Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = amorphous calcium carbonate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1882 KiB  
Article
Carbon-Negative Construction Material Based on Rice Production Residues
by Jüri Liiv, Catherine Rwamba Githuku, Marclus Mwai, Hugo Mändar, Peeter Ritslaid, Merrit Shanskiy and Ergo Rikmann
Materials 2025, 18(15), 3534; https://doi.org/10.3390/ma18153534 - 28 Jul 2025
Viewed by 247
Abstract
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting [...] Read more.
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting as a strong pozzolanic agent. Wood ash contributes calcium oxide and alkalis to serve as a reactive binder, while rice straw functions as a lightweight organic filler, enhancing thermal insulation and indoor climate comfort. These materials undergo natural pozzolanic reactions with water, eliminating the need for Portland cement—a major global source of anthropogenic CO2 emissions (~900 kg CO2/ton cement). This process is inherently carbon-negative, not only avoiding emissions from cement production but also capturing atmospheric CO2 during lime carbonation in the hardening phase. Field trials in Kenya confirmed the composite’s sufficient structural strength for low-cost housing, with added benefits including termite resistance and suitability for unskilled laborers. In a collaboration between the University of Tartu and Kenyatta University, a semi-automatic mixing and casting system was developed, enabling fast, low-labor construction of full-scale houses. This innovation aligns with Kenya’s Big Four development agenda and supports sustainable rural development, post-disaster reconstruction, and climate mitigation through scalable, eco-friendly building solutions. Full article
Show Figures

Figure 1

21 pages, 4856 KiB  
Article
Mechanical Properties of Recycled Concrete with Carbide Slag Slurry Pre-Immersed and Carbonated Recycled Aggregate
by Xiangfei Wang, Guoliang Guo, Jinglei Liu, Chun Lv and Mingyan Bi
Materials 2025, 18(14), 3281; https://doi.org/10.3390/ma18143281 - 11 Jul 2025
Viewed by 266
Abstract
This research focuses on improving the characteristics of recycled concrete and utilizing solid waste resources through the combination of industrial waste pre-impregnation and the carbonation process. A novel pre-impregnation–carbonation aggregate method is proposed to increase the content of carbonatable components in the surface-bonded [...] Read more.
This research focuses on improving the characteristics of recycled concrete and utilizing solid waste resources through the combination of industrial waste pre-impregnation and the carbonation process. A novel pre-impregnation–carbonation aggregate method is proposed to increase the content of carbonatable components in the surface-bonded mortar of recycled coarse aggregate by pre-impregnating it with carbide slag slurry (CSS). This approach enhances the subsequent carbonation effect and thus the properties of recycled aggregates. The experimental results showed that the method significantly improved the water absorption, crushing value, and apparent density of the recycled aggregate. Additionally, it enhanced the compressive strength, split tensile strength, and flexural strength of the recycled concrete produced using the aggregate improved by this method. Microanalysis revealed that CO2 reacts with calcium hydroxide and hydrated calcium silicate (C-S-H) to produce calcite-type calcium carbonate and amorphous silica gel. These reaction products fill microcracks and pores on the aggregate and densify the aggregate–paste interfacial transition zone (ITZ), thereby improving the properties of recycled concrete. This study presents a practical approach for the high-value utilization of construction waste and the production of low-carbon building materials by enhancing the quality of recycled concrete. Additionally, carbon sequestration demonstrates broad promise for engineering applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

