Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = amorphous biogenic silica

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3592 KiB  
Article
Extraction and Characterization of Silica from Empty Palm Fruit Bunch (EPFB) Ash
by Ebitei Sintei Nelson, Sunny Iyuke, Michael Olawale Daramola and Akindele Okewale
Processes 2023, 11(6), 1684; https://doi.org/10.3390/pr11061684 - 1 Jun 2023
Cited by 10 | Viewed by 4437
Abstract
Recently, there has been so much interest in using biomass waste for bio-based products. Nigeria is one of the countries with an extensive availability of palm biomass. During palm oil production, an empty palm fruit bunch (biomass) is formed, and a lot of [...] Read more.
Recently, there has been so much interest in using biomass waste for bio-based products. Nigeria is one of the countries with an extensive availability of palm biomass. During palm oil production, an empty palm fruit bunch (biomass) is formed, and a lot of ash is generated. This study aimed to extract and characterize silica from empty palm fruit bunch (EPFB) ash using the thermochemical method. The results show that EPFB ash contains a large amount of biogenic silica in its amorphous form. It could be extracted for further use via calcination at different temperatures and compared effectively to other biomass materials, such as rice husk ash, sugarcane bagasse, and cassava periderm. The extracted silica was characterized using XRF, XRD, TGA, SEM, and FTIR, revealing the highest silica concentration of 49.94% obtained at a temperature of 800 °C. The XRF analysis showed 99.44 wt.% pure silica, while the XRD spectrum showed that the silica in EPFB is inherently amorphous. As is evident from the study, silica obtained from EPFB ash is a potential source of silica and it is comparable to the commercial silica. Thus, it is potentially usable as a support for catalysts, in the development of zeolite-based catalysts and as an adsorbent. Full article
(This article belongs to the Topic Advances in Biomass Conversion)
Show Figures

Figure 1

12 pages, 4722 KiB  
Article
Synthesis of Low Density and High Purity Silica Xerogels from South African Sugarcane Leaves without the Usage of a Surfactant
by Ncamisile Nondumiso Maseko, Dirk Enke, Samuel Ayodele Iwarere, Oluwatobi Samuel Oluwafemi and Jonathan Pocock
Sustainability 2023, 15(5), 4626; https://doi.org/10.3390/su15054626 - 5 Mar 2023
Cited by 10 | Viewed by 4949
Abstract
Sugarcane leaves were used to produce high-purity and low-density silica xerogels through a sol–gel method. The biogenic silica produced through a thermochemical method was reacted with sodium hydroxide (NaOH) to form sodium silicate and the produced sodium silicate was titrated with 1 M [...] Read more.
Sugarcane leaves were used to produce high-purity and low-density silica xerogels through a sol–gel method. The biogenic silica produced through a thermochemical method was reacted with sodium hydroxide (NaOH) to form sodium silicate and the produced sodium silicate was titrated with 1 M citric acid to form silica gel. The formed silica gel was washed, subjected to a solvent exchange process and later dried at 80 °C to produce low-density and high-purity silica xerogels. The produced xerogels were characterized with energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), nitrogen physisorption, elemental analysis (CHNS), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The produced silica xerogels had an amorphous structure and purity of 99.9 wt%. In addition, the textural properties analysis showed that the xerogel has a BET surface area of 668 m2·g−1, an average pore diameter of 7.5 nm, a pore volume of 1.26 cm3·g−1 and a density of 0.23 g·cm−3. Full article
(This article belongs to the Special Issue Biomass Treatment Techniques and Sustainable Utilization of Residues)
Show Figures

Figure 1

13 pages, 3193 KiB  
Article
Valorization of Sugarcane By-Products through Synthesis of Biogenic Amorphous Silica Microspheres for Sustainable Cosmetics
by Joana R. Costa, Ana Paula Capeto, Carla F. Pereira, Sílvia S. Pedrosa, Inês F. Mota, João da Silva Burgal, Ana I. Pintado, Manuela E. Pintado, Catarina S. S. Oliveira, Patrícia Costa and Ana Raquel Madureira
Nanomaterials 2022, 12(23), 4201; https://doi.org/10.3390/nano12234201 - 26 Nov 2022
Cited by 12 | Viewed by 2786
Abstract
Ashes from sugarcane by-product incineration were used to synthesize silica powders through alkaline hot extraction, followed by ethanol/acid precipitation or the sol–gel method. Both production methods allowed amorphous spherical silica microparticles with sizes ranging from 1–15 μm and 97% purity to be obtained. [...] Read more.
Ashes from sugarcane by-product incineration were used to synthesize silica powders through alkaline hot extraction, followed by ethanol/acid precipitation or the sol–gel method. Both production methods allowed amorphous spherical silica microparticles with sizes ranging from 1–15 μm and 97% purity to be obtained. Water absorption ranged from 135–155 mL/100 g and 150–250 mL/100 g for precipitated silica and silica gel, respectively, while oil absorption ranged from 305 to 390 and from 250 to 350 mL/100 g. The precipitation with ethanol allowed the recovery of 178 g silica/kg ash, with a lab process cost of EUR 28.95/kg, while the sol-gel process showed a yield of 198 g silica/kg ash with a cost of EUR 10.89/kg. The experimental data suggest that ash from sugarcane by-products is a promising source to be converted into a competitive value-added product, minimizing the environmental impact of disposal problems. Full article
(This article belongs to the Special Issue Micro and Nanomaterials in Cosmetics)
Show Figures

