Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = angiopep-2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3196 KiB  
Article
Long-Circulating and Brain-Targeted Liposomes Loaded with Isoliquiritigenin: Formation, Characterization, Pharmacokinetics, and Distribution
by Weitong Song, Lu Bai, Pingxiang Xu, Yuming Zhao, Xuelin Zhou, Jie Xiong, Xiaorong Li and Ming Xue
Pharmaceutics 2024, 16(8), 975; https://doi.org/10.3390/pharmaceutics16080975 - 24 Jul 2024
Cited by 1 | Viewed by 1197
Abstract
Isoliquiritigenin (ISL) has excellent neuroprotective effects. However, its limitations, including poor solubility, low bioavailability, and low accumulation in the brain, restrict its clinical promotion. In this study, a novel type of ISL-loaded liposome (ISL-LP) modified with the brain-targeting polypeptide angiopep-2 was prepared to [...] Read more.
Isoliquiritigenin (ISL) has excellent neuroprotective effects. However, its limitations, including poor solubility, low bioavailability, and low accumulation in the brain, restrict its clinical promotion. In this study, a novel type of ISL-loaded liposome (ISL-LP) modified with the brain-targeting polypeptide angiopep-2 was prepared to improve these properties. The zeta potential, morphology, particle size, encapsulation efficiency, drug loading, and in vitro release of ISL-LP were evaluated. The pharmacokinetics and tissue distribution of ISL and ISL-LP were also investigated. The results demonstrated that ISL-LP had an average particle size of 89.36 ± 5.04 nm, a polymer dispersity index of 0.17 ± 0.03, a zeta potential of −20.27 ± 2.18 mV, and an encapsulation efficiency of 75.04 ± 3.28%. The in vitro release experiments indicate that ISL-LP is a desirable sustained-release system. After intravenous administration, LPC-LP prolonged the circulation time of ISL in vivo and enhanced its relative brain uptake. In conclusion, ISL-LP could serve as a promising brain-targeting system for the treatment and prevention of central nervous system (CNS) disorders. Full article
(This article belongs to the Special Issue Smart Nanotechnology to Enhancing Drug Delivery and Bioavailability)
Show Figures

Figure 1

33 pages, 2105 KiB  
Review
Passing of Nanocarriers across the Histohematic Barriers: Current Approaches for Tumor Theranostics
by Kamil Gareev, Ruslana Tagaeva, Danila Bobkov, Natalia Yudintceva, Daria Goncharova, Stephanie E. Combs, Artem Ten, Konstantin Samochernych and Maxim Shevtsov
Nanomaterials 2023, 13(7), 1140; https://doi.org/10.3390/nano13071140 - 23 Mar 2023
Cited by 7 | Viewed by 3054
Abstract
Over the past several decades, nanocarriers have demonstrated diagnostic and therapeutic (i.e., theranostic) potencies in translational oncology, and some agents have been further translated into clinical trials. However, the practical application of nanoparticle-based medicine in living organisms is limited by physiological barriers (blood–tissue [...] Read more.
Over the past several decades, nanocarriers have demonstrated diagnostic and therapeutic (i.e., theranostic) potencies in translational oncology, and some agents have been further translated into clinical trials. However, the practical application of nanoparticle-based medicine in living organisms is limited by physiological barriers (blood–tissue barriers), which significantly hampers the transport of nanoparticles from the blood into the tumor tissue. This review focuses on several approaches that facilitate the translocation of nanoparticles across blood–tissue barriers (BTBs) to efficiently accumulate in the tumor. To overcome the challenge of BTBs, several methods have been proposed, including the functionalization of particle surfaces with cell-penetrating peptides (e.g., TAT, SynB1, penetratin, R8, RGD, angiopep-2), which increases the passing of particles across tissue barriers. Another promising strategy could be based either on the application of various chemical agents (e.g., efflux pump inhibitors, disruptors of tight junctions, etc.) or physical methods (e.g., magnetic field, electroporation, photoacoustic cavitation, etc.), which have been shown to further increase the permeability of barriers. Full article
(This article belongs to the Special Issue Nanomaterials for Diagnosis, Drug Delivery and Targeted Therapy)
Show Figures

