Silica Nanoparticles from Coir Pith Synthesized by Acidic Sol-Gel Method Improve Germination Economics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction of Lignin Form Coir Pith
2.2. nSi Synthesis
2.3. nSi Characterization
2.4. Agricultural Application
3. Results and Discussion
3.1. Physiochemical Characterization
3.1.1. Analysis of Optical Properties
3.1.2. Analysis of Functional Groups
3.1.3. XRD Analysis
3.1.4. SEM Analysis
3.1.5. EDAX Analysis
3.1.6. Analysis of Zeta Potential and Thermal Stability
3.1.7. Market Analysis
3.2. Agricultural Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sriram, T.; Pandidurai, V. Synthesis of silver nanoparticles from leaf extract of Psidium guajava and its antibacterial activity against pathogens. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 146–152. [Google Scholar]
- Skapa, S. Investment characteristics of natural monopoly companies. J. Compet. 2012, 4, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Saini, R.; Saini, S.; Sharma, S. Nanotechnology: The future medicine. J. Cutan. Aesthetic Surg. 2010, 3, 32. [Google Scholar] [CrossRef]
- Ungerman, O.; Dedkova, J.; Gurinova, K. The impact of marketing innovation on the competitiveness of enterprises in the context of industry 4. J. Compet. 2018, 10, 132. [Google Scholar] [CrossRef]
- Saranya, S.; Vijayarani, K.; Pavithra, S. Green synthesis of iron nanoparticles using aqueous extract of Musa ornata flower sheath against pathogenic bacteria. Indian J. Pharm. Sci. 2017, 79, 688–694. [Google Scholar] [CrossRef]
- Kliestik, T.; Nica, E.; Musa, H.; Poliak, M.; Mihai, E.A. Networked, Smart, and Responsive Devices in Industry 4.0 Manufacturing Systems. Econ. Manag. Financ. Mark. 2020, 15, 23–29. [Google Scholar]
- Hadzima, B.; Janeček, M.; Estrin, Y.; Kim, H.S. Microstructure and corrosion properties of ultrafine–grained interstitial free steel. Mater. Sci. Eng. A 2007, 462, 243–247. [Google Scholar] [CrossRef]
- Stávková, J.; Maroušek, J. Novel sorbent shows promising financial results on P recovery from sludge water. Chemosphere 2021, 276, 130097. [Google Scholar] [CrossRef]
- Mardoyan, A.; Braun, P. Analysis of Czech subsidies for solid biofuels. Int. J. Green Energy 2015, 12, 405–408. [Google Scholar] [CrossRef]
- Peters, E.; Kliestik, T.; Musa, H.; Durana, P. Product decision–Making information systems, real–time big data analytics, and deep learning–enabled smart process planning in sustainable industry 4. J. Self–Gov. Manag. Econ. 2020, 8, 16–22. [Google Scholar]
- Kaur, P. Biosynthesis of nanoparticles using eco–friendly factories and their role in plant pathogenicity: A review. Biotechnol. Res. Innov. 2018, 2, 63–73. [Google Scholar]
- Snehal, S.; Lohani, P. Silica nanoparticles: Its green synthesis and importance in agriculture. J. Pharmacogn. Phytochem. 2018, 7, 3383–3393. [Google Scholar]
- Castillo-Henríquez, L.; Alfaro-Aguilar, K.; Ugalde-Álvarez, J.; Vega-Fernández, L.; Montes de Oca-Vásquez, G.; Vega-Baudrit, J.R. Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area. Nanomaterials 2020, 10, 1763. [Google Scholar] [CrossRef]
- Maroušek, J.; Maroušková, A.; Kůs, T. Shower cooler reduces pollutants release in production of competitive cement substitute at low cost. Energy Sources Part. A Recovery Util. Environ. Eff. 2020, 1–10. [Google Scholar] [CrossRef]