Figure 1

12 pages, 1610 KiB  
Article
Silica Nanoparticles from Coir Pith Synthesized by Acidic Sol-Gel Method Improve Germination Economics
by Josef Maroušek, Anna Maroušková, Rajiv Periakaruppan, G. M. Gokul, Ananthan Anbukumaran, Andrea Bohatá, Pavel Kříž, Jan Bárta, Pavel Černý and Pavel Olšan
Polymers 2022, 14(2), 266; https://doi.org/10.3390/polym14020266 - 10 Jan 2022
Cited by 83 | Viewed by 4559
Abstract
Lignin is a natural biopolymer. A vibrant and rapid process in the synthesis of silica nanoparticles by consuming the lignin as a soft template was carefully studied. The extracted biopolymer from coir pith was employed as capping and stabilizing agents to fabricate the [...] Read more.
Lignin is a natural biopolymer. A vibrant and rapid process in the synthesis of silica nanoparticles by consuming the lignin as a soft template was carefully studied. The extracted biopolymer from coir pith was employed as capping and stabilizing agents to fabricate the silica nanoparticles (nSi). The synthesized silica nanoparticles (nSi) were characterized by ultraviolet–visible (UV–Vis) spectrophotometry, X-ray diffraction analysis (XRD), Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Analysis (EDAX), Dynamic Light Scattering (DLS) and Fourier-Transform Infrared Spectroscopy (FTIR). All the results obtained jointly and independently verified the formation of silica nanoparticles. In addition, EDAX analysis confirmed the high purity of the nSi composed only of Si and O, with no other impurities. XRD spectroscopy showed the characteristic diffraction peaks for nSi and confirmed the formation of an amorphous nature. The average size of nSi obtained is 18 nm. The surface charge and stability of nSi were analyzed by using the dynamic light scattering (DLS) and thus revealed that the nSi samples have a negative charge (−20.3 mV). In addition, the seed germination and the shoot and root formation on Vigna unguiculata were investigated by using the nSi. The results revealed that the application of nSi enhanced the germination in V. unguiculata. However, further research studies must be performed in order to determine the toxic effect of biogenic nSi before mass production and use of agricultural applications. Full article
(This article belongs to the Special Issue Lignin Based Materials: Structure, Properties and Applications)
Show Figures

Graphical abstract

24 pages, 5202 KiB  
Article
Extraction and Characterization of Biogenic Silica Obtained from Selected Agro-Waste in Africa
by Clement Owusu Prempeh, Steffi Formann, Thomas Schliermann, Hossein Beidaghy Dizaji and Michael Nelles
Appl. Sci. 2021, 11(21), 10363; https://doi.org/10.3390/app112110363 - 4 Nov 2021
Cited by 20 | Viewed by 5226
Abstract
Increased amounts of available biomass residues from agricultural food production are present widely around the globe. These biomass residues can find essential applications as bioenergy feedstock and precursors to produce value-added materials. This study assessed the production of biogenic silica (SiO2) [...] Read more.
Increased amounts of available biomass residues from agricultural food production are present widely around the globe. These biomass residues can find essential applications as bioenergy feedstock and precursors to produce value-added materials. This study assessed the production of biogenic silica (SiO2) from different biomass residues in Africa, including cornhusk, corncob, yam peelings, cassava peelings and coconut husks. Two processes were performed to synthesize the biogenic silica. First, the biomass fuels were chemically pre-treated with 1 and 5% w/v citric acid solutions. In the second stage, combustion at 600 °C for 2 h in a muffle oven was applied. The characterization of the untreated biomasses was conducted using Inductively coupled plasma—optical emission spectrometry (ICP-OES), thermal analysis (TG-DTA) and Fourier-transform infrared spectroscopy (FTIR). The resulting ashes from the combustion step were subjected to ICP, nitrogen physisorption, Energy dispersive X-ray spectroscopy (EDX) as well as X-ray diffraction (XRD). ICP results revealed that the SiO2 content in the ashes varies between 42.2 to 81.5 wt.% db and 53.4 to 90.8 wt.% db after acidic pre-treatment with 1 and 5 w/v% acid, respectively. The relative reductions of K2O by the citric acid in yam peel was the lowest (79 wt.% db) in comparison to 92, 97, 98 and 97 wt.% db calculated for corncob, cassava peel, coconut husk and cornhusk, respectively. XRD analysis revealed dominant crystalline phases of arcanite (K2SO4), sylvite (KCl) and calcite (CaCO3) in ashes of the biomass fuels pre-treated with 1 w/v% citric acid due to potassium and calcium ions present. In comparison, the 5 w/v% citric acid pre-treatment produced amorphous, biogenic silica with specific surface areas of up to 91 m2/g and pore volumes up to 0.21 cm3/g. The examined biomass residues are common wastes from food production in Africa without competition in usage with focus application. Our studies have highlighted a significant end-value to these wastes by the extraction of high quality, amorphous silica, which can be considered in applications such as catalyst support, construction material, concrete and backing material. Full article
(This article belongs to the Special Issue Combined Energetic and Material Utilization of Agriculture Residues)
Show Figures