Figure 1

14 pages, 1614 KiB  
Article
Influence of the Drug Position on Bioactivity in Angiopep-2—Daunomycin Conjugates
by Lilla Pethő, Rita Oláh-Szabó and Gábor Mező
Int. J. Mol. Sci. 2023, 24(4), 3106; https://doi.org/10.3390/ijms24043106 - 4 Feb 2023
Cited by 7 | Viewed by 2659
Abstract
The blood–brain barrier (BBB) is a semipermeable system, and, therefore, most of the active substances are poorly transported through this barrier, resulting in decreased therapeutic effects. Angiopep-2 (TFFYGGSRGKRNNFKTEEY) is a peptide ligand of low-density lipoprotein receptor-related protein-1 (LRP1), which can cross the BBB [...] Read more.
The blood–brain barrier (BBB) is a semipermeable system, and, therefore, most of the active substances are poorly transported through this barrier, resulting in decreased therapeutic effects. Angiopep-2 (TFFYGGSRGKRNNFKTEEY) is a peptide ligand of low-density lipoprotein receptor-related protein-1 (LRP1), which can cross the BBB via receptor-mediated transcytosis and simultaneously target glioblastomas. Angiopep-2 contains three amino groups that have previously been used to produce drug–peptide conjugates, although the role and importance of each position have not yet been investigated. Thus, we studied the number and position of drug molecules in Angiopep-2 based conjugates. Conjugates containing one, two, and three daunomycin molecules conjugated via oxime linkage in all possible variations were prepared. The in vitro cytostatic effect and cellular uptake of the conjugates were investigated on U87 human glioblastoma cells. Degradation studies in the presence of rat liver lysosomal homogenates were also performed in order for us to better understand the structure–activity relationship and to determine the smallest metabolites. Conjugates with the best cytostatic effects had a drug molecule at the N-terminus. We demonstrated that the increasing number of drug molecules does not necessarily increase the efficacy of the conjugates, and proved that modification of the different conjugation sites results in differing biological effectiveness. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Graphical abstract

16 pages, 2171 KiB  
Review
Focused Delivery of Chemotherapy to Augment Surgical Management of Brain Tumors
by Yusuf Mehkri, Samuel Woodford, Kevin Pierre, Abeer Dagra, Jairo Hernandez, Mohammad Reza Hosseini Siyanaki, Mohammed Azab and Brandon Lucke-Wold
Curr. Oncol. 2022, 29(11), 8846-8861; https://doi.org/10.3390/curroncol29110696 - 17 Nov 2022
Cited by 6 | Viewed by 3631
Abstract
Chemotherapy as an adjuvant therapy that has largely failed to significantly improve outcomes for aggressive brain tumors; some reasons include a weak blood brain barrier penetration and tumor heterogeneity. Recently, there has been interest in designing effective ways to deliver chemotherapy to the [...] Read more.
Chemotherapy as an adjuvant therapy that has largely failed to significantly improve outcomes for aggressive brain tumors; some reasons include a weak blood brain barrier penetration and tumor heterogeneity. Recently, there has been interest in designing effective ways to deliver chemotherapy to the tumor. In this review, we discuss the mechanisms of focused chemotherapies that are currently under investigation. Nanoparticle delivery demonstrates both a superior permeability and retention. However, thus far, it has not demonstrated a therapeutic efficacy for brain tumors. Convection-enhanced delivery is an invasive, yet versatile method, which appears to have the greatest potential. Other vehicles, such as angiopep-2 decorated gold nanoparticles, polyamidoamine dendrimers, and lipid nanostructures have demonstrated efficacy through sustained release of focused chemotherapy and have either improved cell death or survival in humans or animal models. Finally, focused ultrasound is a safe and effective way to disrupt the blood brain barrier and augment other delivery methods. Clinical trials are currently underway to study the safety and efficacy of these methods in combination with standard of care. Full article
(This article belongs to the Special Issue Recent Advancements in the Surgical Treatment of Brain Tumors)
Show Figures