18 pages, 5341 KiB  
Article
Kinetic Control of Oxygenated Apatites: Dynamic Operation of a Pilot-Scale Precipitation Reactor for Bone-Mimetic Biomaterials
by Soumia Belouafa, Mohammed Berrada, Khalid Digua and Hassan Chaair
Minerals 2025, 15(7), 700; https://doi.org/10.3390/min15070700 - 30 Jun 2025
Viewed by 326
Abstract
This study investigates the dynamic operation of a pilot-scale precipitation reactor designed to produce oxygenated phosphocalcium apatites with controlled composition and low crystallinity, closely mimicking the mineral phase of bone. Our approach is based on integrating kinetic monitoring and dynamic reactor control to [...] Read more.
This study investigates the dynamic operation of a pilot-scale precipitation reactor designed to produce oxygenated phosphocalcium apatites with controlled composition and low crystallinity, closely mimicking the mineral phase of bone. Our approach is based on integrating kinetic monitoring and dynamic reactor control to direct the formation of apatites with tailored structural and chemical properties. Three synthesis routes were explored using CaCO3, Ca(NO3)2, and CaCl2 as calcium precursors, under optimized Ca/P molar ratios. The evolution of ionic concentrations (Ca2+, PO43−), peroxide and molecular oxygen incorporation, and carbonate content was monitored over a reaction time range of 2 min to 4 h. Characterization by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and chemical analysis revealed a time-dependent transformation of amorphous phases into poorly crystalline apatites with specific textures. After 60 min, the Ca/P atomic ratio stabilized at approximately 1.575, and the resulting apatites exhibited structural features comparable to those of human bone. This study highlights the influence of reactor operation time on precipitation kinetics and the properties of bioactive apatites in a scalable system. The results offer promising prospects for the large-scale production of bone-mimetic materials. However, the lack of biological validation remains a limitation. Future studies will assess the cytocompatibility and bioactivity of these materials to confirm their potential for biomedical applications. Full article
(This article belongs to the Section Biomineralization and Biominerals)
Show Figures

Figure 1

23 pages, 12059 KiB  
Article
Powders Synthesized from Water Solutions of Sodium Silicate and Calcium and/or Magnesium Chlorides
by Tatiana V. Safronova, Alexandra S. Sultanovskaya, Sergei A. Savelev, Tatiana B. Shatalova, Yaroslav Y. Filippov, Olga V. Boytsova, Vadim B. Platonov, Tatiana V. Filippova, Albina M. Murashko, Xinyan Feng and Muslim R. Akhmedov
Compounds 2025, 5(2), 22; https://doi.org/10.3390/compounds5020022 - 16 Jun 2025
Viewed by 436
Abstract
Powders with phase composition including quasi-amorphous phases and calcium carbonate CaCO3 in the form of calcite or aragonite and sodium halite NaCl as a reaction by-product were synthesized from 0.5M aqua solutions of sodium silicate and 0.5M aqua solutions of calcium and/or [...] Read more.
Powders with phase composition including quasi-amorphous phases and calcium carbonate CaCO3 in the form of calcite or aragonite and sodium halite NaCl as a reaction by-product were synthesized from 0.5M aqua solutions of sodium silicate and 0.5M aqua solutions of calcium and/or magnesium chlorides. Starting solutions were taken in quantities which could provide precipitation of hydrated calcium and/or magnesium silicates with molar ratios Ca/Si = 1 (CaSi), Mg/Si = 1 (MgSi) or (Ca+Mg)/Si = 1 (CaMgSi). Hydrated calcium and/or magnesium silicates, hydrated silica, magnesium carbonate, hydrated magnesium carbonate or hydrated magnesium silicate containing carbonate ions are suspected as components of quasi-amorphous phases presented in synthesized powders. Heat treatment of synthesized powders at 400, 600, 800 °C and pressed preceramic samples at 900, 1000, 1100 and 1200 °C were used for investigation of thermal evolution of the phase composition and microstructure of powders and ceramic samples. Mass loss of powder samples under investigation during heat treatment was provided due to evacuation of H2O (m/z = 18), CO2 (m/z = 44) and NaCl at temperatures above its melting point. After sintering at 1100 °C, the phase composition of ceramic samples included wollastonite CaSiO3 (CaSi_1100); enstatite MgSiO3, clinoenstatite MgSiO3 and forsterite Mg2SiO4 (MgSi_1100); and diopside CaMgSi2O6 (CaMgSi_1100). After sintering at 1200 °C, the phase composition of ceramics CaSi_1200 included pseudo-wollastonite CaSiO3. After heat treatment at 1300 °C, the phase composition of MgSi_1300 powder included preferably protoenstatite MgSiO3. The phase composition of all samples after heat treatment belongs to the oxide system CaO–MgO–SiO2. Ceramic materials in this system are of interest for use in different areas, including refractories, construction materials and biomaterials. Powders prepared in the present investigation, both via precipitation and via heat treatment, can be used for the creation of materials with specific properties and in model experiments as lunar regolith simulants. Full article
Show Figures