Figure 1

14 pages, 2787 KiB  
Article
The Production of Biogenic Silica from Different South African Agricultural Residues through a Thermo-Chemical Treatment Method
by Ncamisile Nondumiso Maseko, Denise Schneider, Susan Wassersleben, Dirk Enke, Samuel Ayodele Iwarere, Jonathan Pocock and Annegret Stark
Sustainability 2021, 13(2), 577; https://doi.org/10.3390/su13020577 - 9 Jan 2021
Cited by 21 | Viewed by 3576
Abstract
A thermo-chemical treatment method was used to produce biogenic amorphous silica from South African sugarcane and maize residues. Different fractions of South African sugarcane (leaves, pith, and fiber) were processed for silica production. The biomass samples were leached with either 7 wt% citric [...] Read more.
A thermo-chemical treatment method was used to produce biogenic amorphous silica from South African sugarcane and maize residues. Different fractions of South African sugarcane (leaves, pith, and fiber) were processed for silica production. The biomass samples were leached with either 7 wt% citric acid or 7 wt% sulfuric acid at 353 K for 2 h prior to being rinsed, dried and combusted using a four-step program ranging from room temperature to 873 K in a furnace. The characterization of the pre-treated biomass samples was conducted using thermogravimetric analysis (TG/DTA), X-ray fluorescence analysis (XRF) and elemental analysis (CHN), while the final products were characterized by XRF, X-ray diffraction (XRD), elemental analysis, nitrogen physisorption and scanning electron microscopy (SEM). Citric acid pre-treatment proved to be an attractive alternative to mineral acids. Amorphous biogenic silica was produced from sugarcane leaves in good quality (0.1 wt% residual carbon and up to 99.3 wt% silica content). The produced biogenic silica also had great textural properties such as a surface area of up to 323 m2 g−1, average pore diameter of 5.0 nm, and a pore volume of 0.41 cm3 g−1. Full article
Show Figures