Figure 1

15 pages, 2584 KiB  
Article
MT1-MMP Expression Levels and Catalytic Functions Dictate LDL Receptor-Related Protein-1 Ligand Internalization Capacity in U87 Glioblastoma Cells
by Jonathan Pratt, Khadidja Haidara and Borhane Annabi
Int. J. Mol. Sci. 2022, 23(22), 14214; https://doi.org/10.3390/ijms232214214 - 17 Nov 2022
Cited by 4 | Viewed by 2306
Abstract
Modulations in cell surface receptor ectodomain proteolytic shedding impact on receptor function and cancer biomarker expression. As such, heavily pursued therapeutic avenues have exploited LDL receptor-related protein-1 (LRP-1)-mediated capacity in internalizing Angiopep-2 (An2), a brain-penetrating peptide that allows An2–drug conjugates to cross the [...] Read more.
Modulations in cell surface receptor ectodomain proteolytic shedding impact on receptor function and cancer biomarker expression. As such, heavily pursued therapeutic avenues have exploited LDL receptor-related protein-1 (LRP-1)-mediated capacity in internalizing Angiopep-2 (An2), a brain-penetrating peptide that allows An2–drug conjugates to cross the blood–brain tumor barrier (BBTB). Given that LRP-1 is proteolytically shed from the cell surface through matrix metalloproteinase (MMP) activity, the balance between MMP expression/function and LRP-1-mediated An2 internalization is unknown. In this study, we found that membrane type-1 (MT1)-MMP expression increased from grade 1 to 4 brain tumors, while that of LRP-1 decreased inversely. MMP pharmacological inhibitors such as Ilomastat, Doxycycline and Actinonin increased in vitro An2 internalization by up to 2.5 fold within a human grade IV-derived U87 glioblastoma cell model. Transient siRNA-mediated MT1-MMP gene silencing resulted in increased basal An2 cell surface binding and intracellular uptake, while recombinant MT1-MMP overexpression reduced both cell surface LRP-1 expression as well as An2 internalization. The addition of Ilomastat to cells overexpressing recombinant MT1-MMP restored LRP-1 expression at the cell surface and An2 uptake to levels comparable to those observed in control cells. Collectively, our data suggest that MT1-MMP expression status dictates An2-mediated internalization processes in part by regulating cell surface LRP-1 functions. Such evidence prompts preclinical evaluations of combined MMP inhibitors/An2–drug conjugate administration to potentially increase the treatment of high-MT1-MMP-expressing brain tumors. Full article
(This article belongs to the Special Issue Neuro-Oncology: From Molecular Basis to Therapy)
Show Figures

Figure 1

11 pages, 2092 KiB  
Article
Revealing Angiopep-2/LRP1 Molecular Interaction for Optimal Delivery to Glioblastoma (GBM)
by Angela Costagliola di Polidoro, Andrea Cafarchio, Donatella Vecchione, Paola Donato, Francesco De Nola and Enza Torino
Molecules 2022, 27(19), 6696; https://doi.org/10.3390/molecules27196696 - 8 Oct 2022
Cited by 14 | Viewed by 3865
Abstract
Background: The family of synthetic peptide angiopeps, and particularly angiopep-2 (ANG-2) demonstrated the ability preclinically and clinically to shuttle active molecules across the blood–brain barrier (BBB) and selectively toward brain tumor cells. The literature has also proved that the transport occurs through a [...] Read more.
Background: The family of synthetic peptide angiopeps, and particularly angiopep-2 (ANG-2) demonstrated the ability preclinically and clinically to shuttle active molecules across the blood–brain barrier (BBB) and selectively toward brain tumor cells. The literature has also proved that the transport occurs through a specific receptor-mediated transcytosis of the peptide by LRP-1 receptors present both on BBB and tumor cell membranes. However, contradictory results about exploiting this promising mechanism to engineer complex delivery systems, such as nanoparticles, are being obtained. Methodology: For this reason, we applied a molecular docking (MD)-based strategy to investigate the molecular interaction of ANG-2 and the LRP-1 ligand-binding moieties (CR56 and CR17), clarifying the impact of peptide conjugation on its transport mechanism. Results: MD results proved that ANG-2/LRP-1 binding involves the majority of ANG-2 residues, is characterized by high binding energies, and that it is site-specific for CR56 where the binding to 929ASP recalls a transcytosis mechanism, resembling the binding of the receptor to the receptor-associated protein. On the other hand, ANG-2 binding to CR17 is less site-specific but, as proved for apolipoprotein internalization in physiological conditions, it involves the ANG-2 lysin residue. Conclusions: Overall, our results proved that ANG-2 energetic interaction with the LRP-1 receptor is not hindered if specific residues of the peptide are chemically crosslinked to simple or complex engineered delivery systems. Full article
Show Figures