Figure 1

17 pages, 3950 KiB  
Article
Performance of Microbially Induced Carbonate Precipitation for Reinforcing Cohesive Soil in the Reservoir Area
by Xinfa Li, Dingxiang Zhuang and Ru Hu
Crystals 2025, 15(6), 540; https://doi.org/10.3390/cryst15060540 - 5 Jun 2025
Viewed by 649
Abstract
Cohesive soil in the reservoir area is vulnerable to natural disasters because of its poor erosion resistance and low strength. Therefore, it needs to be reinforced. Microbially induced calcium carbonate precipitation (MICP) is a sustaibable soil reinforcement technique with low energy consumption and [...] Read more.
Cohesive soil in the reservoir area is vulnerable to natural disasters because of its poor erosion resistance and low strength. Therefore, it needs to be reinforced. Microbially induced calcium carbonate precipitation (MICP) is a sustaibable soil reinforcement technique with low energy consumption and no pollution. Different combinations of Bacillus subtilis bacterial solution (BS) concentrations and cementing solution (CS) concentrations were set to perform MICP solidification treatment. The characterization of cohesive soil before MICP was carried out by means of Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), and Laser Particle Size Analyzer (LPSA). The results showed that the unreinforced soil showed an amorphous state with low strength and the particle size distribution was dominated by powder particles. However, with the addition of BS concentrations and CS concentrations, SEM results showed that spherical and rhombohedral minerals filled the pores of the cohesive soil, which increased the content of precipitations and enhanced the cementitious characteristics. When the concentrations of CS or BS were fixed, CaCO3 content, deviatoric stress, shear strength, cohesive force, and internal friction angle all showed a trend of first increasing and then decreasing with the increase in CS or BS concentration. The optimal combination of CS and BS concentration was 1.5 mol/L and OD600 = 1.8. Thermochemical analyses showed an improved thermal stability of the reinforcing cohesive soil, with the lowest mass loss (32%) and the highest pyrolysis temperature (812 °C) of the samples at the optimal combination of BS and CS concentration. This study is expected to improve the understanding of the MICP reinforcement process and contribute to the optimal design of future biologically mediated soil amendments, promoting bioremediation. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

20 pages, 11906 KiB  
Article
Effects of Substrate Pulse Bias on Corrosion Behavior of Tetrahedral Amorphous Carbon Thin Films in Acidic and Chloride Solutions
by Nay Win Khun and Adrian Wei-Yee Tan
Lubricants 2025, 13(4), 141; https://doi.org/10.3390/lubricants13040141 - 25 Mar 2025
Viewed by 517
Abstract
Filtered cathodic vacuum arc (FCVA) deposition technology was applied to prepare tetrahedral amorphous carbon (taC) thin films with different substrate pulse biases. Their structure, adhesion strength, and corrosion behavior in 5 × 10−2 M hydrochloric (HCl), sodium chloride (NaCl), calcium chloride (CaCl [...] Read more.
Filtered cathodic vacuum arc (FCVA) deposition technology was applied to prepare tetrahedral amorphous carbon (taC) thin films with different substrate pulse biases. Their structure, adhesion strength, and corrosion behavior in 5 × 10−2 M hydrochloric (HCl), sodium chloride (NaCl), calcium chloride (CaCl2), lead (II) chloride (PbCl2), and mercury (II) chloride (HgCl2) solutions were studied with respect to the substrate pulse bias. Increasing the substrate pulse bias from 0 to 1000 V increased the graphitization of the taC thin films and thereby resulted in a 9.9% increase in their adhesion strength from 406 mN to 446 mN. The taC thin films exhibited the lowest (8.48 × 104 Ω to 11.55 × 104 Ω) and highest (146.89 × 104 Ω to 387.44 × 104 Ω) corrosion resistance in the PbCl2 and HgCl2 solutions, respectively, while they had higher corrosion in the HCl (62.07 × 104 Ω to 131.73 × 104 Ω) solution than in both the NaCl (143 × 104 Ω to 231.31 × 104 Ω) and CaCl2 (102.13 × 104 Ω to 351.92 × 104 Ω) solutions. Nevertheless, the taC thin films with higher substrate pulse biases had lower corrosion resistance in all the solutions used in this study. The substrate pulse bias emerged as a significant parameter in the FCVA deposition process, playing a crucial role in influencing the structure, adhesion strength, and corrosion resistance of taC thin films. Full article
Show Figures