Figure 1

38 pages, 14731 KiB  
Article
Fractionation Trends and Variability of Rare Earth Elements and Selected Critical Metals in Pelagic Sediment from Abyssal Basin of NE Pacific (Clarion-Clipperton Fracture Zone)
by Dominik Zawadzki, Łukasz Maciąg, Tomasz Abramowski and Kevin McCartney
Minerals 2020, 10(4), 320; https://doi.org/10.3390/min10040320 - 2 Apr 2020
Cited by 31 | Viewed by 7015
Abstract
The geochemical and mineralogical characteristics of pelagic sediments collected from the Interoceanmetal Joint Organization (IOM) claim area, located in the eastern part of the Clarion-Clipperton Fracture Zone (CCFZ; eastern tropical Pacific), are described in this paper. The concentrations of rare earth elements (REE), [...] Read more.
The geochemical and mineralogical characteristics of pelagic sediments collected from the Interoceanmetal Joint Organization (IOM) claim area, located in the eastern part of the Clarion-Clipperton Fracture Zone (CCFZ; eastern tropical Pacific), are described in this paper. The concentrations of rare earth elements (REE), as well as other selected critical elements contained in 135 sediment samples of siliceous clayey silts, are presented. The vertical and spatial variabilities of elements, with particular emphasis on REE as well as metals of the highest economic interest such as Cu, Ni, and Co, are detailed. The applied methods include grain size analysis by laser diffraction, geochemistry examination using ICP-MS, XRF, AAS, and CNS spectrometry, and XRD analysis of mineral composition (Rietveld method). Additionally, statistical methods such as factor analysis (FA) and principal components analysis (PCA) were applied to the results. Finally, a series of maps was prepared by geostatistical methods (universal kriging). Grain size analysis showed poor sorting of the examined fine-grained silts. ICP-MS indicated that total REE contents varied from 200 to 577 ppm, with a mean of 285 ppm, which is generally low. The contents of critical metals such as Cu, Ni, and Co were also low to moderate, apart from some individual sampling stations where total contents were 0.15% or more. Metal composition in sediments was dominated by Cu, Ni, and Zn. A mineral composition analysis revealed the dominance of amorphous biogenic opaline silica (27–58%), which were mostly remnants of diatoms, radiolarians, and sponges associated with clay minerals (23% to 48%), mostly Fe-smectite and illite, with mixed-layered illite/smectite. The high abundance of diagenetic barite crystals found in SEM−EDX observations explains the high content of Ba (up to 2.4%). The sediments showed complex lateral and horizontal fractionation trends for REE and critical metals, caused mostly by clay components, early diagenetic processes, admixtures of allogenic detrital minerals, or scavenging by micronodules. Full article
(This article belongs to the Special Issue Marine Geology and Minerals)
Show Figures

Graphical abstract

10 pages, 2716 KiB  
Article
Bacterial Compatibility/Toxicity of Biogenic Silica (b-SiO2) Nanoparticles Synthesized from Biomass Rice Husk Ash
by Sanjeev K. Sharma, Ashish R. Sharma, Sudheer D. V. N. Pamidimarri, Jyotshana Gaur, Beer Pal Singh, Sankar Sekar, Deuk Young Kim and Sang Soo Lee
Nanomaterials 2019, 9(10), 1440; https://doi.org/10.3390/nano9101440 - 11 Oct 2019
Cited by 36 | Viewed by 4538
Abstract
Biogenic silica (b-SiO2) nanopowders from rice husk ash (RHA) were prepared by chemical method and their bacterial compatibility/toxicity was analyzed. The X-ray diffractometry (XRD) patterns of the b-SiO2 nanopowders indicated an amorphous feature due to the absence of any sharp [...] Read more.
Biogenic silica (b-SiO2) nanopowders from rice husk ash (RHA) were prepared by chemical method and their bacterial compatibility/toxicity was analyzed. The X-ray diffractometry (XRD) patterns of the b-SiO2 nanopowders indicated an amorphous feature due to the absence of any sharp peaks. Micrographs of the b-SiO2 revealed that sticky RHA synthesized SiO2 nanopowder (S1) had clustered spherical nanoparticles (70 nm diameter), while b-SiO2 nanopowder synthesized from red RHA (S2) and b-SiO2 nanopowder synthesized from brown RHA (S3) were purely spherical (20 nm and 10 nm diameter, respectively). Compared to the S1 (11.36 m2g−1) and S2 (234.93 m2g−1) nanopowders, the S3 nanopowders showed the highest surface area (280.16 m2g−1) due to the small particle size and high porosity. The core level of the X-ray photoelectron spectroscopy (XPS) spectra showed that Si was constituted by two components, Si 2p (102.2 eV) and Si 2s (153.8 eV), while Oxygen 1s was observed at 531.8 eV, confirming the formation of SiO2. The anti-bacterial activity of the b-SiO2 nanopowders was investigated using both gram-positive (Escherichia coli) and gram-negative (Staphylococcus aureus) microorganisms. Compared to S2 and S3 silica nanopowders, S1 demonstrated enhanced antibacterial activity. This study signifies the medical, biomedical, clinical, and biological importance and application of RHA-mediated synthesized b-SiO2. Full article
(This article belongs to the Special Issue Antibacterial Activity of Nanoparticles)
Show Figures