Graphical abstract

18 pages, 4214 KiB  
Article
Neuropeptide-Functionalized Gold Nanorod Enhanced Cellular Uptake and Improved In Vitro Photothermal Killing in LRP1-Positive Glioma Cells
by Siva Sankari Sivasoorian, Ritesh Urade, Chien-Chih Chiu and Li-Fang Wang
Pharmaceutics 2022, 14(9), 1939; https://doi.org/10.3390/pharmaceutics14091939 - 13 Sep 2022
Cited by 6 | Viewed by 2743
Abstract
The therapeutic modalities for glioblastoma multiforme fail badly due to the limitations of poor penetration through the blood–brain barrier and the lack of tumor targeting. In this study, we synthesized a neuropeptide (ANGIOPEP-2)-functionalized gold nanorod (GNR-ANGI-2) and systemically evaluated the cellular uptake and [...] Read more.
The therapeutic modalities for glioblastoma multiforme fail badly due to the limitations of poor penetration through the blood–brain barrier and the lack of tumor targeting. In this study, we synthesized a neuropeptide (ANGIOPEP-2)-functionalized gold nanorod (GNR-ANGI-2) and systemically evaluated the cellular uptake and photothermal effects enhanced by the neuropeptide functionalization of the gold nanorod under laser or sham exposure. The expression of LRP1, the specific ligand for ANGIOPEP-2, was the highest in C6 cells among five studied glioma cell lines. The cellular internalization studies showed higher uptake of gold nanorods functionalized with ANGIOPEP-2 than of those functionalized with scrambled ANGIOPEP-2. The in vitro photothermal studies of C6 cells treated with GNR-ANGI-2 and laser showed a higher rate of apoptosis at early and late stages than cells treated with GNR-ANGI-2 without laser. Correspondingly, in vitro ROS evaluation showed a higher intensity of ROS production in cells treated with GNR-ANGI-2 under laser irradiation. The Western blotting results indicated that GNR-ANGI-2 with laser exposure activated the caspase pathway of apoptosis, and GNR-ANGI-2 with sham exposure induced autophagy in C6 cells. The current study provides in-depth knowledge on the effective time point for maximum cellular uptake of GNR-ANGI-2 to achieve a better anti-glioma effect. Moreover, by exploring the molecular mechanism of cell death with GNR-ANGI-2-mediated photothermal therapy, we could modify the nanoshuttle with multimodal targets to achieve more efficient anti-glioma therapy in the future. Full article
Show Figures

