (55.4–70 GHz) with measured gains ranging from 15 to 16.1 dBi at 62 GHz. The one-dimensional beam scanning covers ±32°. The simulation and measurement results are in good agreement. Full article
(This article belongs to the Special Issue Antennas and Microwave/Millimeter-Wave Applications)
Show Figures

Figure 1

24 pages, 21508 KiB  
Article
A Multiple-Input Multiple-Output Synthetic Aperture Radar Echo Separation and Range Ambiguity Suppression Processing Framework for High-Resolution Wide-Swath Imaging
by Haonan Zhao, Zhimin Zhang, Zhen Chen, Huaitao Fan, Zongsen Lv and Jianzhong Bi
Remote Sens. 2025, 17(4), 609; https://doi.org/10.3390/rs17040609 - 11 Feb 2025
Cited by 1 | Viewed by 681
Abstract
Multiple-input multiple-output (MIMO) synthetic aperture radar (SAR) is a promising scheme for high-resolution wide-swath (HRWS) imaging. After echo separation processing, a MIMO-SAR system can provide many equivalent phase centers (EPCs) in azimuth. However, EPC duplication occurs for traditional monostatic systems with uniform antenna [...] Read more.
Multiple-input multiple-output (MIMO) synthetic aperture radar (SAR) is a promising scheme for high-resolution wide-swath (HRWS) imaging. After echo separation processing, a MIMO-SAR system can provide many equivalent phase centers (EPCs) in azimuth. However, EPC duplication occurs for traditional monostatic systems with uniform antenna arrays, leading to system resource waste. Moreover, range ambiguity suppression is a necessary process for wide-swath SAR systems. In this paper, a novel MIMO-SAR echo separation and range ambiguity suppression processing framework is proposed for HRWS imaging. A set of transmission delays is introduced to the transmit channels to displace the repetitive EPCs. The transmission delays can also be used to flexibly control the performance of echo separation. A wide-null beamformer is employed to accomplish echo separation and ambiguity suppression simultaneously. The proposed framework is designed for real-time processing and therefore does not require frequency-domain operations. Finally, the proposed framework is verified through point target and distributed scene simulation experiments. Full article
(This article belongs to the Special Issue SAR-Based Signal Processing and Target Recognition (Second Edition))
Show Figures

Figure 1

20 pages, 4377 KiB  
Article
Improving BeiDou Global Navigation Satellite System (BDS-3)-Derived Station Coordinates Using Calibrated Satellite Antennas and Station Inter-System Translation Parameters
by Tao Zhang, Shiwei Guo, Lei Fan and Chuang Shi
Remote Sens. 2025, 17(3), 510; https://doi.org/10.3390/rs17030510 - 31 Jan 2025
Viewed by 835
Abstract
The BeiDou global navigation satellite system (BDS-3) has been widely applied in various geodetic applications since its full operation. However, the estimated station coordinates using BDS-3 are less precise compared to GPS results. It contains systematic errors caused by scale bias with respect [...] Read more.
The BeiDou global navigation satellite system (BDS-3) has been widely applied in various geodetic applications since its full operation. However, the estimated station coordinates using BDS-3 are less precise compared to GPS results. It contains systematic errors caused by scale bias with respect to International GNSS Service (IGS) 2020 frame and Inter-System Translation Parameters (ISTPs). In order to improve the consistency of BDS-3-derived station coordinates with respect to IGS20 products, we firstly estimated the satellite antenna Phase Center Offsets (PCOs) for BDS-3 Medium Earth Orbit (MEO) constellation, and then estimated station-specific ISTPs from GPS to BDS-3 systems. The results indicate that the PCO-Z estimates show large differences among satellites from different manufacturers and orbit planes. The estimated BDS-3 satellite PCOs exhibit a systematic bias of −9.3 cm in the Z-direction compared to ground calibrations. The maximum mean station-specific ISTPs can reach up to 3 mm, highlighting significant variability and the need for refinement in positioning. When using the estimated PCOs instead of igs20.atx values, the estimated scale bias with respect to the IGS20 frame is reduced from 0.38 ppb to −0.12 ppb, indicating that the refined BDS-3 satellite PCOs are well compatible with IGS20. Regarding the Up component that is correlated with the scale factor, the station coordinate differences with respect to the IGS20 frame is reduced from 7.0 mm to 6.2 mm in terms of the root mean square (RMS), which is improved by 11.4%. Considering the additional ISTP corrections, a further improvement of 17% was obtained in station coordinates. The RMS of station coordinate differences with respect to the IGS20 frame is 2.3 mm, 2.7 mm, and 5.2 mm for the North, East, and Up components, respectively. Full article
Show Figures