- Nwaiwu, F. Review and comparison of conceptual frameworks on digital business transformation. J. Compet. 2018, 10, 86–100. [Google Scholar] [CrossRef] [Green Version]
- Urbancova, H. Competitive advantage achievement through innovation and knowledge. J. Compet. 2013, 5, 82–96. [Google Scholar] [CrossRef] [Green Version]
- Muo, I.; Azeez, A.A. Green Entrepreneurship: Literature Review and Agenda for Future Research. Int. J. Entrep. Knowl. 2019, 7, 17–29. [Google Scholar] [CrossRef]
- Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013, 31, 346–356. [Google Scholar] [CrossRef]
- Al-Azawi, M.T.; Hadi, S.M.; Mohammed, C.H. Synthesis of silica nanoparticles via green approach by using hot aqueous extract of Thujaorientalis leaf and their effect on biofilm formation. Iraqi J. Agric. Sci. 2019, 50, 245–255. [Google Scholar]
- Blazkova, I.; Dvoulety, O. Sectoral and firm–level determinants of profitability: A multilevel approach. Int. J. Entrep. Knowl. 2018, 6, 32–44. [Google Scholar] [CrossRef]
- Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; et al. Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. Int. J. Nanomed. 2019, 14, 5087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prokopchuk, O.; Prokopchuk, I.; Mentel, G. Index Insurance as an Innovative Tool for Managing Weather Risks in the Agrarian Sector of Economics. J. Compet. 2018, 10, 119. [Google Scholar] [CrossRef]
- Singh, L.P.; Agarwal, S.K.; Bhattacharyya, S.K.; Sharma, U.; Ahalawat, S. Preparation of silica nanoparticles and its beneficial role in cementitious materials. Nanomater. Nanotechnol. 2011, 1, 9. [Google Scholar] [CrossRef]
- Dedina, D.; Sanova, P. Creating a competitive advantage by developing an innovative tool to assess suppliers in agri–food complex. J. Compet. 2013, 5, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, A.; Jamil, N.; Riaz, M.; Hornyak, G.L.; Ahmed, N.; Ahmed, S.S.; Shahwani, M.N.; Malghani, M.N.K. Synthesis of silica nanoparticles and their effect on priming of wheat (Triticum aestivum L.) under salinity stress. Biol. Forum 2017, 9, 150–157. [Google Scholar]
- Kasaai, M.R. Nanosized particles of silica and its derivatives for applications in various branches of food and nutrition sectors. J. Nanotechnol. 2015, 2015, 852394. [Google Scholar] [CrossRef] [Green Version]
- Selvarajan, V.; Obuobi, S.; Ee, P.L.R. Silica Nanoparticles—A Versatile Tool for the Treatment of Bacterial Infections. Front. Chem. 2020, 8, 602. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.A. and Padavettan, V. Synthesis of silica nanoparticles by Sol-Gel: Size–dependent properties, surface modification, and applications in silica–polymer nanocomposites—A review. J. Nanomater. 2012, 2012, 132424. [Google Scholar] [CrossRef] [Green Version]
- El-Serafy, R.S. Silica nanoparticles enhances physio–biochemical characters and postharvest quality of Rosa hybrida L. cut flowers. J. Hortic. Res. 2019, 27, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Judit, O.; Péter, L.; Péter, B.; Mónika, H.R.; József, P. The role of biofuels in food commodity prices volatility and land use. J. Compet. 2017, 9, 81–93. [Google Scholar]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Osman, N.S.; Sapawe, N. Optimization of silica (SiO2) synthesis from acid leached oil palm frond ash (OPFA) through sol-gel method. Mater. Today Proc. 2020, 31, 232–236. [Google Scholar] [CrossRef]