Graphical abstract

21 pages, 2448 KiB  
Review
Angiopep-2-Modified Nanoparticles for Brain-Directed Delivery of Therapeutics: A Review
by Saffiya Habib and Moganavelli Singh
Polymers 2022, 14(4), 712; https://doi.org/10.3390/polym14040712 - 12 Feb 2022
Cited by 66 | Viewed by 7631
Abstract
Nanotechnology has opened up a world of possibilities for the treatment of brain disorders. Nanosystems can be designed to encapsulate, carry, and deliver a variety of therapeutic agents, including drugs and nucleic acids. Nanoparticles may also be formulated to contain photosensitizers or, on [...] Read more.
Nanotechnology has opened up a world of possibilities for the treatment of brain disorders. Nanosystems can be designed to encapsulate, carry, and deliver a variety of therapeutic agents, including drugs and nucleic acids. Nanoparticles may also be formulated to contain photosensitizers or, on their own, serve as photothermal conversion agents for phototherapy. Furthermore, nano-delivery agents can enhance the efficacy of contrast agents for improved brain imaging and diagnostics. However, effective nano-delivery to the brain is seriously hampered by the formidable blood–brain barrier (BBB). Advances in understanding natural transport routes across the BBB have led to receptor-mediated transcytosis being exploited as a possible means of nanoparticle uptake. In this regard, the oligopeptide Angiopep-2, which has high BBB transcytosis capacity, has been utilized as a targeting ligand. Various organic and inorganic nanostructures have been functionalized with Angiopep-2 to direct therapeutic and diagnostic agents to the brain. Not only have these shown great promise in the treatment and diagnosis of brain cancer but they have also been investigated for the treatment of brain injury, stroke, epilepsy, Parkinson’s disease, and Alzheimer’s disease. This review focuses on studies conducted from 2010 to 2021 with Angiopep-2-modified nanoparticles aimed at the treatment and diagnosis of brain disorders. Full article
(This article belongs to the Special Issue Polymeric Nanoparticles for Biomedical Applications)
Show Figures

Figure 1

22 pages, 4816 KiB  
Article
Low-Level Endothelial TRAIL-Receptor Expression Obstructs the CNS-Delivery of Angiopep-2 Functionalised TRAIL-Receptor Agonists for the Treatment of Glioblastoma
by Nivetha Krishna Moorthy, Oliver Seifert, Stephan Eisler, Sara Weirich, Roland E. Kontermann, Markus Rehm and Gavin Fullstone
Molecules 2021, 26(24), 7582; https://doi.org/10.3390/molecules26247582 - 14 Dec 2021
Cited by 8 | Viewed by 3634
Abstract
Glioblastoma (GBM) is the most malignant and aggressive form of glioma and is associated with a poor survival rate. Latest generation Tumour Necrosis Factor Related Apoptosis-Inducing Ligand (TRAIL)-based therapeutics potently induce apoptosis in cancer cells, including GBM cells, by binding to death receptors. [...] Read more.
Glioblastoma (GBM) is the most malignant and aggressive form of glioma and is associated with a poor survival rate. Latest generation Tumour Necrosis Factor Related Apoptosis-Inducing Ligand (TRAIL)-based therapeutics potently induce apoptosis in cancer cells, including GBM cells, by binding to death receptors. However, the blood–brain barrier (BBB) is a major obstacle for these biologics to enter the central nervous system (CNS). We therefore investigated if antibody-based fusion proteins that combine hexavalent TRAIL and angiopep-2 (ANG2) moieties can be developed, with ANG2 promoting receptor-mediated transcytosis (RMT) across the BBB. We demonstrate that these fusion proteins retain the potent apoptosis induction of hexavalent TRAIL-receptor agonists. Importantly, blood–brain barrier cells instead remained highly resistant to this fusion protein. Binding studies indicated that ANG2 is active in these constructs but that TRAIL-ANG2 fusion proteins bind preferentially to BBB endothelial cells via the TRAIL moiety. Consequently, transport studies indicated that TRAIL-ANG2 fusion proteins can, in principle, be shuttled across BBB endothelial cells, but that low TRAIL receptor expression on BBB endothelial cells interferes with efficient transport. Our work therefore demonstrates that TRAIL-ANG2 fusion proteins remain highly potent in inducing apoptosis, but that therapeutic avenues will require combinatorial strategies, such as TRAIL-R masking, to achieve effective CNS transport. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