Figure 1

17 pages, 6304 KiB  
Article
Research on the Mechanical Activation Mechanism of Coal Gangue and Its CO2 Mineralization Effect
by Lei Zhu, Chengyong Liu, Gang Duan, Zhicheng Liu, Ling Jin, Yuejin Zhou and Kun Fang
Sustainability 2025, 17(6), 2364; https://doi.org/10.3390/su17062364 - 7 Mar 2025
Cited by 1 | Viewed by 1053
Abstract
During the extraction and utilization of coal resources, a large amount of CO2 and coal-based solid wastes (CBSW), such as coal gangue, are generated. To reduce the carbon and waste emissions, an effective approach is to mineralize the CO2 with the [...] Read more.
During the extraction and utilization of coal resources, a large amount of CO2 and coal-based solid wastes (CBSW), such as coal gangue, are generated. To reduce the carbon and waste emissions, an effective approach is to mineralize the CO2 with the CBSW and then backfill the mineralized materials into the goaf area. However, efficient CO2 mineralization is challenging due to the low reactivity of coal gangue. To this end, mechanical activation was used for the modification of coal gangue, and the mechanical activation mechanism of coal gangue was revealed from a microcosmic perspective by dry powder laser particle size testing (DPLPST), X-ray diffractometer (XRD) analysis, Fourier-transform infrared spectrometer (FTIR) analysis, and scanning electron microscopy (SEM). The results showed that compared with the unground coal gangue, the average particle size of coal gangue after 0.5 h, 1 h, and 1.5 h milling decreases by 94.3%, 95%, and 95.3%, respectively; additionally, the amorphous structures of the coal gangue after milling increase, and their edges and corners gradually diminish. After the pressure mineralization of coal gangues with different activation times, thermogravimetric (TG) analysis was performed, and the CO2 mineralization effect of the mechanically activated coal gangue was explored. It is found that the carbon fixation capacity of the coal gangue after 0.5 h, 1.0 h, and 1.5 h mechanical activation is increased by 1.18%, 3.20%, and 7.57%, respectively. Through the XRD and SEM, the mechanism of CO2 mineralization in coal gangue was revealed from a microcosmic perspective as follows: during the mineralization process, alkali metal ions of calcium and magnesium in anorthite and muscovite are leached and participate in the mineralization reaction, resulting in the formation of stable carbonates such as calcium carbonate. Full article
Show Figures