Figure 1

17 pages, 3795 KiB  
Review
Comprehensive Analysis of HY-2B/2C/2D Satellite-Borne GPS Data Quality and Reduced-Dynamic Precise Orbit Determination
by Xin Jin, Guangzhe Wang, Jinyun Guo, Hailong Peng, Yongjun Jia and Xiaotao Chang
Aerospace 2025, 12(2), 102; https://doi.org/10.3390/aerospace12020102 - 30 Jan 2025
Cited by 1 | Viewed by 838
Abstract
The deployment of the HY-2B/2C/2D satellite constellation marks a significant advancement in China’s marine dynamic environmental satellite program, forming a robust three-satellite network. All satellites are equipped with the “HY2_Receiver”, an indigenous technological achievement. Precise orbit determination using this receiver is critical for [...] Read more.
The deployment of the HY-2B/2C/2D satellite constellation marks a significant advancement in China’s marine dynamic environmental satellite program, forming a robust three-satellite network. All satellites are equipped with the “HY2_Receiver”, an indigenous technological achievement. Precise orbit determination using this receiver is critical for monitoring dynamic oceanic parameters such as sea surface wind fields and heights. This study presents a detailed analysis and comparison of the GPS data quality from the HY-2B/2C/2D satellites, emphasizing the impact of phase center variation (PCV) model corrections on orbit accuracy, with a particular focus on high-precision reduced-dynamic orbit determination. The experimental results demonstrate that the GPS data from the satellites exhibit consistent satellite visibility and minimal multipath errors, confirming the reliability and stability of the receivers. Incorporating PCV model corrections significantly enhances orbit accuracy, achieving improvements of approximately 0.3 cm. Compared to DORIS-derived orbits from the Centre National d’Études Spatiales (CNES), the GPS-derived reduced-dynamic orbits consistently reach radial accuracies of 1.5 cm and three-dimensional accuracies of 3 cm. Furthermore, validation using Satellite Laser Ranging (SLR) data confirms orbit accuracies better than 3.5 cm, with 3D root mean square (RMS) accuracies exceeding 3 cm in the radial (R), along-track (T), and cross-track (N) directions. Notably, the orbit determination accuracy remains consistent across all satellites within the HY-2B/2C/2D constellation. This comprehensive analysis highlights the consistent and reliable performance of the indigenous “HY2_Receiver” in supporting high-precision orbit determination for the HY-2B/2C/2D constellation, demonstrating its capability to meet the rigorous demands of marine dynamic environmental monitoring. Full article
Show Figures

Figure 1

21 pages, 9191 KiB  
Article
Revisiting GRACE Follow-On KBR Antenna Phase Center Calibration by Addressing Multipath Noise
by Haosi Li, Peng Xu, He Tang and Shuang Yi
Remote Sens. 2025, 17(3), 353; https://doi.org/10.3390/rs17030353 - 21 Jan 2025
Viewed by 899
Abstract
The Gravity Recovery and Climate Experiment Follow-On (GRFO) mission precisely measures the inter-satellite range between the centers of mass of its twin satellites to map the earth’s gravity field. The baseline ranging measurement is achieved using the K-band ranging (KBR) system, which is [...] Read more.
The Gravity Recovery and Climate Experiment Follow-On (GRFO) mission precisely measures the inter-satellite range between the centers of mass of its twin satellites to map the earth’s gravity field. The baseline ranging measurement is achieved using the K-band ranging (KBR) system, which is sensitive to satellite attitude variations caused by the offset between the satellite center of mass and the KBR antenna phase center. Accurate decoupling of the KBR range from attitude variations requires precise determination of the KBR’s antenna offset vectors (AOVs). To address this, GRFO conducted eight KBR calibration maneuvers on 17 and 28 September 2020. However, these maneuvers exaggerated the impact of microwave multipath noise, complicating AOV estimation. Existing studies have not fully mitigated this noise. This study introduces a new frequency-domain method to estimate AOVs by leveraging double-difference signals and analyzing their spectral characteristics, along with those of the KBR range during calibration maneuvers, to suppress multipath noise. Our recalibrated AOVs achieve good alignment between the KBR and laser ranging interferometer (LRI) ranging signals. We validate our recalibrated AOVs by comparing the residuals between the LRI and KBR ranging signals corrected using both recalibrated AOVs and documented AOVs. The results show that, for the majority (58.4%) of the analyzed period (from January 2020 to June 2023), the residuals corrected by the recalibrated AOVs are closer to the LRI ranging signal. These findings demonstrate the effectiveness of the proposed method in addressing multipath noise and improving the accuracy of KBR range measurements. This work provides a framework for future gravity missions requiring precise calibration of multipath effects in inter-satellite ranging systems. Full article
(This article belongs to the Special Issue Precise Orbit Determination for Gravity Field Investigations)
Show Figures