Graphical abstract

19 pages, 5887 KiB  
Article
Mineralogical and Geochemical Signatures of Metalliferous Sediments in Wocan-1 and Wocan-2 Hydrothermal Sites on the Carlsberg Ridge, Indian Ocean
by Samuel Olatunde Popoola, Xiqiu Han, Yejian Wang, Zhongyan Qiu, Ying Ye and Yiyang Cai
Minerals 2019, 9(1), 26; https://doi.org/10.3390/min9010026 - 4 Jan 2019
Cited by 20 | Viewed by 5918
Abstract
In this paper, we conduct a comparative study on the mineralogy and geochemistry of metalliferous sediment collected near the active hydrothermal site (Wocan-1) and inactive hydrothermal site (Wocan-2) from Wocan Hydrothermal Field, on the Carlsberg Ridge (CR), northwest Indian Ocean. We aim to [...] Read more.
In this paper, we conduct a comparative study on the mineralogy and geochemistry of metalliferous sediment collected near the active hydrothermal site (Wocan-1) and inactive hydrothermal site (Wocan-2) from Wocan Hydrothermal Field, on the Carlsberg Ridge (CR), northwest Indian Ocean. We aim to understand the spatial variations in the primary and post-depositional conditions and the intensity of hydrothermal circulations in the Wocan hydrothermal systems. Sediment samples were collected from six stations which includes TVG-07, TVG-08 (Wocan-1), TVG-05, TVG-10 (Wocan-2), TVG-12 and TVG-13 (ridge flanks). The mineralogical investigations show that sediment samples from Wocan-1 and Wocan-2 are composed of chalcopyrite, pyrite, sphalerite, barite, gypsum, amorphous silica, altered volcanic glass, Fe-oxides, and hydroxides. The ridge flank sediments are dominated by biogenic calcite and foraminifera assemblages. The bulk sediment samples of Wocan-1 have an elevated Fe/Mn ratio (up to ~1545), with lower U contents (<7.4 ppm) and U/Fe ratio (<~1.8 × 10−5). The sulfide separates (chalcopyrite, pyrite, and sphalerite) are enriched in Se, Co, As, Sb, and Pb. The calculated sphalerite precipitation temperature (Sph.PT) yields ~278 °C. The sulfur isotope (δ34S) analysis returned a light value of 3.0–3.6‰. The bulk sediment samples of Wocan-2 have a lower Fe/Mn ratio (<~523), with high U contents (up to 19.6 ppm) and U/Fe ratio (up to ~6.2 × 10−5). The sulfide separates are enriched in Zn, Cu, Tl, and Sn. The calculated Sph.PT is ~233 °C. The δ34S returned significant values of 4.1–4.3‰ and 6.4–8.7‰ in stations TVG-10 and TVG-05, respectively. The geochemical signatures (e.g., Fe/Mn and U/Fe ratio, mineral chemistry of sulfides separates, and S-isotopes and Sph.PT) suggest that sediment samples from Wocan-1 are located near intermediate–high temperature hydrothermal discharge environments. Additionally, relatively low δ34S values exhibit a lower proportion (less than 20%) of seawater-derived components. The geochemical signatures suggest that sediment samples from Wocan-2 has undergone moderate–extensive oxidation and secondary alterations by seawater in a low–intermediate temperature hydrothermal environments. Additionally, the significant δ34S values of station TVG-05 exhibit a higher estimated proportion (up to 41%) of seawater-derived components. Our results showed pervasive hydrothermal contributions into station TVG-08 relative to TVG-07, it further showed the increased process of seafloor weathering at TVG-05 relative to TVG-10. Full article
(This article belongs to the Special Issue Deep-Sea Minerals and Gas Hydrates)
Show Figures

Graphical abstract

15 pages, 2586 KiB  
Article
Structural Characterization of the Body Frame and Spicules of a Glass Sponge
by Akane Arasuna, Masahito Kigawa, Shunsuke Fujii, Takatsugu Endo, Kenji Takahashi and Masayuki Okuno
Minerals 2018, 8(3), 88; https://doi.org/10.3390/min8030088 - 27 Feb 2018
Cited by 11 | Viewed by 6207
Abstract
The nanostructure (atomic-scale structure) and water species in the body frame and spicules of the marine glass sponge, Euplectella aspergillum, collected from the sea floor around Cebu Island was characterized in detail by thermogravimetric differential thermal analysis, nuclear magnetic resonance spectroscopy, Raman [...] Read more.
The nanostructure (atomic-scale structure) and water species in the body frame and spicules of the marine glass sponge, Euplectella aspergillum, collected from the sea floor around Cebu Island was characterized in detail by thermogravimetric differential thermal analysis, nuclear magnetic resonance spectroscopy, Raman and infrared spectroscopies, and X-ray diffraction method. The structural features of the nanostructure in the body frame and spicules were essentially similar to each other, although these were different from those of inorganic amorphous silica materials, such as silica gel and silica glass. In addition, the averaged short and medium range structures of the sponge may be similar to those of tridymite. The water content and water species included in the body frame and spicules were almost the same. More than half of the contained water was physisorbed water molecules, and the rest was attributed to Q3 and Q2 silanol groups. Most of the water species may be present at the surface and involved in hydrogen bonding. Full article
Show Figures

Figure 1

Back to TopTop