Figure 1

16 pages, 879 KiB  
Article
Comparing Effects of Soil Amendments on Plant Growth and Microbial Activity in Metal-Contaminated Soils
by Sylwia Siebielec and Grzegorz Siebielec
Sustainability 2025, 17(5), 2135; https://doi.org/10.3390/su17052135 - 1 Mar 2025
Cited by 1 | Viewed by 991
Abstract
Phytostabilization of metals involves the inactivation of metals in the soil through the use of various materials as soil amendments, which reduces the bioavailability of metals, and then the introduction of vegetation. There are limited data comparing the effectiveness of different phytostabilization amendments [...] Read more.
Phytostabilization of metals involves the inactivation of metals in the soil through the use of various materials as soil amendments, which reduces the bioavailability of metals, and then the introduction of vegetation. There are limited data comparing the effectiveness of different phytostabilization amendments under the same soil and environmental conditions. Therefore, the aim of this research was to compare the effectiveness of a range of soil amendments on reducing the extractability of metals, metal uptake by plants, microbial activity in soil and nutrient availability to plants. Eight materials potentially limiting metal availability were used in a pot experiment: two composts (CG, CM), municipal biosolids (SB), bentonite (BEN), phosphorus fertilizer (PF), amorphous iron oxide (FE), waste rock material (WR), calcium carbonate (LM); and these materials were compared with typical fertilization (NPK) and an untreated soil as the control (CTL). The following trace metal-contaminated soils were used in the pot experiment: soil taken from the area of strong dust fall from the zinc and lead smelter (soil P); soil taken from an outcrop of ore-bearing rocks near a smelter waste heap (soil H); soil artificially polluted through smelter dust spill in the 1990s (soil S). In general, the greatest yields of plants (oat and white mustard) were recorded for compost-treated soils. Changes in the solubility of zinc (Zn) and cadmium (Cd) after the application of various amendments largely reflected changes in soil pH. Biosolids caused a significant increase in extractable Zn and Cd, which was related to the decrease in soil pH, while a significant reduction in Cd extractability was observed across soils after the application of both composts, especially the compost characterized by alkaline pH. Interestingly, low extractability of Cd in the soil with the addition of another compost was observed, despite the pH decrease, as compared to the control pots. This fact proves the high sorption capacity of the compost towards Cd. The microbiological analyses revealed the highly beneficial effect of composts for dehydrogenases and nitrification activities, and for soil respiration, whereas soil amendment with iron oxide caused an increase in respiration activity across soils. Full article
Show Figures

Figure 1

20 pages, 4389 KiB  
Article
Preparation of Low Carbon Silicomanganese Slag-Based Alkali-Activated Materials Using Alkali-Activated Silica Waste
by Yang Zheng, Zhi-Yuan Zhang, Yisong Liu, Xiaozhu Zhang, Shaoguo Kang, Leyang Lv and Junbo Zhou
Buildings 2024, 14(12), 3835; https://doi.org/10.3390/buildings14123835 - 29 Nov 2024
Cited by 2 | Viewed by 964
Abstract
The utilization of silicomanganese slag (SiMnS) as a precursor for alkali-activated materials (AAMs) is considered as an efficient approach for sustainable and eco-friendly large-scale resource utilization. However, sodium silicate solutions account for more than 50% of the production costs and carbon emissions of [...] Read more.
The utilization of silicomanganese slag (SiMnS) as a precursor for alkali-activated materials (AAMs) is considered as an efficient approach for sustainable and eco-friendly large-scale resource utilization. However, sodium silicate solutions account for more than 50% of the production costs and carbon emissions of AAMs. In this study, AAM activators were prepared by silica-containing waste (acid leaching residue of boron mud, BM-AR) and NaOH as raw materials, and were successfully substituted for commercial sodium silicate-NaOH activators. Results indicated that the NaOH dosage had a great effect on the concentration and modulus of the activator. With the appropriate dosage of NaOH (NaOH: BM-AR = 0.4–0.7), suitable moduli of AAM activators can be produced at a wide range of solid/liquid ratios (L/S = 3–4.5) under mild conditions (80–100 °C). The compressive strength of the SiMnS AAM specimens prepared by this activator can reach 68.58 MPa, and its hydration products were mainly hydrated calcium silicate and amorphous silica–alumina gel, indicating the successful preparation of AAM. Calculation showed that the carbon emission of the AAMs prepared in this study was 12.4% and 37.6% of that of OPC and commercial water glass/NaOH-activated AAMs, and the cost was only 67.14% and 60.78% of them. The process achieves the use of waste materials to replace commercial activators, and is expected to be extended to a variety of AAMs raw materials and silica-containing waste. This makes it a highly promising alternative method for the production of AAMs, particularly the ‘just add water’ AAMs. Full article
Show Figures