13 pages, 4506 KiB  
Article
Rational Constructed Ultra-Small Iron Oxide Nanoprobes Manifesting High Performance for T1-Weighted Magnetic Resonance Imaging of Glioblastoma
by Xiangyan Wang, Lei Chen, Jianxian Ge, Mohammad Javad Afshari, Lei Yang, Qingqing Miao, Ruixue Duan, Jiabin Cui, Chunyi Liu, Jianfeng Zeng, Jian Zhong and Mingyuan Gao
Nanomaterials 2021, 11(10), 2601; https://doi.org/10.3390/nano11102601 - 2 Oct 2021
Cited by 11 | Viewed by 3350
Abstract
Precise diagnosis and monitoring of cancer depend on the development of advanced technologies for in vivo imaging. Owing to the merits of outstanding spatial resolution and excellent soft-tissue contrast, the application of magnetic resonance imaging (MRI) in biomedicine is of great importance. Herein, [...] Read more.
Precise diagnosis and monitoring of cancer depend on the development of advanced technologies for in vivo imaging. Owing to the merits of outstanding spatial resolution and excellent soft-tissue contrast, the application of magnetic resonance imaging (MRI) in biomedicine is of great importance. Herein, Angiopep-2 (ANG), which can simultaneously help to cross the blood-brain barrier and target the glioblastoma cells, was rationally combined with the 3.3 nm-sized ultra-small iron oxide (Fe3O4) to construct high-performance MRI nanoprobes (Fe3O4-ANG NPs) for glioblastoma diagnosis. The in vitro experiments show that the resultant Fe3O4-ANG NPs not only exhibit favorable relaxation properties and colloidal stability, but also have low toxicity and high specificity to glioblastoma cells, which provide critical prerequisites for the in vivo tumor imaging. Furthermore, in vivo imaging results show that the Fe3O4-ANG NPs exhibit good targeting ability toward subcutaneous and orthotopic glioblastoma model, manifesting an obvious contrast enhancement effect on the T1-weighted MR image, which demonstrates promising potential in clinical application. Full article
(This article belongs to the Special Issue Nanoprobes and Nanoagents for Biomedical Applications)
Show Figures

Figure 1

26 pages, 2281 KiB  
Article
An Angiopep2-PAPTP Construct Overcomes the Blood-Brain Barrier. New Perspectives against Brain Tumors
by Sofia Parrasia, Andrea Rossa, Tatiana Varanita, Vanessa Checchetto, Riccardo De Lorenzi, Mario Zoratti, Cristina Paradisi, Paolo Ruzza, Andrea Mattarei, Ildikò Szabò and Lucia Biasutto
Pharmaceuticals 2021, 14(2), 129; https://doi.org/10.3390/ph14020129 - 6 Feb 2021
Cited by 13 | Viewed by 4100
Abstract
A developing family of chemotherapeutics—derived from 5-(4-phenoxybutoxy)psoralen (PAP-1)—target mitochondrial potassium channel mtKv1.3 to selectively induce oxidative stress and death of diseased cells. The key to their effectiveness is the presence of a positively charged triphenylphosphonium group which drives their accumulation in the organelles. [...] Read more.
A developing family of chemotherapeutics—derived from 5-(4-phenoxybutoxy)psoralen (PAP-1)—target mitochondrial potassium channel mtKv1.3 to selectively induce oxidative stress and death of diseased cells. The key to their effectiveness is the presence of a positively charged triphenylphosphonium group which drives their accumulation in the organelles. These compounds have proven their preclinical worth in murine models of cancers such as melanoma and pancreatic adenocarcinoma. In in vitro experiments they also efficiently killed glioblastoma cells, but in vivo they were powerless against orthotopic glioma because they were completely unable to overcome the blood-brain barrier. In an effort to improve brain delivery we have now coupled one of these promising compounds, PAPTP, to well-known cell-penetrating and brain-targeting peptides TAT48–61 and Angiopep-2. Coupling has been obtained by linking one of the phenyl groups of the triphenylphosphonium to the first amino acid of the peptide via a reversible carbamate ester bond. Both TAT48–61 and Angiopep-2 allowed the delivery of 0.3–0.4 nmoles of construct per gram of brain tissue upon intravenous (i.v.) injection of 5 µmoles/kg bw to mice. This is the first evidence of PAPTP delivery to the brain; the chemical strategy described here opens the possibility to conjugate PAPTP to small peptides in order to fine-tune tissue distribution of this interesting compound. Full article
Show Figures