Figure 1

12 pages, 5698 KiB  
Article
A Miniaturized Loaded Open-Boundary Quad-Ridge Horn with a Stable Phase Center for Interferometric Direction-Finding Systems
by Zibin Weng, Chen Liang, Kaibin Xue, Ziming Lv and Xing Zhang
Micromachines 2025, 16(1), 44; https://doi.org/10.3390/mi16010044 - 30 Dec 2024
Cited by 1 | Viewed by 926
Abstract
In order to achieve high accuracy in interferometric direction-finding systems, antennas with a stable phase center in the working bandwidth are required. This article proposes a miniaturized loaded open-boundary quad-ridge horn (LOQRH) antenna with dimensions of 40 mm × 40 mm × 49 [...] Read more.
In order to achieve high accuracy in interferometric direction-finding systems, antennas with a stable phase center in the working bandwidth are required. This article proposes a miniaturized loaded open-boundary quad-ridge horn (LOQRH) antenna with dimensions of 40 mm × 40 mm × 49 mm. First, to stabilize the phase center of the antenna, the design builds on the foundation of a quad-ridge horn antenna, where measures such as optimizing the ridge structure and introducing resistive loading were implemented to achieve size reduction. Second, electrically small-sized antennas are more susceptible to the effects of common-mode currents (CMCs), which can reduce the symmetry of the radiation pattern and the stability of the phase center. To avoid the generation of common-mode currents during operation, a self-balanced feed structure was introduced into the proposed antenna design. This structure establishes a balanced circuit and routes the feedline at the voltage null point, effectively suppressing the common-mode current. As a result, the miniaturization of the LOQRH antenna was achieved while ensuring the suppression of the common-mode current, thereby maintaining the stability of the antenna’s electromagnetic performance. The measured results show that the miniaturized antenna has a small phase center change of less than 20.3 mm within 2–18 GHz, while the simulated phase center fluctuation is only 14.6 mm. In addition, when taking 18.5 mm in front of the antenna’s feed point as the phase center, the phase fluctuation is less than 22.5° within the required beam width. Along with the desired stable phase center, the miniaturized design makes the proposed antenna suitable for interferometric direction-finding systems. Full article
(This article belongs to the Special Issue Recent Advances in Electromagnetic Devices)
Show Figures