Figure 1

19 pages, 5368 KiB  
Article
Amorphous Calcium Carbonate Enhances Fracture Healing in a Rat Fracture Model
by Tsu-Te Yeh, Chun-Kai Chen, Yaswanth Kuthati, Lokesh Kumar Mende, Chih-Shung Wong and Zwe-Ling Kong
Nutrients 2024, 16(23), 4089; https://doi.org/10.3390/nu16234089 - 27 Nov 2024
Cited by 1 | Viewed by 2120
Abstract
Background: Delayed and failed fracture repair and bone healing remain significant public health issues. Dietary supplements serve as a safe, inexpensive, and non-surgical means to aid in different stages of fracture repair. Studies have shown that amorphous calcium carbonate (ACC) is absorbed [...] Read more.
Background: Delayed and failed fracture repair and bone healing remain significant public health issues. Dietary supplements serve as a safe, inexpensive, and non-surgical means to aid in different stages of fracture repair. Studies have shown that amorphous calcium carbonate (ACC) is absorbed 2 to 4.6 times more than crystalline calcium carbonate in humans. Objectives: In the present study, we assessed the efficacy of ACC on femoral fracture healing in a male Wistar rat model. Methods: Eighty male Wistar rats were randomly divided into five groups (n = six per group): sham, fracture + water, fracture + 0.5× (206 mg/kg) ACC, fracture + 1× ACC (412 mg/kg), and fracture + 1.5× (618 mg/kg) ACC, where ACC refers to the equivalent supplemental dose of ACC for humans. A 21-gauge needle was placed in the left femoral shaft, and we then waited for three weeks. After three weeks, the sham group of rats was left without fractures, while the remaining animals had their left mid-femur fractured with an impactor, followed by treatment with different doses of oral ACC for three weeks. Weight-bearing capacity, microcomputed tomography, and serum biomarkers were evaluated weekly. After three weeks, the rats were sacrificed, and their femur bones were isolated to conduct an evaluation of biomechanical strength and histological analysis. Results: Weight-bearing tests showed that treatment with ACC at all the tested doses led to a significant increase in weight-bearing capacity compared to the controls. In addition, microcomputed tomography and histological studies revealed that ACC treatment improved callus formation dose-dependently. Moreover, biomechanical strength was improved in a dose-dependent fashion in ACC-treated rats compared to the controls. In addition, supplementation with ACC significantly lowered bone formation and resorption marker levels two–three weeks post-fracture induction, indicating accelerated fracture recovery. Conclusions: Our preliminary data demonstrate that ACC supplementation improves fracture healing, with ACC-supplemented rats healing in a shorter time than control rats. Full article
Show Figures

Figure 1

12 pages, 3908 KiB  
Article
A Novel Technique for Monitoring Carbonate and Scale Precipitation Using a Batch-Process-Based Hetero-Core Fiber Optic Sensor
by Sakurako Satake, Ai Hosoki, Hideki Kuramitz and Akira Ueda
Sensors 2024, 24(23), 7580; https://doi.org/10.3390/s24237580 - 27 Nov 2024
Cited by 1 | Viewed by 1061
Abstract
Techniques for monitoring calcium carbonate and silica deposits (scale) in geothermal power plants and hot spring facilities using fiber optic sensors have already been reported. These sensors continuously measure changes in light transmittance with a detector and, when applied to field tests, require [...] Read more.
Techniques for monitoring calcium carbonate and silica deposits (scale) in geothermal power plants and hot spring facilities using fiber optic sensors have already been reported. These sensors continuously measure changes in light transmittance with a detector and, when applied to field tests, require the installation of a power supply and sensor monitoring equipment. However, on some sites, a power supply may not be available, or a specialist skilled in handling scale sensors is required. To overcome this problem, we have developed a method for evaluating scale formation that is based on a batch process that can be used by anyone. In brief, this method involves depositing scale on a section of the optical fiber sensor and then fusing this section to the optical fiber and measuring it. Using this sensor, a technician in the field can simply place the sensor in the desired location, collect the samples at any given time, and send them to the laboratory to measure their transmittance. This simple and easy method was achieved by using a hetero-core type of fiber optic. This evaluation method can measure with the same sensitivity as conventional real-time methods, while its transmittance response for the sensor corresponds to the saturation index (SI) changes in the scale components in the solution due to increases in temperature and concentration. In the field of carbon dioxide capture and storage (CCS), this evaluation method can be used to quantitatively measure the formation of carbonate minerals, and it can also be used as an indicator for determining the conditions for CO2 mineral fixation, as well as in experiments using batch-type autoclaves in laboratory testing. It is also expected to be used in geothermal power plants as a method for evaluating scale formation, such as that of amorphous silica, and to protect against agents that hinder stable operation. Full article
(This article belongs to the Special Issue Sensors from Miniaturization of Analytical Instruments (2nd Edition))
Show Figures