- Umeda, J.; Kondoh, K. High-purity amorphous silica originated in rice husks via carboxylic acid leaching process. J. Mater. Sci. 2008, 43, 7084–7090. [Google Scholar] [CrossRef]
- Adam, F.; Appaturi, J.N.; Thankappan, R.; Nawi, M.A.M. Silica–tin nanotubes prepared from rice husk ash by Sol-Gel method: Characterization and its photocatalytic activity. Appl. Surf. Sci. 2010, 257, 811–816. [Google Scholar] [CrossRef]
- Faizul, C.P.; Abdullah, C.; Fazlul, B. Extraction of silica from palm ash using citric acid leaching treatment: Preliminary result. Adv. Mater. Res. 2013, 795, 701–706. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; De Sarkar, M.; Bhowmick, A.K. Poly (vinyl alcohol)/silica hybrid nanocomposites by sol-gel technique: Synthesis and properties. J. Mater. Sci. 2005, 40, 5233–5241. [Google Scholar] [CrossRef]
- Suksabye, P.; Thiravetyan, P.; Nakbanpote, W. Column study of chromium (VI) adsorption from electroplating industry by coconut coir pith. J. Hazard. Mater. 2008, 160, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Prakash, V.; Kavitha, J.R.; Kamaleshwaran, R.; Prabharan, P.; Alagendran, S. Effect of coir pith compost in agriculture. J. Med. Plants 2021, 9, 106–110. [Google Scholar]
- Periakaruppan, R.; Li, J.; Mei, H.; Yu, Y.; Hu, S.; Chen, X.; Li, X.; Guo, G. Agro–waste mediated biopolymer for production of biogenic nano iron oxide with superparamagnetic power and antioxidant strength. J. Clean. Prod. 2021, 311, 127512. [Google Scholar] [CrossRef]
- Patil, N.B.; Sharanagouda, H.; Doddagoudar, S.R.; Ramachandra, C.T.; Ramappa, K.T. Biosynthesis and Characterization of Silica Nanoparticles from Rice (Oryza sativa L.) Husk. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 2298–2306. [Google Scholar] [CrossRef]
- Yadav, V.K.; Fulekar, M.H. Green synthesis and characterization of amorphous silica nanoparticles from fly ash. Mater. Today Proc. 2019, 18, 4351–4359. [Google Scholar] [CrossRef]
- Imoisili, P.E.; Ukoba, K.O.; Jen, T.C. Green technology extraction and characterisation of silica nanoparticles from palm kernel shell ash via Sol-Gel. J. Mater. Res. Technol. 2019, 9, 307–313. [Google Scholar] [CrossRef]
- Rojas, D.F.H.; Gómez, P.P.; Rivera, A.R. Production and characterization of silica nanoparticles from rice husk. Adv. Mater. Lett. 2019, 10, 67–73. [Google Scholar] [CrossRef]
- Ghani, N.N.A.; Saeed, M.A.; Hashim, I.H. Thermoluminescence (TL) response of silica nanoparticles subjected to 50 Gy gamma irradiation. Malays. J. Fundam. Appl. Sci. 2017, 13, 178–180. [Google Scholar]
- Nallathambi, G.; Ramachandran, T.; Rajendran, V.; Palanivelu, R. Effect of silica nanoparticles and BTCA on physical properties of cotton fabrics. Mater. Res. 2011, 14, 552–559. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Xu, Z.; Li, W.; Shen, X. Effect of nano-SiO2 on the early hydration of alite-sulphoaluminate cement. Nanomaterials 2017, 7, 102. [Google Scholar] [CrossRef] [Green Version]
- Verma, J.; Bhattacharya, A. Analysis on synthesis of silica nanoparticles and its effect on growth of T. Harzianum & Rhizoctonia species. Biomed. J. Sci. Tech. Res. 2018, 10, 7890–7897. [Google Scholar]