Figure 1

22 pages, 10504 KiB  
Article
Experimental Validation of a GNSS Receiver Antenna Absolute Field Calibration System
by Antonio Tupek, Mladen Zrinjski, Krunoslav Špoljar and Karlo Stipetić
Remote Sens. 2025, 17(1), 64; https://doi.org/10.3390/rs17010064 - 27 Dec 2024
Viewed by 832
Abstract
Carrier-phase measurements are essential in precise Global Navigation Satellite System (GNSS) positioning applications. The quality of those observations, as well as the final positioning result, is influenced by an extensive list of GNSS error sources, one of which is the receiver antenna phase [...] Read more.
Carrier-phase measurements are essential in precise Global Navigation Satellite System (GNSS) positioning applications. The quality of those observations, as well as the final positioning result, is influenced by an extensive list of GNSS error sources, one of which is the receiver antenna phase center (PC) model. It has been well established that the antenna PC exhibits variability depending on the frequency, direction, and intensity of the incoming GNSS signal. To mitigate the corresponding range errors, phase center corrections (PCCs) are determined through a specialized procedure known as receiver antenna calibration and subsequently applied in data processing. In 2023, the Laboratory for Measurements and Measuring Technique (LMMT) of the Faculty of Geodesy, University of Zagreb, Croatia, initiated the development of a new robotic GNSS receiver antenna calibration system. The system implements absolute field calibration and PCC modeling through triple-difference (TD) carrier-phase observations and spherical harmonics (SH) expansion. This study presents and documents dual-frequency (L1 and L2) Global Positioning System (GPS) calibration results for several distinct receiver antennas. Furthermore, the main goals of this contribution are to evaluate the accuracy of dual-frequency GPS calibration results on the pattern level with respect to independent calibrations obtained from Geo++ GmbH and to extensively experimentally validate LMMT calibration results in the spatial (coordinate) domain, i.e., to investigate how the application of LMMT PPC models reflects on geodetic-grade GNSS positioning. Our experimental research results showed a submillimeter calibration accuracy, i.e., 0.36 mm for GPS L1 and 0.54 mm for the GPS L2 frequency. Furthermore, our field results confirmed that the application of LMMT PCC models significantly increases baseline accuracy and GNSS network solution accuracy when compared to type-mean PCC models of the International GNSS Service (IGS). Full article
Show Figures

Figure 1

17 pages, 6683 KiB  
Article
Affordable Real-Time PPP—Combining Low-Cost GNSS Receivers with Galileo HAS Corrections in Static, Pseudo-Kinematic, and UAV Experiments
by Grzegorz Marut, Tomasz Hadas, Kamil Kazmierski and Jaroslaw Bosy
Remote Sens. 2024, 16(21), 4008; https://doi.org/10.3390/rs16214008 - 28 Oct 2024
Cited by 2 | Viewed by 2164
Abstract
The Galileo High Accuracy Service (HAS) is a free of charge Global Navigation Satellite System (GNSS) augmentation service provided by the European Union. It is designed to enable real-time Precise Point Positioning (PPP) with a target accuracy (at the 95% confidence level) of [...] Read more.
The Galileo High Accuracy Service (HAS) is a free of charge Global Navigation Satellite System (GNSS) augmentation service provided by the European Union. It is designed to enable real-time Precise Point Positioning (PPP) with a target accuracy (at the 95% confidence level) of 20 cm and 40 cm in the horizontal and vertical components, respectively, to be achieved within 300 s. The performance of the service has been confirmed with geodetic-grade receivers. However, mass market applications require low-cost GNSS receivers connected to low-cost antennae. This paper focuses on the performance of the real-time static and kinematic positioning achieved with Galileo HAS and low-cost GNSS receivers. The study is limited to GPS + Galileo dual-frequency positioning, thus exploiting the full potential of Galileo HAS SL1. We demonstrate that the target accuracy of Galileo HAS SL1 is reached with both geodetic-grade and low-cost receivers in dual-frequency static and kinematic applications in open-sky conditions. Precision of a few centimeters is reached for static positioning, while kinematic positioning results in subdecimeter precision. Vertical accuracy is limited by missing phase center offset models for low-cost antennas. In general, the performance of low-cost hardware using Galileo HAS for real-time PPP is comparable to that of geodetic-grade hardware. Therefore, combining low-cost GNSS receivers with Galileo HAS is feasible and justified. Full article
(This article belongs to the Special Issue Multi-GNSS Precise Point Positioning (MGPPP))
Show Figures