Figure 1

17 pages, 4271 KiB  
Article
Efficient Removal of Cationic Dye by Biomimetic Amorphous Calcium Carbonate: Behavior and Mechanisms
by Renlu Liu, Weizhen Ji, Jie Min, Pengjun Wen, Yan Li, Jialu Hu, Li Yin and Genhe He
Molecules 2024, 29(22), 5426; https://doi.org/10.3390/molecules29225426 - 18 Nov 2024
Cited by 1 | Viewed by 1196
Abstract
The search for efficient, environmentally friendly adsorbents is critical for purifying dye wastewater. In this study, we produced a first-of-its-kind effective biomimetic amorphous calcium carbonate (BACC) using bacterial processes and evaluated its capacity to adsorb a hazardous organic cationic dye—methylene blue (MB). BACC [...] Read more.
The search for efficient, environmentally friendly adsorbents is critical for purifying dye wastewater. In this study, we produced a first-of-its-kind effective biomimetic amorphous calcium carbonate (BACC) using bacterial processes and evaluated its capacity to adsorb a hazardous organic cationic dye—methylene blue (MB). BACC can adsorb a maximum of 494.86 mg/g of MB, and this excellent adsorption performance was maintained during different solution temperature (10–55 °C) and broad pH (3–12) conditions. The favorable adsorption characteristics of BACC can be attributable to its hydrophobic property, porosity, electronegativity, and perfect dispersity in aqueous solution. During adsorption, MB can form Cl-Ca, S-O, N-Ca, and H-bonds on the surface of BACC. Since BACC has excellent resistance to adsorption interference in different water bodies and in real dye wastewater, and can also be effectively recycled six times, our study is an important step forward in dye wastewater treatment applications. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Energy and Environmental Sustainability)
Show Figures

Graphical abstract

24 pages, 3749 KiB  
Article
Complex Coacervates: From Polyelectrolyte Solutions to Multifunctional Hydrogels for Bioinspired Crystallization
by Dominik Gruber, Cristina Ruiz-Agudo, Ashit Rao, Simon Pasler, Helmut Cölfen and Elena V. Sturm
Crystals 2024, 14(11), 959; https://doi.org/10.3390/cryst14110959 - 2 Nov 2024
Cited by 1 | Viewed by 2352
Abstract
Hydrogels represent multifarious functional materials due to their diverse ranges of applicability and physicochemical properties. The complex coacervation of polyacrylate and calcium ions or polyamines with phosphates has been uncovered to be a fascinating approach to synthesizing of multifunctional physically crosslinked hydrogels. To [...] Read more.
Hydrogels represent multifarious functional materials due to their diverse ranges of applicability and physicochemical properties. The complex coacervation of polyacrylate and calcium ions or polyamines with phosphates has been uncovered to be a fascinating approach to synthesizing of multifunctional physically crosslinked hydrogels. To obtain this wide range of properties, the synthesis pathway is of great importance. For this purpose, we investigated the entire mechanism of calcium/polyacrylate, as well as phosphate/polyamine coacervation, starting from early dynamic ion complexation by the polymers, through the determination of the phase boundary and droplet formation, up to the growth and formation of thermodynamically stable macroscopic coacervate hydrogels. By varying the synthesis procedure, injectable hydrogels, as well as plastic coacervates, are presented, which cover a viscosity range of three orders of magnitude. Furthermore, the high calcium content of the calcium/polyacrylate coacervate (~19 wt.%) enables the usage of those coacervates as an ions reservoir for the formation of amorphous and crystalline calcium-containing salts like calcium carbonates and calcium phosphates. The exceptional properties of the coacervates obtained here, such as thermodynamic stability, viscosity/plasticity, resistance to acids, and adhesive strength, combined with the straightforward synthesis and the character of an ions reservoir, open a promising field of bioinspired composite materials for osteology and dentistry. Full article
(This article belongs to the Collection Topic Collection: Mineralogical Crystallography)
Show Figures