Figure 1

21 pages, 4040 KiB  
Article
Theranostic Design of Angiopep-2 Conjugated Hyaluronic Acid Nanoparticles (Thera-ANG-cHANPs) for Dual Targeting and Boosted Imaging of Glioma Cells
by Angela Costagliola di Polidoro, Giorgia Zambito, Joost Haeck, Laura Mezzanotte, Martine Lamfers, Paolo Antonio Netti and Enza Torino
Cancers 2021, 13(3), 503; https://doi.org/10.3390/cancers13030503 - 28 Jan 2021
Cited by 39 | Viewed by 4562
Abstract
Glioblastoma multiforme (GBM) has a mean survival of only 15 months. Tumour heterogeneity and blood-brain barrier (BBB) mainly hinder the transport of active agents, leading to late diagnosis, ineffective therapy and inaccurate follow-up. The use of hydrogel nanoparticles, particularly hyaluronic acid as naturally [...] Read more.
Glioblastoma multiforme (GBM) has a mean survival of only 15 months. Tumour heterogeneity and blood-brain barrier (BBB) mainly hinder the transport of active agents, leading to late diagnosis, ineffective therapy and inaccurate follow-up. The use of hydrogel nanoparticles, particularly hyaluronic acid as naturally occurring polymer of the extracellular matrix (ECM), has great potential in improving the transport of drug molecules and, furthermore, in facilitatating the early diagnosis by the effect of hydrodenticity enabling the T1 boosting of Gadolinium chelates for MRI. Here, crosslinked hyaluronic acid nanoparticles encapsulating gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) and the chemotherapeutic agent irinotecan (Thera-cHANPs) are proposed as theranostic nanovectors, with improved MRI capacities. Irinotecan was selected since currently repurposed as an alternative compound to the poorly effective temozolomide (TMZ), generally approved as the gold standard in GBM clinical care. Also, active crossing and targeting are achieved by theranostic cHANPs decorated with angiopep-2 (Thera-ANG-cHANPs), a dual-targeting peptide interacting with low density lipoprotein receptor related protein-1(LRP-1) receptors overexpressed by both endothelial cells of the BBB and glioma cells. Results showed preserving the hydrodenticity effect in the advanced formulation and internalization by the active peptide-mediated uptake of Thera-cHANPs in U87 and GS-102 cells. Moreover, Thera-ANG-cHANPs proved to reduce ironotecan time response, showing a significant cytotoxic effect in 24 h instead of 48 h. Full article
(This article belongs to the Special Issue Nuclear Architecture in Cancer)
Show Figures

Graphical abstract

11 pages, 3705 KiB  
Article
PLGA-PEG-ANG-2 Nanoparticles for Blood–Brain Barrier Crossing: Proof-of-Concept Study
by Gina P. Hoyos-Ceballos, Barbara Ruozi, Ilaria Ottonelli, Federica Da Ros, Maria Angela Vandelli, Flavio Forni, Eleonora Daini, Antonietta Vilella, Michele Zoli, Giovanni Tosi, Jason T. Duskey and Betty L. López-Osorio
Pharmaceutics 2020, 12(1), 72; https://doi.org/10.3390/pharmaceutics12010072 - 17 Jan 2020
Cited by 69 | Viewed by 7477
Abstract
The treatment of diseases that affect the central nervous system (CNS) represents a great research challenge due to the restriction imposed by the blood–brain barrier (BBB) to allow the passage of drugs into the brain. However, the use of modified nanomedicines engineered with [...] Read more.
The treatment of diseases that affect the central nervous system (CNS) represents a great research challenge due to the restriction imposed by the blood–brain barrier (BBB) to allow the passage of drugs into the brain. However, the use of modified nanomedicines engineered with different ligands that can be recognized by receptors expressed in the BBB offers a favorable alternative for this purpose. In this work, a BBB-penetrating peptide, angiopep-2 (Ang–2), was conjugated to poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles through pre- and post-formulation strategies. Then, their ability to cross the BBB was qualitatively assessed on an animal model. Proof-of-concept studies with fluorescent and confocal microscopy studies highlighted that the brain-targeted PLGA nanoparticles were able to cross the BBB and accumulated in neuronal cells, thus showing a promising brain drug delivery system. Full article
(This article belongs to the Special Issue Drug Delivery to the Brain)
Show Figures

Figure 1

Back to TopTop