- Kao, M.J.; Hsu, F.C.; Peng, D.X. Synthesis and characterization of SiO2 nanoparticles and their efficacy in chemical mechanical polishing steel substrate. Adv. Mater. Sci. Eng. 2014, 2014, 691967. [Google Scholar] [CrossRef] [Green Version]
- Babu, R.H.; Yugandhar, P.; Savithramma, N. Synthesis, characterization and antimicrobial studies of bio silica nanoparticles prepared from Cynodondactylon, L.: A green approach. Bull. Mater. Sci. 2018, 41, 65. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, C.; Guo, J.; Zang, L.; Luo, J. In situ synthesis of poly (methyl methacrylate)/SiO2 hybrid nanocomposites via “grafting onto” strategy based on UV irradiation in the presence of iron aqueous solution. J. Nanomater. 2012, 2012, 217412. [Google Scholar] [CrossRef]
- Vochozka, M.; Rowland, Z.; Suler, P.; Marousek, J. The influence of the international price of oil on the value of the EUR/USD exchange rate. J. Compet. 2020, 12, 167. [Google Scholar] [CrossRef]
- Sharifi Rad, J.; Karimi, J.; Mohsenzadeh, S.; Sharifi Rad, M.; Moradgholi, J. Evaluating SiO2 nanoparticles effects on developmental characteristic and photosynthetic pigment contents of Zea mays L. Bull. Environ. Pharm. Life Sci. 2020, 3, 194–201. [Google Scholar]
S. No. | Elements | Weight % |
---|---|---|
1 | O K | 41.58 |
2 | Na K | 12.12 |
3 | Si K | 25.58 |
4 | Cl K | 20.72 |
Total | 100 |
Item | Cost Related to Production of 1 g of nSi (€) |
---|---|
Feedstock and processing | 0.1 |
Reactants | 0.3 |
Energy | 0.2 |
Equipment depreciation | 0.4 |
Labor | 0.2 |
Directing and others | 0.1 |
Total | 1.3 |
Treatment | nSi Concentration | Seed Germination (%) | Shoot Measurement (cm) | Root Measurement (cm) |
---|---|---|---|---|
T1 | 25% | 80 | 4.7 ± 0.2 | 1.5 ± 0.2 |
T2 | 50% | 65 | 2.0 ± 0.1 | 0.7 ± 0.1 |
T3 | 75% | 40 | 1.0 ± 0.2 | 0.5 ± 0.1 |
T4 | 100% | 30 | No shoot formation | No root formation |
T5 | - | 80 | 4 ± 0.2 | 1.0 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maroušek, J.; Maroušková, A.; Periakaruppan, R.; Gokul, G.M.; Anbukumaran, A.; Bohatá, A.; Kříž, P.; Bárta, J.; Černý, P.; Olšan, P. Silica Nanoparticles from Coir Pith Synthesized by Acidic Sol-Gel Method Improve Germination Economics. Polymers 2022, 14, 266. https://doi.org/10.3390/polym14020266
Maroušek J, Maroušková A, Periakaruppan R, Gokul GM, Anbukumaran A, Bohatá A, Kříž P, Bárta J, Černý P, Olšan P. Silica Nanoparticles from Coir Pith Synthesized by Acidic Sol-Gel Method Improve Germination Economics. Polymers. 2022; 14(2):266. https://doi.org/10.3390/polym14020266
Chicago/Turabian StyleMaroušek, Josef, Anna Maroušková, Rajiv Periakaruppan, G. M. Gokul, Ananthan Anbukumaran, Andrea Bohatá, Pavel Kříž, Jan Bárta, Pavel Černý, and Pavel Olšan. 2022. "Silica Nanoparticles from Coir Pith Synthesized by Acidic Sol-Gel Method Improve Germination Economics" Polymers 14, no. 2: 266. https://doi.org/10.3390/polym14020266
APA StyleMaroušek, J., Maroušková, A., Periakaruppan, R., Gokul, G. M., Anbukumaran, A., Bohatá, A., Kříž, P., Bárta, J., Černý, P., & Olšan, P. (2022). Silica Nanoparticles from Coir Pith Synthesized by Acidic Sol-Gel Method Improve Germination Economics. Polymers, 14(2), 266. https://doi.org/10.3390/polym14020266