Figure 1

10 pages, 250 KiB  
Review
Preventing Dental Caries with Calcium-Based Materials: A Concise Review
by Jieyi Chen, Yuqing Zhang, Iris Xiaoxue Yin, Ollie Yiru Yu, Alice Kit Ying Chan and Chun Hung Chu
Inorganics 2024, 12(9), 253; https://doi.org/10.3390/inorganics12090253 - 19 Sep 2024
Cited by 2 | Viewed by 8263
Abstract
This concise review provides an update on the use of calcium-based materials for the prevention of dental caries. Some calcium-based materials promote remineralization and neutralize bacterial acids, disrupting cariogenic biofilms and inhibiting bacterial growth. Medical Subject Headings of [Dental Caries] and [Calcium] were [...] Read more.
This concise review provides an update on the use of calcium-based materials for the prevention of dental caries. Some calcium-based materials promote remineralization and neutralize bacterial acids, disrupting cariogenic biofilms and inhibiting bacterial growth. Medical Subject Headings of [Dental Caries] and [Calcium] were adopted to search publications. Information related to the aim of this review was extracted and summarized. Common calcium-based materials are calcium phosphate, hydroxyapatite, calcium carbonate, calcium fluoride and casein phosphopeptide–amorphous calcium phosphate (CPP-ACP). Calcium phosphate is commonly used in toothpaste. It provides calcium and phosphate ions, enhances the incorporation of fluoride into caries lesions and increases mineral density. Hydroxyapatite is a form of calcium phosphate that is chemically similar to the mineral found in teeth. It can be applied on teeth to prevent caries. Calcium carbonate can be found in toothpastes. It neutralizes bacterial acids and acts as a calcium reservoir during remineralization. Calcium fluoride is found in dental products and promotes remineralization as a source of fluoride, which can be incorporated into tooth enamel, forming fluorapatite and increasing resistance to caries. CPP-ACP is derived from milk proteins. It contains calcium and phosphate, which help to remineralize tooth enamel. CPP-ACP inhibits cariogenic bacteria. It also interacts with bacterial biofilms and disrupts their formation. These calcium-based materials can be used to boost the preventive effect of fluorides or, alternatively, as a therapy for caries prevention. Full article
(This article belongs to the Special Issue Recent Research and Application of Amorphous Materials)
18 pages, 42832 KiB  
Article
Influence of the Crystal Forms of Calcium Carbonate on the Preparation and Characteristics of Indigo Carmine-Calcium Carbonate Lake
by Le Jing, Yuhan Liu, Jiaqi Cui, Jinghan Ma, Dongdong Yuan and Chengtao Wang
Foods 2024, 13(16), 2607; https://doi.org/10.3390/foods13162607 - 20 Aug 2024
Cited by 2 | Viewed by 1580
Abstract
In this study, indigo carmine (IC)-calcium carbonate lakes with different crystalline forms of calcium carbonate were prepared through co-precipitation methods, and the properties of these lakes and their formation mechanisms were investigated. The results showed that amorphous calcium carbonate (ACC) exhibited the smallest [...] Read more.
In this study, indigo carmine (IC)-calcium carbonate lakes with different crystalline forms of calcium carbonate were prepared through co-precipitation methods, and the properties of these lakes and their formation mechanisms were investigated. The results showed that amorphous calcium carbonate (ACC) exhibited the smallest particle size and the largest specific surface area, resulting in the highest adsorption efficiency. Vaterite, calcite, and aragonite followed after ACC in decreasing order of adsorption efficiency. Kinetic analysis and isothermal analysis revealed the occurrence of chemisorption and multilayer adsorption during formation of the lakes. The FTIR and Raman spectra suggested participation of sulfonic acid groups in chemisorption. Appearance of IC significantly altered TGA curves by changing weight loss rate before decomposition of calcium carbonate. EDS analysis revealed the adsorption of IC predominantly happened on the surface of calcium carbonate particles rather than the interior. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

Back to TopTop