Figure 1

23 pages, 3109 KiB  
Article
Phase Error Correction in Sparse Linear MIMO Radar Based on the Equivalent Phase Center Principle
by Wenyuan Shao, Jianmin Hu, Yicai Ji, Jun Pan and Guangyou Fang
Remote Sens. 2024, 16(19), 3685; https://doi.org/10.3390/rs16193685 - 2 Oct 2024
Cited by 1 | Viewed by 1602
Abstract
Multiple-input multiple-output (MIMO) technology is widely used in the field of radar imaging. Array sparse optimization reduces the hardware cost of MIMO radar, while virtual aperture and the equivalent phase center (EPC) principle simplify the radar signal model and reduce the computation and [...] Read more.
Multiple-input multiple-output (MIMO) technology is widely used in the field of radar imaging. Array sparse optimization reduces the hardware cost of MIMO radar, while virtual aperture and the equivalent phase center (EPC) principle simplify the radar signal model and reduce the computation and complexity of imaging algorithms. However, the application of sparse array structure and the EPC principle produces a non-negligible phase error, which affects the imaging quality. This paper simplifies the MIMO radar signal model based on the phase center approximation, analyzes the phase error generated by this method, and proposes an improved phase error correction method to solve the problem that the target cannot be well-focused at non-reference distance during imaging. In addition, this paper designs a sparse linear MIMO array with a periodic structure, which reduces the number of transmitting and receiving units, system complexity, and hardware costs. The proposed phase correction method was combined with the wavenumber domain algorithm to simulate and experiment on the designed antenna array, and good experimental results were obtained to verify the effectiveness of the proposed method. Full article
Show Figures

Figure 1

22 pages, 4902 KiB  
Review
A Review of Microstrip Patch Antenna-Based Passive Sensors
by Zain Ul Islam, Amine Bermak and Bo Wang
Sensors 2024, 24(19), 6355; https://doi.org/10.3390/s24196355 - 30 Sep 2024
Cited by 9 | Viewed by 4954
Abstract
This paper briefly overviews and discusses the existing techniques using antennas for passive sensing, starting from the antenna operating principle and antenna structural design to different antenna-based sensing mechanisms. The effects of different electrical properties of the material used to design an antenna, [...] Read more.
This paper briefly overviews and discusses the existing techniques using antennas for passive sensing, starting from the antenna operating principle and antenna structural design to different antenna-based sensing mechanisms. The effects of different electrical properties of the material used to design an antenna, such as conductivity, loss tangent, and resistivity, are discussed to illustrate the fundamental sensing mechanisms. Furthermore, the key parameters, such as operating frequency and antenna impedance, along with the factors affecting the sensing performance, are discussed. Overall, passive sensing using an antenna is mainly achieved by altering the reflected wave characteristics in terms of center frequency, return loss, phase, and received/reflected signal strength. The advantages and drawbacks of each technique are also discussed briefly. Given the increasing relevance, millimeter-wave antenna sensors and resonator sensors are also discussed with their applications and recent advancements. This paper primarily focuses on microstrip-based radiating structures and insights for further sensing performance improvement using passive antennas, which are outlined in this study. In addition, suggestions are made for the current scientific and technical challenges, and future directions are discussed. Full article
(This article belongs to the Special Issue Feature Review Papers in Physical Sensors)
Show Figures

Figure 1

11 pages, 7012 KiB  
Communication
Single-Layer Metasurface-Based Reflectarray Antenna with H-Shaped Slotted Patch for X-Band Communication
by Jawad Ali, Ashfaq Ahmad and Dong-you Choi
Nanomaterials 2024, 14(18), 1495; https://doi.org/10.3390/nano14181495 - 14 Sep 2024
Cited by 1 | Viewed by 1713
Abstract
In this study, a metasurface-based reflectarray is designed for X-band applications. The unit cells are equipped with an H-shaped slotted patch for additional resonance and phase range. Linear phase variation by altering the length of the patch is realized with a range exceeding [...] Read more.
In this study, a metasurface-based reflectarray is designed for X-band applications. The unit cells are equipped with an H-shaped slotted patch for additional resonance and phase range. Linear phase variation by altering the length of the patch is realized with a range exceeding 480. The reflectarray is designed and fabricated on a thin and high-quality Rogers 5880 substrate. The Finite Element Boundary Integral (FEBI) method is used to simulate a 23×23 element reflectarray and then fabricated to achieve the measured results using an anechoic chamber. The peak gain of the proposed reflectarray is 25.5 dBi recorded with an aperture efficiency of 63.7% at a center frequency of 10 GHz. The cross-polarization and side-lobe levels in the entire band are less than −33 dB and −21 dB, respectively. Moreover, the proposed reflectarray antenna achieves a 20% 1-dB gain bandwidth. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

Back to TopTop